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Abstract: Heating, Ventilating and Air Conditiomng (HVAC) systems have become a very essential part in our
daily lives in providing comfortable and satisfactory indoor conditions. As a consequence, large amount of
energy are consumed every vear in HVAC application to produce a desirable thermal environment. In light of
the increasing energy consumption, energy efficiency mmprovement has become the ultimate goal of many
authorities. Recent advances and revolutionary improvements m computing systems make optimization
approaches one of the promising techmques in achieving greatest energy efficiency m HVAC application. This
study gives an overview of research conducted on optimization techniques used m HVAC systems for energy
and comfort purposes. Current literature are summarized with highlights given to the optimization algorithms
used, control scheme, objective function parameters, HVAC simulation tools, optimization programs and HVAC
simulation model approaches. Trends in HVAC optimization, performance and efficiency analysis of mostly
used algorithms as well as factors affecting selection of algorithms will be mainly discussed in this study.
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INTRODUCTION

Energy: Malaysia bemng a tropical country with hot and
humid weather throughout the year, Heating, ventilating
and Airconditioning (HVAC) systems are indispensable
in providing comfortable living condition in factories,
offices and residential areas. According to audit study of
Malaysia Green Technology Corporation’s, energy
consumption of air conditioners accounted for more than
60% of total building energy in Malaysia. Therefore,
reducing energy consumption of HVAC systems 1s very
crucial for conversation of energy. This can also lower the
energy costs for consumers and businesses, thus, allows
energy sustainability. For this reason, efficient control of
HVAC systems plays a vital role in aclieving the energy
saving goals.

Thermal comfort: According to a survey carried out by
the National Human Activity Pattern Survey (NHAPS),
human spend 87% of their time mndoors. Thus, mamtaining
comfortable indoor conditions are important for general
well-bemngs and health of individuals. Thermal comfort 1s
the key factor to indoor comfort condition.

Thermal comfort is the condition of mind that
expresses satisfaction with the thermal environment and
15 assessed by subjective evaluation. It can be measured
using Predicted Mean Vote (PMV) index which 1s
calculated using Fanger's equation (ANSL/ASHRAE,

2013). PMV depends on environmental parameters such
as air temperature, hunmidity, meen radiant temperature, air
velocity and personal variables such as metabolic rate and
clothing insulation. It 1s associated with thermal sensation
scale that runs from cold (-3) to hot (+3) and is adopted as
an IS0 standard. The recommended acceptable PMV
range for thermal comfort from ASHRAFE Standard 55 is
between -0.5 to 0.5 for indoor spaces (ANSI/ASHRAF,
2013). Often, energy conservation strategies and thermal
comfort requirements can conflict with one and another.
More energy saving usually results in less comfort while
higher comfort level typically results in lower energy
saving. Thus, optimal solutions that find the best
comprise solution between energy saving and thermal
comfort have become the interest of many researchers and
engineers.

Optimization: In recent years, application of mathematical
optimization have seen a lot of advancement in solving
various complex engineering problems, including Heating,
Ventilating and Awr Conditoning (HVAC) systems.
Researchers and engineers continuously seek for the best
possible solutions in HVAC operation with the most
cost-effective energy resources allocation, using different
optimization methods. Research on HVAC systems
optimization can be traced as early as 1996 by Zheng and
Zaheer-Uddm (1996) and 1997 by Huang and Lam (1997)
using Sequential Quadratic Programming (SQP) and
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Genetic  Algorithm (GA), respectively for HVAC
Proportional Integral (PI) control, though occupant
thermal comfort was not the criteria in their optimization.
Since then, there have been increasing trend of studies
focusing on optimization of HVAC systems, most with the
aims of maintaining the indoor thermal comfort of
occupants and indoor air quality but with least energy
expenditure possible.

In mathematical aspect, optimization 1s the selection
of a best element {rom some set of available alternatives
with regard to certain objective or objectives
(Chiandussi et al., 2012). ITn HYAC optimization, optimal
control search for the best possible operating points of
HVAC systems under several dynamic conditions such as
outdoor weather and indoor loads with the objectives of
maximizing the occupants thermal comfort level and
minimizing the energy costs of the system. Generally,
HVAC system 158 the mtegration of many complicated
parts such as heat exchanger, blower, condenser coil,
evaporator coil, thermostat, etc.
examined and optimized single part of a HVAC systems
(Lee et al., 2011). While many focused on supervisory
control, whereby each individual part of the HVAC

Some researchers

Table 1: Summary literature of optimization of HVAC systemns

system is being monitored and optimized so that the
overall HVAC system 1s under optimal control conditions
(Wright et al, 2002; Nassif et al, 2004; Liang and Du,
2005; Sun and Reddy, 2005; Mossolly et al., 2009).

To date, many studies regarding optimization control
of HVAC systems have been camried out and
published. This study aims at making a review on the
state-of-art of HVAC performance and efficiency
analysis using mostly-used optimization technicques.

CURRENT LITERATURE

A preliminary search was carried out using search
engine, Google Scholar and Elsevier’s Scopus  database
with keywords such as “HVAC”, “air-conditioning”,
“optimization”, “multi-objective optimization” to examine
the trend of optimization algorithms used for HVAC
application. The result was derived from more than forty
HVAC optimization studies from year 1997-2017 and the
articles are summarized mn Table 1. List of literature are
presented in chronological order with highlights given to
optimization algorithms used, control schemes, objective
function parameters and simulation tools used.

