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Using Random Forest Algorithm for Clustering
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Abstract: Clustering is considered one of the most critical unsupervised learning problems. Tt endeavors to find
an accurate structure in a collection of unlabeled data. Tn this study, we apply random forest clustering and
density estimation for unsupervised decision. A dual assignment parameter will be used as a density estimator

by combining random forest and Gaussian mixture model. Experiments were conducted using different datasets.

Efficiency of using this algorithm 1s in capturing the underlying structure for a given set of data points. The
random forest algorithm that is used in this research is robust and can discriminate between the complex

features of data pomts among different clusters.
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INTRODUCTION

Clustering 1s important process that has a big impact
i unsupervised learning studies. It amms to find an
accurate structure m a collection of unlabeled data. Then
organmizing objects into groups whose members have
similar general properties. A cluster is therefore a
collection of objects which are “similar™ between them
and are “dissimilar” to the objects belonging to other
clusters.

There are different algorithms have been used for
clustering the data. Different datasets and applications
have addressed wusing different clustering
algorithms. One of these algorithms is known as spectral

been

clustering that is used to recognize the objects. Although,
the spectral clustering is a widely-used technique but it is
still facing some challenges such as the dimensionality of
the data. For high dimensional data, it 13 hard to cluster
similar objects by only depending on the distance among
them. One of the famous algorithms to calculate the
distance is called Euclidian distance method. This method
depends on the precision of building the similarity matrix.
(Stella and Shi, 2003; Chen et al., 2011; Shi and Malik,
2000) have mentioned that the eigenvectors can be driven
from similarity matrix. A large extent of data dimensions is
one of vectors that the accuracy of clustering matrix
depends on. For high dimensional data, it 1s hard to use
Gaussian Mixture Model (GMM) to estimate the density
as well. To overcome these difficulties such as noise and
attributes  that are related with lugh
dimensional data. We wused some techmques and
algorithms that are utilized in this project and as

redundant

explained:

¢  Building and assessing similar framework from the
random forest (Albehadili and Islam, 2015)

» Combining Random Forest (RF) and GMM to get
robust density estimation (Crimimsi and Shotton,
2013)

MATERIALS AND METHODS

Random Forest (RF): Tt is a group of trees. Each tree has
many nodes arranged hierarchically. The information
transfers from the top to the bottom direction. Then doing
checking in the opposite way from bottom to top. Plenty
of tests at each node of the tree have been determined to
recognize the dissimilar patterns at each split node. Our
works are data clustering and density estimation which
are related with unsupervised tasks. Discrimination
between input patterns using unsupervised methods will
be done. The assumption of input pattern 1s a feature
vector=(1, 2, ... ,) R . BEach node has weak learner which
partitions forthcoming pattemns according to the following
function (Aladjem, 2005):

h(v, ) = RAXT —{0, 1} (1)

Where:

6,e = The parameters accompanied with each tree node
i = The jthnode is the space for the split parameters
v = The incoming patterns

We endeavor ultimately to partiton arriving data
points at each node. It can be tackled using the following:

6, =arg max0 < T, (S,6) 2)
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Tt is worth to maximize T in Eq. 2 to get high information
gam by spliting samples points reaching the node as
higher as possible. The split function can be trained using
greedy search technique (Zhu et al., 2014). There are
different method to maximize Eq. 2 either using Gim or
entropy. The entropy can be describe as:

Tie{LR}[S
S|H(S)

1=H(S) (3)

Tt is obvious that the higher the information gain is
the better splitting node 1s. The optimization objective
fumetion mduces partitioning arriving to either left or nght
channel of the node. Therefore, we consider that the weak
learner 1s the cardmality of the decision forest.
Constructing  consolidate split functions for decision
forest can formulate efficient clustering trees. Since
unsupervised learming 1s demanded, following (Aladjem,
2005), below is the partitioning paradigm formulation used
at each weak learner:

Tie{L,R}|S,
1(5;,0) = H(‘%)‘W )
] n
Then, the entropy can be defined as:
1
H(S) (5)

Then the information gain can be obtained as following:

Zie{l,R}
|SJ‘log(

s,
ALST)

(6)

1(5,,8) =log (|A(S)])- :

Where:
A = Dxd covariance matrix
|| = A determinant for the matrix (Fig. 1)

| Descision Boundaries

L Unlabelled in out data

r ;‘ . & »
W

- & '?"I
15l ot AN
L ay (A ol e
W & N e A5

1 & i .

iy s & ':\ &

L.
-

We can sum up FR as following:

¢ The deeper the depth the better discrimination is

»  Data are partitioned after each split

+  Similar patterns transverse to the similar branches
»  Dissimnilar patterns travel mto different branches

Decision Forest: In addition to the linear and nonlinear
Model that are incorporated in our decision forest:

hiv,0)=[tl>6(v)? = 12] (7
h(v,0)= [Tl >¢ T(V)? p(v) > 12] (8)

We wed GMM to be incorporated to the random
forest because it 13 very robust method for unsupervised
data clustering (Allili et al., 2010; Yu et al., 2012). In our
implementation, we use each weak leamer at a certain
depth of random forest. The reason of using several weak
learners 13 because diversity can lead to more
generalization for caphuring different data associations

(Fig. 2).

