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Abstract: This research deals with the effects produced by aerodynamic appendices on the aeroelastic stability
of long-span bridge decks. A simulation model 1s presented by which the structural motion and the flud flow
are together and simultaneously simulated. The deck is schematised as a bidimensional two-degree-of-freedom
rigid oscillator, whilst the aerodynamic fields are simulated by numerically solving the 21> Arbitrary
Lagrangian-Eulerian (ALE) formulated Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations on
moving meshes which adjust to the deck motion. The proposed finite volume methoed 1s based on hugh order
Weighted Essentially Non-Oscillatory (WENO) reconstructions. The time discretisation is performed by a five
stage fowth order accurate Strong Stability Preserving Runge-Kutta (SSPRK) method. Tt is shown that the
proposed numerical method makes 1t possible to ensure both high accuracy in time and space. The simulation
model 1s validated by comparing the numerical results with experimental data and 1s applied to the evaluation
of the aeroelastic stability of the forth road suspension bridge deck. The effects of aerodynamic appendices
on the flutter characteristics of the forth road bridge are investigated via the proposed simulation model. Tt is
demonstrated that the presence of the cross-section details (barriers, railings, dividing strips) makes the
aeroelastic stability of the deck worse and that the flutter sensitivity 1s mitigated by introducing a couple of

sloping barriers at the edges of the deck.
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INTRODUCTION

Long span bridges are susceptible to an oscillatory
unstable aero-elastic phenomenon, named flutter, in which
the bridge deck motion acquires a divergent character and
the oscillation amplitudes grow rapidly to the pomt of
causing the structural failure (Dowell, 2014). Bridge
decks with bluff cross-sections are generally prone to the
torsional flutter phenomenon: the case of the Tacoma
Narrows Bridge deck is a well known example. Larsen
(2000) highlight that the torsional flutter phenomenon is
related to the formation and the dnft of large vortices
along the surface of the structure as it undergoes a
change in the angle of attack. Bridge decks with
streamlined cross-sections are generally prone to the
coupled (torsional-flexural) flutter phenomenon: the
possibility that the latter kind of instability takes
place is relevant in the case in which the bridge deck
has torsional and flexural natural modes of oscillation
closely spaced at low natural frequencies (Frandsen,
2004). Matsumoto ef al. (2010) carried out extensive
analytical investigations on the mechanisms of coupled

flutter. These researchers distinguish two different types
of coupled flutter. The first type is the Torsional Branch
(TB) coupled flutter which is dominated by a
fimdamentally torsional vibration and in which the vertical
oscillations have small amplitudes. The second type 1s the
Heaving-Branch (HB) coupled flutter which 1s dommated
by a fundamentally heaving wvibration accomparued by
torsional oscillations with small amplitudes.
Traditionally the critical flutter wind velocity of long
span bridge decks is identified through the Scanlan
approach (Scanlan and Tomko, 1971). A central element of
the Scanlan approach lies in modelling the aerodynamic
forces as lmear functions of the structural displacements,
under the assumption of purely sinusoidal motions. This
linear dependence is expressed via., some appropriate
coefficients, called flutter derivatives which are usually
1dentified through the so-called forced oscillation method.
Astiz (1998) and Dowell (2014) highlight that the above
linear relation proves to be acceptable only in the event
that the amplitude of structural oscillations 1s linited.
Furthermore, the latter researcher lughlight that the same
linear relation does not make it possible to take into
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account the effects of the unsteady vortical formations
which can be developed in the fluid-structure interaction.
An alternative approach, followed by different
researchers, Robertson et al. (2003), Frandsen (2004)
Braun and Awruch (2008) consists in simulating the
aerodynamic fields and the structural
simultaneously and m a coupled manner so as to allow the
1dentification of the critical flutter wind velocity in a direct
way. In the models proposed by the above-mentioned
research the structure is represented as a bidimensional
rigid body with two degrees of freedom, having mass per
unit length and mass moment of inertia per umt length
equal to those of the deck.

Many research simulate the fluid dynamic fields with
fimite volume techmiques on unstructured grids (Oka and
Ishihara, 2009, Bruno and Khris, 2003; Cioffi and
Gallerano, 2006) and on structured grids (Cheng et al.,
2003; Gallerano and Cannata, 2011a, b; Haque et al., 2016;
Gallerano et al, 2016a, b). In the case in which the
simulations of the fluid dynamic fields mvolve moving
boundaries, the fluid motion equations have to be
formulated according to the Arbitrary Lagrangian-Eulerian
Approach (ALE) (Zhu ef al., 2007; Miranda et al., 2014;
Nieto et al., 2015).