Objective functions

Researchers, Optimization Control Energy Thermal Energy HVAC Optimization
Years algorithms schernes usage comfort TAQ Humidity cost  Others Simulation _ programs
Zheng and Sequential Quadratic  Proportional-Integral v - - - - - * *
Zaheer-Uddin ~ Programming (SQP) (PI) control
(1996)
Huang and Genetic Algorithm Proportional-Integral - - HVACSIM+ *
Lam (1997) (GA) (PI) control
Sosa et df. Branch-and bound Fuzzy predictive - - - Sum of squared * *
(1997) algorithm control error of zone
temperature
and reference
temperature
Wang and Genetic Algorithm  Proportional-Integral- v Y Y TRNSYS #*
Jin (2000) (GA) Derivative (PTD)
control
Wright et af. Multi-Objective * - - v * #*
(2002) Genetic Algorithm
(MOGA)
Alcala et al. Weighted Multi- Fuzzy control v - - B #*
(2003) Criteria Steady-State
Genetic Algorithm
(WMC-SSGA)
Nassif e! dal. Non-dominated Supervisory control v - - * *
(2004) Sorting Genetic
Algorithm TT
(NSGA-II)
Liang and Gradient method Direct Neural Network ~ + - - * *
Du (2005) (Direct NN)
Sun and Sequential Quadratic * v - - * #*
Reddy (2005) Programming (SQP)
Luet al Modified genetic Adaptive neuro-fuzzy v - - * *
(2005a, b) algorithm inference system
(ANFIS)
Fong et af. Evolutionary b v - - TRNSYS *

9050



Table 1: Continue

J. Eng. Applied Sci., 13 (21): 9049-9064, 2018

Objective functions

Researchers, Optirnization Control Energy Thermal Energy HVAC Optimization
Years algorithms schemes comfort I[AQ Humidity Others Simulation _ programs
(2006) Programming
(EP)
Freire et da. Sequential Quadratic Model Predictive - PowerDomus *
(2008) Programming (3QP) Control (MPC)
Huh and Complex search * - * *
Brandemuehl
(2008)
Nassif e! dal. Genetic Algorithm Proportional-Integral Least square HVACSIM+ *
(2008) (GA) (PT) control error between
estimated data
and real data
Xuand Wang,  Genetic Algorithm PID for individual - TRNSYS *
(2009) (GA) component controller;
supervisory for
integrated system
Mossolly et al.  Genetic Algorithm * - Visual DOE MATLAB
(2009) (GA)
Fong et . Ewolution Strategy * - TRNSYS *
(2009) (ES)
Congradac and  Genetic * - Energy Plus MATLAB
Kulic (2004) algorithim
(GA)
Andrew et al. Particle Swarm * - * *
(2010) Optimization (PSO)
Magnier and Non-dominated Artificial Neural - TRNSYS GenOpt
Haghighat Sorting Genetic Network (ANN)
(2010) Algorithm 1T
(NSGA-II)
Kusiak and Li  Ewolution Strategy * Cooling * *
(2010) ES) output power
Lecetal Differential Evolution * - * Visual
(2011) (DE) Basic (VB)
Kusiak et al. Strength-Multi * - * *
2011) Objective Particle
Swarm Optimization
(§-MOPSO)
Kusiak et ai. Strength Pareto * - * *
(2011) Evolutionary
Algorithm with Local
Search (SPEA-L.S)
Beghi et ad. Multi-Phase Genetic  Proportional-Integral- Partial MATLAB MATLAB
(2011) Algorithm (MPGA) Derivative (PTD) TLoading Sirmulink
control Ratio
(PLR)
Kelman and Sequential Quadratic Model Predictive - * BPMPD
Borrelli (2011)  Programming (SQP) Control (MPC) Solver by
Hamdy et ai. Genetic Algorithm * - C-programming
(2011} (GA) IDAIICE4.0 MATLAB
Gacto et dl. Exploration- Fuzzy control Systemn * *
(2012) Exploitation Strength stability,
Pareto Evolutionary number of
Algorithm rules of fuzzy
(LS-SPEA2 E/E) logic control
Yang and Wang Multi Objective * Difterence of * *
(2012) Particle Swarm indoor
Optimization temperature
(MOPSD) with set
temperature
Beghi et al. Particle Swarm Supervisory control Partial Design MATLAB
(2012) Optimization (PSO) loading Builder
Ratio (PLR)
Ferreira ef dl. Branch-and bound Model Predictive - * *
(2012) algorithim Control (MPC)
Coelho and Improved Firefly * Partial * MATLAB
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Table 1: Continue

Objective functions

Researchers, Optimization Control Energy Thermal Energy HVAC Optirnization
Years algorithms schemes usage comfort IAQ Humidity cost  Others Simulation  programs
Mariani (2013)  Algorithm (IFA) Loading
Ratio (PLR)
Alvarez et al. Lagrangian dual Model Predictive v - - - - *
2013) method Control (MPC)
Heetdl. SPEA, PSO, * v - - - Room * *
(2014) Harmony search temperature
ramp rate
Hussain et . Genetic Algorithm Fuzzy logic v - - - - EnergyPlus MATLAB
(2014) (GA) Simulink
Seoet . Multi-Tsland Genetic * ¥ - - - - TRNSYS *
(2014) Algorithm (MIGA)
Rackes and Hooke and Jeeve’s * - Y - v - EnergyPlus GenOpt
Warning (2014)  algorithm
West ef af. Sequential Quadratic  Supervisory model - - - ¥ Greenhouse * #*
(2014 Programming (3QP) predictive control gas emission
Zeng et . Firefly Algorithm Neural Netwark v - - - - * *
(2015) FA) (NN)
Garnier ef da. Genetic Algorithm Artificial Neural v - - - - EnergyPlus MATLAB
(2015) (GA) Network (ANN)
Coelho and Differential Bat * ¥ - - - Partial * MATLAB
Askarzadeh Algorithm (DBA) TLoading
(2016) Ratio (PLR)
Shaikh et al. Multi-Objective Multi-agent - 4 4 v - MATLAB MATLAB
(2016) Genetic Algorithm control
(MOGA)
Ascione et af. Genetic Algorithm Model Predictive - - - v - EnergyPlus MATLAR
(2016) (GA) Control (MPC)
Chien and Li Mixed Tnteger * - - - - * CPLEX
(2016) Linear Programming
(MILP)
Risbeck et af. Mixed Integer * - - - v - * Gurobit
2017y Linear Programming
MILP)
Table 2: Classification of optimization algorithm
Category Examples of algorithms Characteristics
Direct search Hooke-and-Jeeves, simplex search Derivatives free
Heuristics

Gradient based
Newton method
Gradient-descent method
Lagrange method
Levenberg-Marquardt algorithm