Dual assignment to construct affinity matrix: In this part,
imposing only the patterns that have the smallest
similarity membership will be reframed and the pattems
having highest similarity will be induced. We qualify the
samples by adjusting a threshold. According to Eq. 8 an
input pattern (%', %') can have a maxim similarity in
defining affinity matrix if they are survived along a path
together. However, they still also have some degree of
similarities according to a used model even they are
entirely from different clusters. Furthermore, imagine that
we have a pair of patterns x; and x; and they belong to the
same cluster then they will be assigned minimum degree
of similarity in the constructed affimity matrix. Thus,
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Fig. 1: Decision tree: deeper the depth the better discrimination
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Fig. 2: The difference between old RF and new RF by using different functions

this assumption 18 not true, especially, for complex
irregular patterns which cannot perfectly disassemble the
similar examples related to the same clusters. This is the
nature of the weak learners because they are only
thresholds capturing inequalities trying to separate
correlating samples affined to one cluster from other
samples united to different clusters. Intuitively, since split
function always not perfectly dissociate clusters,
otherwise we would end with random forest with only just
few nodes, then random forest will incorrectly cluster
associated data points.

Updating equations for GMM and RF (GMM-RF): In
this part we delve the relation between random forest and
GMM and how we incorporate the two models. The
intringic formula for GMM is give below:

P (x|8)=Emj=1ajP (x|z,.8 ) @

Where:

x = An observation

7 = The latent variables

6, = The associated parameters with GMM
Gaussian normal distribution 13 used i this

implementation. The final distribution is given as:

The latent/hidden variables can be obtained using the

following Eq. 10:

_ (Zp Xi’euld) =Lj(xi ejold) (10)

. mk = leP(xil0, ;)

To mitigate limitations of GMM because all hidden
variables j1 are not known, we alleviate the ambiguity
inherited by absence all the latent variables, ensembles of
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Fig. 3: CMU-PIE: samples of five persons with different
poses and lightening
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Fig. 4: MNIST datasets

these varables are afforded by decision forest. Revival
GMM by decision forest determimistically tackles
fogginess of conventional GMM. Assuming that the
latent variables deriving from random forest embedded
within RFji, therefore, the (Eq. 11) can be updated as
below:

Zi (2, = RE;)=(Z; | Z; # RE, |%,,6,4) =
e, (x| Gwld)S mk = 1ekP(x, | 0,,)

(11)

Then, the updating equations for parameters of GMM can
be update ed as following:

1

Einew = EZN1 = 1(ZjiURFji) (12)

(Z : URFI )(Xi -“'new )(Xi _“'new)
inew ZNn =1 : ZJ ! lel(zp UREJ
(13)

2 URE )X
w—zn -1 G YR 14y

(Z; URE,)

RESULTS AND DISCUSSION

This study presents the data sets that are used then
shows the results.

Datasets CMU-PTE: A gray (32x32 pixels) scale face
images. In addition, the dataset has 68 persons with
different illuminations and poses.

The MNIST: A hand written digits 0-9. The dataset
consists of 10000 samples. All the samples have the same
28x28 pixels size (Fig. 3 and 4; Table 1).

Table 1: Statistics of the datasets used in this experiments

Dataset No. samples Dimensionality No. of clusters
MNIST 10000 784 10

PIE 2856 1024 68

Table 2: Clustering accuracy on the two dataset

Dataset CMU-PIE MNIST
Randoim Forest [ ours] 78.1 79.2

Table 3: Clustering performance on PIE dataset: accuracy metric
CMU-PIE dataset-accuracy (%)

K RF

10 94.7
20 84.4
30 88.8
40 81.1
50 8L.0
60 78.5
68 781

Table 4. Clustering performance on MNIST dataset: accuracy metric
MNIST dataset-accuracy (%o)

k RF

3 91.7
6 81.3
10 79.2

Best achieved results are 78.1 and 79.2 on CMU-PIE
and MNIST respectively using RF. Comparing the
accuracy results for CMU-PTE and MNIST datasets with
different number of clusters (K) (Table 2-4).

CONCLUSION

Different functions are incorporated into split
functions to induce more robust RF. Powerless learners
are incorporated into both direct and nonlinear capacities
circulated on specific levels on every tree of the irregular
woodland. Furthermore, RF is consolidated by GMM
inserted between linear and linear functions. Thus, strong
RF is fittingly ready to segregate between uninformative
elements since it finds semantic hidden structure
information
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