Integer programming Branch and bound, Simulated annealing

Tabu search

Single solution-based Rimulated annealing, Tabu search

metaheuristic

Population-based

metaheuristic
Difterential Evolution (DE)
Swarm intelligence family: Particle

Swarm intelligence (PSO) ant colony algorithm,

bat algorithm

Sequential Quadratic Programming (SQP)

Evolution algorithms family: Genetic Algorithm (GA),
Evolution Strategies (ES), Evolution Programming (EP),

For discontinuous function

Derivatives are required

For continuous function

Rapid convergence in finding local optirna
Performance depends on the initial values
supplied

Easily stuck at a single local optima

For discrete search space

Search for single solution at a time
Stochastics

For discrete search space

Search for multiple solution at a time
Stochastic

Large search space thus capable to escape from
local optima

Global optiral solution is not guaranteed
Good for complex non-linear problem

Classification of optimization algorithms: There are
a lot of mathematical optimization  algorithms
developed to solve complex engineering problems.
Knowing the characteristics and properties of each
is important so that a proper selection of algorithms
can be achieved Optimization algorithms can be
classified in many ways such as linear or non-

linear, deterministic or stochastics, global or local,
single-solution based or population-based, single-
objective or multi-objective, etc. Smce HVAC
systems is highly associated with nonlinearity, only
mostly-used nonlinear optimization algorithms in
HVAC studies are mainly addressed in this study
(Table 2).
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OPTIMIZATION FORMULATION

Optimization of HVAC system can be very-well
formulated mto optimization problems. The steps involved
i formulation of HVAC optimization are unportant to
ensure a successful optimal search. These phases include
setting of HVAC and building model, objective functions
formation, design variables and design constramts
determination, coupling between simulation tools and
optimization programs and most importantly nature of
various optimization algorithms and their efficiencies.
These will be discussed in the subsequent sections.

HVAC and building model: HVAC system model involves
modelling of various HVAC equipment and building with
1ts indoor thermal conditions. Generally, HVAC system 1s
a complex and non-linear system that involves numerous
parameters. Up to date, there are many HVAC system
modelling approaches that specifically used for energy
saving analysis with the latest approaches
mcorporated thermal comfort attamnment.

The most popular HVAC simulations use physical
model or mathematical model (Nassif et @l 2004; Lu et al.
2005; Sun and Reddy, 2005; Fong et al, 2006). 1t 1is
constructed based on physical and chemical laws of
conservation such as component, mass, momentum and
energy balance (Raad, 2013). These laws link the input
and output with large number of mathematical equations
described by fundemental engmeermg principles.
Numerous HVAC parameters, building thermal
behaviours, weather data and internal load information are
needed to perform simulation and this results in a
complicated overall system model. To reduce the
complexity of the system, some researchers break down
the HVAC Model to several sub-models/sub-systems
based on first principles. Besides that, level of details of
both building and HVAC equipment models can vary from
simple to complex (Trcka and Hensen, 2010). For analysis
concerning energy savings, detailed physical model and
simulation are wusually not necessary as energy
consumption can be estimated using simpler modelling
approaches. To date, quite a number of mature white box
software tools have been widely utilized for energy
consumption analysis which nclude EnergyPlus and
TRNSYS.

Another HVAC Model approach is the black-box
model or empirical model which is sometimes preferred as
it 1s easier to be constructed (Kusiak et al, 2010,
2011; He et al., 2014). Black box model does not use any
physical or mathematical structure of HVAC Model. A
system is viewed in terms of its input data and output

CVenl

Optimization programs

Objective functions calculation

N L

Input file j‘> Simulate :>

HVAC simulation tools

Output file

Fig. 1: Coupling between HVAC simulation tools and
optimization programs

data without the knowledge of internal structure. The
HVAC Model or sub-models are estimated and evaluated
using validated mput and output data of the system. This
needs on-site measurement of energy consumption and
HVAC operation data under different conditions for
certain period of time. One of the popular black box
modelling methods 1s Neural Network (NN), whereby it 1s
used to predict the energy model of HVAC system. Tt is
found that NN outperforms other black box modelling
methods such as autoregressive exogenous (ARX),
Autoregressive Moving Average exogenous (ARMAX),
Transfer Function (TF) and Box-Jenkins (BI) (Afram and
Tanabi-Sharifi, 2015) (Fig. 1).

In the case where mathematical models are combined
with black-box models, gray-box models or hybrid models
are resulted. Tn gray-box approach, the model structures
are derived using simplified physical models while their
parameters are obtamned from catalogs or from operation
data using some parameters identification methods
such as non-linear regression method. Overall by using
gray-box approach, the complexity of the model structures
as well as computational time to achieve optimality can be
significantly reduced. However, the accuracies of these
models still greatly rely on precision and richness of data
used to train the models (Wang and Ma, 2008).

HVAC simulation tools and optimization programs:
Table 1 shows the HVAC system simulation tools and
optimization programs used by some researchers in their
literature. To date, there are more than hundreds of HVAC
simulation toels available m the market. However,
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5x)

Pareto front

f,(x)

Fig. 2: Pareto front (red points), the set of pareto optimal
solutions

programs such as EnergyPlus, TRNSYS, HVACSIM+ and
DOE-2 are noticed to be more frequently used for energy
performance analysis. These tools are often used to model
the energy consumption of a HVAC system 1n a building
by interacting the building thermal model, HVAC
component models and the control strategy (Fig. 2).

For optimization processes, programs such as
MATLAB/ Simulink and GenOpt are commonly used. This
could be due to the reason that these programs are able to
couple to various HYAC simulation tools that read input
files and write output files in text format. Integration of
some popular optimization algorithms such as Genetic
Algorithm  (GP)yYMulti-Objective  Genetic  Algorithm
(MOGA) in GenOpt mto HVAC simulation tools such as
TRNSYS has eased the efforts of researchers and
engineers for the coupling process. Besides that these
optimization programs are usually good in solving
optimization problems where the objective functions are
computationally expensive. For expert users, a software
called Building Controls Virtual Test Bed (BCVTB) can
also be used to couple different simulation programs for
co-simulation or to couple simulation programs with
actual hardware for experiment purposes.

OPTIMIZATION ALGORITHMS

Optimization has become critically important in
various engineering applications today. Its ultimate goal
is to minimize the resources such as costs and time in a
system, yet still yield the greatest efficiency. In recent
years, optimization techmques have
mnproved tremendously, thanks to the rapid growth of

evolved and

computational power and high computing storage
capacity. As a result, almost all engineering problems can
be suitably formulated into optimization problems. An
optimization problem consists of maximizing or mimmizing
a real function by analytically selecting some input values
from an allowed set and then calculating the value of the
function (Chiandussi et al, 2012). Generally an
optimization problem can be represented by:

Minimize f, (x) (i=12,.., M) )
stxeX

fi(x) is the objective function or cost function of a
problem. If M = 1, this 1z a single objectve
optimization problem. Tf M=>1, the optimization problem
will be Multi-Objective or multi-criteria Optimization
(MOOP) problem. X 1s the feasible set of decision vectors.
The feasible set 1s usually defined by some constramt
functions.

HVAC systems often deal with two major conflicting
design objectives or design 1ssues: maximize the thermal
comfort of the occupants at the same time minimize the
power consumption or energy cost. Thus, MOOP is more
applicable in HVAC control systems than single objective
optimization. MOOP search for set of best trade-off
solutions in an optimization problem which 15 called
Pareto optimal. Pareto optimal is the solutions that cannot
be improved in any of the objectives without degrading at
least one of the objectives (Awad and Khana, 2015). A
solution x,€X 15 said to dominate another solution
x,eX if:

fi(x,)=f(x,)for all indices i €{1,2,.... k}

1

f.{x,)< f (x,)foratleastoneindex je {1,2,..,k} (2)

Many researchers regularly performed scalarization to
multi-objective optimization (Huang and Lam, 1997,
Wang and Tin, 2000; Mossolly et al, 2009) which
transform the multi-objective problem into single objective
problem by assigning different weight factors to the
objective functions:

Minimize > w,f(x) 3)
xeX

where, w; is the weight factors of the objective functions.
The weight factors can be set according to occupant’s
preferences. This 15 particularly useful when the
preference factor of the objectives 15 known m advance.
However, if one would like to explore and evaluate every

9054



J. Eng. Applied Sci., 13 (21): 9049-9064, 2018

combination of weight factors, large number of reiteration
on optimization problem is required. In most cases, the
computational requirement are too large to be practical.

Optimization techniques in HVAC systems: There are
many existing optimization approaches and techniques
developed so far and many researchers have reviewed the
efficiency and practicality of them in solving HVAC
optimization system. Some of the optimization
techniques are heuristic or meta-heuristic, some are
determimstic or stochastic. Smce HVAC 1s a complex and
nonlimear system that involves hundreds of variables,
meta-heuristic and stochastics based optimization seem to
be more preferred by most researchers.

Out of all the optimization algorithms, Evolutionary
Algorithms (EA) and bio-mspired optimization techniques
appear to be very popular among the researchers. EA is
based on the process of biological evolution where a
population adapts to the environment, generating new
and better individuals while elimmating the weaker ones.
Generally, EA goes through the process of selection,
crossover and mutation to get the best solutions. In
HVAC system, various set points (population) are
continuously searched and objective functions regarding
energy cost and thermal comfort are constantly evaluated.
Through many iterations, the set points should converge
at the optimum value of the objective function. The search
process will be terminated according to the criteria set or
when the global minima or the optimal solution is found.
One of the well-known EA is Genetic Algorithm (GA)
which seems to get the most attraction from scholars
regarding optimization of HVAC system. Others EA
include Evolution Strategies (ES) and Evolution
Programming (EP).

Wang and Jin (2000), Xu and Wang (2009) used GA
to perform optimal control of Variable Air Volume (VAV)
air conditioning system by simultanecusly searching for
three HVAC parameters: supply air temperature, chilled
water temperature and outdoor ventilation rate.
Mossolly et al. (2009) used GA to search for the optimal
supply air temperature and supply air flow rate by
maintaining the PMV and TAQ of multi-zone air
conditioning system. Huang and Lam (1997) employed GA
to search for the best proportional and integral gain
in the Proportional Integral (PI) controller of HVAC
systems by constantly evaluating overshoot, settling time
and mean squared error of the system. Hussain et al.
(2014) incorporated GA in the Fuzzy Logic Controller
(FLC) dedicated to control of HVAC systems that
concerning energy efficiency and thermal comfort
requirement. Alcala et af. (2003) used another variant of
G A which 18 Weighted Multi-criteria Steady State Genetic

Algorithm (WMC-SSGA) in searching for optimal setting
inits fuzzy logic control of HVAC system. Luet al. (2005)
incorporated modified GA i the Adaptive Newro-Fuzzy
Inference System (ANFIS) Model of duct and pipe
networl in HVAC system to search for the optimal setting
of differential pressure. Generally, most writers claimed
that optimizations by GA or variants of GA exhibit
significant improvement in energy performance of HVAC
system.

GA is also extended to solve multi objective problems.
Wright et al. (2002) employed Multi-Objective Genetic
Algorithm (MOGA) to search for the optimum sizing of
HVAC system, simultaneously with the optimization of
its  supervisory strategy  to
conflicting objectives regarding system energy use
and occupant comfort. Nassif et al. (2004) evaluated both
Non-dominated Sorting Genetic Algorithm (NSGA) and
NSGA-IT for two-objectives optimization by tuning four
HVAC parameters concurrently. NSGA-II 13 very
well-known as a fast and elitist multi-objective GA.
Kusiak et al. (2011) applied another siblings of GA,
Strength Pareto Evolutionary Algorithm with Local Search
(SPEA-LS) m optimizing a scalarized three-objectives
functions to search for the best supply air temperature
and static pressure set points. Gacto et al. (2012) used
SPEA2-1.S for effective tuning of FL.C of a HVAC system.
Other variants of GA mclude Multi-phase Genetic
Algorithm (MPGA) by Beglu ef al. (201 1) for optimization
of multiple chiller systems, and Multi-Tsland Genetic
Algorithm (MIGA) by Seo et al. (2014) for optimal
operation of HVAC system 1n an apartment house.

Another popular metaheuristic optimization techmique
is the bio-inspired swarm intelligence algorithms such as
Swarm Particle Optimization (PSO), Firefly Algonthm (FA),
Bat Algorithm (BA), ete. PSO, like EA is a population
based optimization algorithms. It works based on the
social behaviour of elements in nature such as birds and
fish. The population learn from the member at global best
position to reach the group objective. Each individual will
also moves towards the objective according to its
personal best and local best. In HVAC optimization,
various set points (population) learn from the neighbour
set point with the best fitness function. All the population
are supposed to converge at the global mimma at last.
Kusiak et al. (2010), Yang and Wang (2012), He et al.
(2014) used PSO to find different optimal control set
pomnts that applied on different parts of the HVAC
system. Kusiak ef al. (2011) later extended lus studies to
applying Strength Multi-Objective Particle Swarm
Optimization (S-MOPSO) to a scalarized three-objectives
optimization of a predictive Air Handling Unit (AHU)
system developed using feedforward neural network.

control solve two
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Beghi et al. (2012) employed PSO to minimize the overall
energy consumption of multiple chiller systems by
determining the load fraction that each cluller has to
satisfy and on-line or off-line status of multiple chillers.

Other swarm intelligence algorithms include Firefly
Algorithm (FA) by Zeng et al (2015) to search for the
optimal supply temperature set point and supply air
static pressure set pomt of a multi-zone HVAC system.
Coelho and Mariani (2013) wed TImproved Firefly
Algorithm (TFA) to minimize energy consumption of
multi-chiller system by determimng the part load ratio of
each chiller. The same researcher later mvestigated the
same multiple chillers optimization problem using
Differential Bat Algorithm (DBA) (Coelho and
Askarzadeh, 2016).

Other literature for optimization of HVAC systems
include Evolutionary Programming (EP) and Evolution
Strategies (ES) by Fong et al. (2006, 2009), Kusiak and Ti
(2010). EP and ES are similar to GA but differ i the
way of selection process of the population. Fong et al.
(2006, 2009) used EP and ES to optimize the energy
consumption objective by adjusting the supply air
temperature of AHU and  clulled water supply
temperature. Whereas, Kusiak (2010) used ES to minimize
the cooling output while maintaining the corresponding
thermal properties of the supply air. Another evolutionary
computation algorithm applied to HVAC 1s Differential
Evolution (DE) by Lee ef al. (2011). They used DE to
calculate the optimum Part T.oad Ratio (PLR) of multiple
chiller systems for the minimum energy consumption.

Besides that, there are also some literature regarding
HVAC optimization using branch and bound method
(Sosa et al., 1997, Ferreira et al., 2012) gradient descent
method (Liang and Du, 2005) Sequential Quadratic
Programming (SQP) algorithm (Zheng and Zaheer-Uddin
1996; Sun and Reddy, 2005; Roberto ef al., 2008) Hooke
and Jeeve’s algorithm (Rackes and Waring, 2014)
Lagrangian method (Alvarez et al., 2013) and Harmony
Search (HS) algorithm, although, the application of
these algorithms in HVAC systems are considerably lower
than that of metaheuristic one.

Efficiency of optimization algorithms in improving
HVAC performance: It is important to know the efficiency
of optimization algorithms in achieving the objective
functions of HVAC control which are minimizing of
energy usage or costs and mamntaining occupant’s
thermal comfort so that the performance of HVAC system
can be continuously improved.

For optimization performed using GA by
Mossolly et al. (2009) authors claimed that their control
strategy resulted in 30.4% savings i energy costs over

summer season of four months compared to conventional
control scheme for a building floor in Beirut, Lebanon.
By Wang and Jin (2000) writers compared GA with
conventional fixed point control of Variable A Volume
(VAV) settings and found GA optimization exhibits
significant improvement in cold season compared to
hot summer season for online-control application.
Alcala et al. (2003) performed fuzzy control of a HVAC
system optimized by multi-weighted GA at a large hall
situated in France and found about 12% and 15% saving
of energy in mid-season and summer season, respectively.
Hussamn ef al. (2014) found 16% and 18% reduction in
cooling and heating energy for a nine-story hotel building
model in Toronto, Canada using fuzzy logic controller
with GA optimization algorithm.

Nassif ez al. (2004) used controlled elitist NSGA-IT to
optimize the set pomts of an existing HVAC system with
a detailed VAV Model and found a 19.5% of energy
reduction for one week simulation in summer season.
Magnier and Haghighat (2010) too used NSGA-IT to
optimize the HVAC settings along with building
behaviour and found significant reduction in total energy
consumption when thermal slightly
compromised compared to base case configuration. With
an existing HVAC system model optimized using

comfort 1s

evolutionary computation algorithm. Kusiak ef af. (2011)
showed an energy saving of 21.4% without violating the
indoor air quality constramts. The saving can go up to
22.6% 1f occasional violations of IAQ 1s allowed.

By Kusiak et af. (2010), PSO optimization 1s used to
search for the optimal control settings of AHU simulated
with different internal loads. The results demonstrated a
7.7% savings of the total energy for simulation carried out
1in cooling season mainly due to the energy reduction in
chiller. Beghi et al. (2012) simulated a multiple-chillers
system by means of PSO algorithm in a directional
building in Milan, Ttaly on a typical cooling season
ranging from May to September. The sunulation results
were compared with the standard sequencing strategies
namely sequential strategy (MS3) and Symmetric Strategy
(SS) and they found that PSO exhibits 13.8% and 7.1%
seasonal electric energy saving with respect to MS and
33, respectively. Yang and Wang (2012) employed
MOPSO for HVAC VAV optimization in an office building
for 24 hour period. Simulation was carried out for both hot
and cold weather to examine the control ability of cooling
unit and heating unit respectively. Compared to Constant
Air Volume (CAV) system and non-optimized VAV
system, their MOPSO-optimized HVAC system features
the highest energy efficiency, especially m gh load
time. Kusiak ef al. (2011) tried to improve the optimization
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of a predictive HVAC Model using Strength Multi-
Objective Particle Swarm Optimization (S-MOPSO). Their
results showed that S-MOPSO demonstrated even higher
energy saving of AHU (13.4%) compared to MOPSO
(3.3%) taking mto consideration of humidity quality and
temperature quality.

Coelho and Mariani (2013) optimized the power
consumption of a six chillers system with six different
cooling load cases. They compared improved Firefly
Algorithm (TFA) with Average Loading method (AVL),
Genetic Algorithm (GA), Simulated Annealing (SA),
Binary Genetic Algorithm (BGA), Continuous Genetic
Algorithm (CGA), Particle Swarm Intelligence (PSO)
and Evolution Strategy (ES). From the simulation
results obtained, IFA exhibited the best objective
and they concluded that it 1s
possible to achieve substantial energy savings whule
granting good satisfaction of the cooling demand when
compared with all the standard algorithms presented in
recent literature. Fong et al. (2006) also demonstrated a
near 7% energy saving potential
conventional setting when both chilled water supply
temperature and supply air temperature set points are
optimized in a monthly basis using FEvolutionary
Programming (EP). The same researchers Fong et al.
(2009) also optimized the heat rejection system of HVAC
using Evolution Strategy (ES) and found that ES could
achieve 6.13% lower daily total energy consumption
compared to GA.

Undoubtedly optimization approaches offer great
potential in improving the performance of HVAC system,
both in cooling season and hot season as proved by the

functien value

compared to

literature. These optimization algorithms can significantly
reduce the power consumption of the overall system
without sacrificing the comfort of the indoor condition.
However, due to dissimilar objective functions from
various literature, a clear-cut efficiency evaluation of
different optimization algorithms might require further
analysis.

Selection of optimization algorithms: The choice or
selection of optimization algorithms for HVAC specific
application depends on many factors such as performance
of the algorithms, natures of objective functions (single
objective or multi-objectives), design vanables mvolved,
complexity of the optimized systems, etc.

Figure 3 shows the frequency of usage of different
optimization algorithms in HVAC application which is
derived from Table 1. It can be seen that stochastic
population-based algorithms such as Genetic Algorithm
(GA), Particle Swarm Optimization (PSO) and other
Evolution Algorithms (EA) receive most attentions from

ic Pr ing (SQP)
Fircly Algorithm (FA) =2
Branch and Bound (B end B) +=—=2
Mixed Integer Linear Programming (MILP)—===2
Bat algorithm —=11

0 5 10 15 20
Frequency

Fig. 3: Frequency of usage of different optimization
algorithms

researchers for optimization of HVAC system in the past
20 years. These algorithms are non-deterministic and
random in new population selection. They maintain a
diverse set of points providing a means of escaping from
one local optimum. As a result, global optimum and
better-quality solution can be obtained. Besides that,
these algorithms provide a means of handling large and
discontimuous search spaces which are frequently seen in
HVAC problem (Eiben and Smith, 2003).

Performance of optimization algorithms: The
performance of various optimization algorithms in
searching for the best solutions of dynamic HVAC
systems is always the interest of many researchers.
Performance of the algorithms can be evaluated from the
efficiency m converging to a low value of objective
function in short period of time. Tt is one of the main
factors to be considered when selecting optimization
algorithm to an engineering problem. To date, many
literature have been published to compare and vahdate
the effectiveness, efficiency and robustness of different
optimization algorithms for HVAC application, either
quantitatively or qualitatively.

Popular optimization algorithm GA was first adopted
by Huang and Lam (1997) to search for the proportional
and integral gain of a Proportional-Tntegral (PT) controller
of a HVAC system, they proved that GA showed better
controller performance than conventional Ziegler-
Nicholas method.

Wright ez al. (2002) used Multi-Objective Genetic
Algorithm (MOGA) to mvestigate the pay off between
energy cost and occupant discomfort m a HVAC
conditioned zone and concluded that MOGA exhibits fast
progress towards the Pareto optimal solutions. They
found that MOGA 1s able to find feasible solutions within
a very few trail solutions.

Nassif et al (2004) compared the performance of
Non-dominated Sorting Genetic Algorithm (NSGA) and
NSGA-II m solving two-objective optimization HVAC
problem. They evaluated the performance of these two
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algorithms using two metrics: closeness to the Pareto-
optimal front, diversity among the non-dominated
solutions. The results showed that NSGA-II produces
better convergence and distribution of optimal solutions
located along the Pareto front.

By Magnier and Haghighat (2010) the researchers first
used Artificial Neural Network (ANN) to characterize the
building behaviour and then NSGA-IT optimization to
search for the optimal settings of building design,
including HVAC system. They claimed that the
optimization was very efficient in terms of convergence
and spreading of Pareto solutions with significant
reduction in terms of energy consumption as well as
unprovement in thermal comfort even though the exact
comparison values were not presented.

He et al. (2014) compared two popular evolutionary
algonthms: MOGA and NSGA-II with PSO and Harmony
Search (HS) algorithm. They found that the average
computational time of both EAs are about 900 sec which
is too high for online implementation of HVAC settings.
Both PSO and HS outperform EAs by showing a high
convergence frequency and a much shorter computing
time than EAs (0.26 and 0.04 sec, respectively). They
concluded that PSO and HS have very good potential in
online optimization of HVAC systems.

Zeng et al. (2015) mvestigated energy savings of a
multi-zone HVAC system using Firefly Algorithm (FA)
and compared it with PSO and Evolution Strategies (ES).
They showed that FA demonstrates the lowest energy
consumption under almost 300
optimization parameters settings and 10 randomly selected
data points. Moreover, the average CPU time used by FA
per parameter setting per data point 1s the shortest (12.3
sec) compared to PSO (13.0 sec) and ES (19.5 sec).

Coelho and Mariani (201 3) simulated a three chillers
systems with Improved Firefly Algorithm (IFA) and
showed that TFA is able to search for the optimal solution
as Differential Evolution (DE) and PSO can. It outperforms
GA by showing quality optimization solutions (mimmal
energy consumption) for all six different loading cases
from high cooling load to low cooling load. Besides that,
IFA overcomes the divergence problem caused by
Gradient Method (GM) occurring at low cooling
demands.

Beghi et al. (2012) implemented both Multi-Phase
Genetic  Algorithm (MPGA) and PSO for optimal
multi-chiller operation. From the simulation results, they
showed that both algorithms are able to converge to their
optimum values but PSO can reach a fixed average fitness

combinations of

m fewer numbers of generations with low memory
requirements and smaller numbers of parameter settings.

Lee et al. (2011) compared Differential Evolution (DE)
with GA, PSO and Lagrange method in searching for the
optimum Part T.oad Ratio (PLR) of multiple chiller system
for mimmal energy consumption and they proved that DE
outperforms GA in finding optimal solution, overcomes
the divergence problem caused by Lagrange method
and could show better average solutions compared to
PSO.

Performance evaluation of different optimization
algorithms is still very subjective as most of the literature
do not present the convergence speed and cost function
value of their optimization. Even if they do, the literature
usually cover different objective functions and optimize
different parts of the HVAC systems. Thus, it is not easy
to achieve an equal comparison.

Optimization design variables: Selection of optimization
algorithm also affected by types and number of design
variables m an optimization problem. Table 3 tabulated the
design variables of eight random literature and its
assoclated optumization algorithm, according to
chronological order.

Generally, HVAC optimization often deal with both
continuous variables and discrete variables. Continuous
variables are the thermo-fluid properties in primary and
secondary components of HVAC system

temperature, mass flow rate, humidity ratio and pressure

such as

of supply/return water at primary side and supply/return
air at secondary side. Commonly, design constraints are
imposed to define the low limits and high limits of the
variables m optimization search. Discrete variables include
parameters such as number of ceils, number of water
circuits, number of chillers in operation, sequence of
operation, etc. Sometimes, HVAC optimization also deal
with design variables with binary state such as on or off
operation of a HVAC component that takes up a
value of 0 and 1. Thus, discrete variables are usually
constrained to be imtegers that take up a fimte value.
Solving optimization problems that both
variables are

include

continuous  variables and discrete
denoted as Mixed-Integer Programming (MIP) problems.
These problems usually make the optimization problem
non-convex and discontinuous, hence,

challenging in searching for optimality. Even though

much more

conventional methods such as branch and bound can be
used to solve mixed integer problems, metaheuristic
algorithms such as evolutionary algorithms (GA, ES, EP)
and Swarm Optimization (P50O) provide a potential
alternative in looking for optimality in high dimensional
problems. These metaheuristic algorithms can handle both
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Table 3: HVAC set-point variables and design variables in some arbitrary studies

researchers,
Year

Optimization
algorithm

Set points to
be optimized

Variable types

Problem

Continuous

Discrete

variables

Continuous Discrete

Wang and
Tin (2000)

Wright et .

(2002)

Nassit’ et af.

(2004)

Sun and
Reddy
(2005)

Lu etd.
(2005)

Genetic
Algorithm (GA)

Multi-Objective
Genetic
Algorithm
(MOGA)

Non-dominated
temperature
Sorting Genetic
Algorithm 2
(NSGA-2)

Sequential
Quadratic
Programming

(SQF)

Modified
genetic
algorithim

Outdoor
ventilation
airflow rate

Supply
air
flow rate

Zone
temperature

Chilled
water
supply

Chilled
water
supply
temperature

Supply
air
temperature

Supply air
temperature

Supply air
temperature

Relative
speed of
condenser
water
pump

supply
air
flow rate

Chilled 3
water

supply
temperature

Chilled 4
water

supply
temperature
supply

duct.

static

pressure
Relative 8
speed of
cooling

tower fan

0

Outdoor

ventilation -
airflow rate

Supply air
temperature
Chilled water
supply temperatre
Supply air
temperature
Supply air

flow rate

On/ off status
Coil width

Coil height
No. of
coil rows
No. of water
circuits
Maximum
water
to flow rate
each coil
Supply fan
sizes
Zone -
temperature
Supply air
temperature
Chilled
water supply
Supply duct
static pressure
Chiller design -
cooling load
Chilled water
mass flow rate
Chilled water
supply
temperature
Chilled water
retum
temperature
Condenser water
mass flow rate
Condenser water
supply
temperature
Condenser water
retum temperature
Cooling tower
air flow rate
Chilled water
supply
temperature
Supply air No. of chilled
flow rate water pump
Room No. of cooling
temperature coils
Head pressure
provided
by chilled
water pummp
Air pressure
of cooling coil
Supply air
temperture

No. of chillers
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Table 3: Continue

Variable types

Researchers, Optimization Set points to

Problem variables

Year algorithm be optimized

Contimious

Discrete Continuous Discrete

Fong et ad. Evolution Supply Chilled
(2009) Strategy (ES) air water
temperature supply
temperature

Kusiak et ai.

Particle Supply Supply air
(2010) i

Swarm air static
Optimization temperature pressure

(Ps0)

Magnier Non-dominated Zone

and Sorting Genetic  temperature
Haghighat Algorithm 2

(2010) (NSGA-2)

Supply air
flow rate

Humidity

4 3 No. of chillers

in operation

Flow rate of
condenser
water pump
Air flow rate
of cooling
tower fan

No. of
condenser
water purmp
in operation
No. of
cooling tower
fans in
operation

Condenser water
supply
temperature
Condenser water
return temperature
Supply air
temperature
Supply air Internal load
static pressure at previous
Chilled water time

supply
temperature
(mean)

Chilled water
supply
temperature
(standard dev)
Outdoor air
temperature
Solar normal

flize (mean)
Solar normal flux
(standard dev)
Heating
temperature

Internal load

Sizes of five
South and
North
Windows
(building
related)

Cooling
temperature
Relative
humidity
Supply air
flow rate
Thermostat on
delays time
Thermostat off
delays time
Thermal mass
of house

continuous and discrete variables which are commonly
found in HVAC application. They integrate one or more
properties of good populations when generating new
populations and do not keep trying the same solutions.
Thus, they are capable to escape from local minima,
although, these algorithms do not guarantee that the
global mimima can be found. They tend to move towards
good solutions in a faster manner, hence, they can
provide a more efficient way to deal with large
complicated problems that mvolve a sizable number of
variables.

Single objective and multi-objective optimization:
Optimization problems can be classified as single

objective or multi-objective problem. Single objective
optimization minimizes or maximizes one objective that are
functions of some integer variables. Whereas multi-
objective optimization handles simultaneous optimization
of two or more conflicting objectives with regards to
certain constraints or limits (Chiandussi er ai., 2012). The
latter one is usually the case in our real-life situations.
In multi-objective optimization, enhancement of one
objective always leads to degradation of another. Tn this
scenario, a trade-off must be created. Same goes for
HVAC system optimization where energy or cost
objective function conflicts with thermal comfort objective
function and sets of compromise points need to be found.
This adds complexity to the optimization of HVAC
systems.
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Many researchers transform multiple objective to
single objective by means of scalarization. This 1s
achieved by allocating different weight factors to each
element in the objective function. Wang and Tin (2000)
assigned five weight factors to five elements in the
objective function including Predicted Mean Vote (PMV),
energy use, Indoor Air Quality (IAQ), maximum allowed
Relative Humidity (RH) and minimum allowed ventilation
rate with each fitness function element represents the
quantitative penalty when an index moves away from the
expected value. Minimization of the objective function
results in optimal control of the whole air conditioning
system. Huang and Lam (1997) optimized settling time,
overshoot and mean squared error with three weight
factors in lus tuning of HVAC Proportional, Integral and
Differential (PTD) controller. Their weight factors selection
is based on the rule of keeping the product of the weight
factors and its respectively fitness function element at the
same value to ensure the importance of every element in
the objective function. Mossolly et al. (2009) too using
the same approach as Wang and Tin (2000) with six weight
factors assigned to PMYV, IAQ, fan operation energy,
cooling energy, heating energy and supply temperature.
However, this approach exhibits some  disadvantages
because it is not easy to assign the weight factors
value at priorn level as all factors usuvally have
different significance. Moreover, this approach will
provide just one set of optimal solution.

Another approach is to use true multi objective
optimization where a set of Pareto optimal solutions are
produced. In this regards, some of the metaheuristic
single-objective optimization algorithms such as GA,
NSGA-IL, PSO and DE have their multi-objective version
developed. Nassif et al. (2004) optimized two objective
functions simultaneously using NSGA-II to find the
optimal settings of supply air temperature, supply duct
static pressure, chilled water temperature and =zone
temperature to give the mimmum energy usage and
maximmum PMV. Magnier and Haghighat (2010} too
optimized thermal comfort and energy consumption using
NSGA-IT by searching for optimal heating set points,
cooling set points, RH set points, supply air flow rates
and thermostat delays. Wright et al. (2002) optumized
energy cost and occupant thermal discomfort using
MOGA by adjusting supply air temperature and supply air
flow rate. For this approach, many Pareto optimal
solutions are produced and all solutions are considered
equally good in satisfying the objective functions. Tt then
depends on the user’s preferences or prioritization in
choosing for the best solution from the Pareto set and this
system 13 called Multi-Criteria Decision Making (MCDM).

CONCLUSION

Optimization undeniably demonstrates great energy
and cost saving potentials, along with indoor thermal
comfort in HVAC systems. This study gives an overview
of the optimization algorithms applied on HVAC system
for optimal control. First, the problem 1s addressed as a
whole where energy, thermal comfort and optimization are
involved. Next, some preparation of optimization are
discussed which include the modelling approaches and
simulation tools used. The remaimng parts discussed
about the mostly-used optimization technicques, efficiency
in energy saving, performance analysis of wvarious
algorithms and the factors affecting the selection of
algorithms.

From the review, it appears that population-based
metaheuristic optimization algorithm such as Genetic
Algorithm (GA) and Particle Swarm mntelligence (PSO) and
their multi-objective versions draw the most attention of
researchers. It looks like these algorithms will continue to
be the trends of optimization in HVAC systems in view of
the remarkable advances in optimization to solve complex
problems of multitude of variables in reasonable time.
However, it is suggested that other new intelligence
optimization algorithms (such as Biogeography-Based
Optimization (BBO), Cultural Algorithm (CA), etc.) or even
hybnd of optimization algorithms (genetic algorithm mixed
simulated annealing, backpropagation algorithm mixed
genetic algorithm) to be further explored for HVAC
application mn order to find a new breakthrough in energy
efficiency.

For HV AC simulation tools, Energy Plus and TRNSYS
are getting more popularity among researchers as these
tools provide a very comprehensive energy analysis and
performance assessment. Users can model any scale of
HVAC systems from simple to complex using these
well-developed tools. In terms of optimization simulation
programs, MATLAB and GenOpt seem to be preferred by
researchers as these high-quality software are very
powerful and flexible m programing. These software
provide optimization toolboxes of some established
algorithms such as quadratic programming and genetic
algorithm for the ease of application. Researchers also
have the freedom to program or modify their own
optimization algorithms using the said software.
However, coupling of simulation tools with optimization
programs is a very complicated and tedious process. It
requires in-depth knowledge in managing commumnication
between the software involved. For ease of optimization
job n HVAC application, it is recommended to develop
some user-friendly coupling methods for co-simulation of
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different programs. From the review, it is found that most
of the current research lack quantifiable data of both
energy saving level and occupant’s thermal comfort level
to reflect the effectiveness and performance of various
optimization techniques. Thus, it is suggested that
upcoming research should comprise quantification
evaluation of both conflicing objectives, so that more
accurate and thorough performance comparison of
different optimization techmques can be obtained.
Although the study of optimization in HVAC systems
has been gomg on for almost two decades, the
implementation of the algorithms in real world application
15 still at a challenging stage. Thus far, application of
these algorithms are only on experimental basis carried
out at research centers or umversities. Therefore,
continuous and much efforts are very much needed to
transform these optimization techniques to commercial

usage.
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