In this research, a simulation model is presented by
which the structural motion and the fluid flow are together
and simultaneously simulated. The decl is schematised as
a bidimensional two-degree-of-freedom rigid oscillator,
whilst  the aerodynamic fields are simulated by
numerically solving the Arbitrary Lagrangian-Fulerian
(ALE) formulated 2D Unsteady Reynolds-Averaged
Navier-Stokes (URANS) equations on moving meshes
which adjust to the deck motion. The proposed finite
volune method is based on high order Weighted
Essentially Non-Oscillatory (WENO) reconstructions. The
time discretisation 18 performed by a five stage fourth
order accurate Strong Stability Preserving Runge-Kutta
(SSPRK) method. The accuracy of the proposed numerical
method is checked by conducting the grid convergence
test proposed by Roache (1998) in static conditions (i.e.,
all the degrees of freedom of the cross-section are
restrained): the time averaged and the root-mean-square
values of the drag coefficient, the lift coefficient and the
moment coefficient, together with the value of the
Strouhal number are taken as parameter of interest. The
model validation 1s performed m dynamic conditions (1.e.,
the cross-section 1s free to oscillate in the bending degree
of freedom and m the torsional degree of freedom) by
comparing the numerical results with the experimental data
reported by Robertson et al. (2003): this comparison is
performed in terms of critical flutter wind velocity and root
mean square of rotational displacements.

motion

A deep insight into the analysis and the detailed
representation of the different phenomena that produce
the onset and the amplification of the flutter instability for
long span bridge decks i3 proposed. The effects of
aerodynamic appendices on the flutter characteristics of
the forth road bridge are investigated via the proposed
simulation model. It 1s demonstrated that the presence of
the cross-section details (barriers, railings, dividing strips)
makes the aeroelastic stability of the deck worse and that
the flutter sensitivity is mitigated by introducing a couple
of sloping barriers at the edges of the deck.

MATERIALS AND METHODS

The governing equations of fluid flow: The ALE
formulated ensemble averaged continuity and momentum
equations in integral form read as follows (Hertel et al.,
2013):

%jdA+j[<ui>—ugJ]nldL:0 (1)

%i(u&dA = —J;<ui>[<uj> —u,, [ndL+

(2)
j axi[zv<sij>— {uju}) A+ j fdA- j %df\
As TN Ad A i
Where:
dA = The Area of a surface element whose contour
line is LL
I, = The outward normal
yandP = The ensemble-averaged i-th component of
the fluid velocity and the ensemble-averaged
fluid pressure
u,, = The i-th component of the grid velocity
v = The kinematic viscosity
£ = The component of the mass force vector

The unknown term {u’u’;} which can be defined as
the Reynolds tensor is related to the ensemble averaged
strain rate tensor (S;) and the ensemble averaged
turbulent kinetic energy per unit mass {k; through the
relation:

()= -2v,(S,) + §<1<>51J (3)

Where:
v, = The kinematic Eddy viscosity
o, = The Kronecker symbol

The twbulent closure relations for the
ensemble-averaged motion equations can be expressed as
a function of the turbulent kinetic energy k and the rate of
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viscous dissipation € or as a function of the turbulent
kinetic energy and the turbulence frequency w. Menter
(2009) proposed the k-w Shear Stress Transport (SST)
model which consists of a blending between the k-€ and
k-w models. In this research the turbulence closure
relations and the calibration parameters which are
included in them are derived from (Menter, 2009).

The governing equations of structural motion: The
governing equations of the bidimensional elastically
suspended rigid body with two degrees of freedom read
as follows (Li et al., 2002):

mij + 86+ ¢+ k= f,(n,7,7 6,6,6) )

16 + 87 + ¢ + k0 = m, (.1, 1,8,6,8) (3)

where, m and I are respectively, the mass and the mass
moment of nertia per unit length of the deck, S 1s the
static imbalance equal to m times the distance a between
the shear centre and the centre of mass, ¢, and c¢; are
respectively, the structural damping coefficients m the
vertical and torsional degree of freedom, k, and k, are
respectively, the stiffness constant of the vertical elastic
spring and the stiffness constant of the torsional elastic
spring, f, and m, are respectively, the component in the
y direction of the force exerted by the aerodynamic field
on the body and the twisting moment generated by the
above-mentioned force on the body and n and 6 are
respectively, the vertical displacement of the centre of
gravity of the body and the rotational angle of the body
around the shear centre. The stiffness k, and k, are
calibrated m order to give the natural frequencies
corresponding to the fundamental flexural and torsional
natural modes of vibration of the structure. The damping
coefficients are calculated according to the hypothesis of
classical viscous damping on the basis of the given
damping ratios. The components f and the twisting
moment m, are caleulated by mntegrating the pressures, the
viscous stresses and the turbulent stresses over the
surface of the structure. The structural motion equations
are solved by a second-order accurate scheme and the
coupling between the fluid solver and the structure solver
follows a partitioned loose-coupling approach (1.i at al.,
2002).

The numerical scheme: Let us define (i) and (P} as the

cell averaged values of the velocity vector and the
pressure:

_ 1 —
<u1>:gﬂ£<ul>dA, <P>:A£<P>dA (6)

The state of the system is known at the centre of the
calculation cell and it is defined by the cell-averaged
values () and (P). t* is the time level of the known

variables while t*'V is the time level of the unknown
variables. From the values of the fluid dynamic quantities
at the time t® by means of the structural motion
equations, the structural displacements are calculated
and from the latter, the position of the cell vertices
and the grid wvelocity o

& are calculated. Given the

values of <ﬁl>(“’,<§>‘“’,<E>‘“’,<a>(“) at the centre of the

calculation cells at time t™, the integration of the fluid
motion equations (supplied with the turbulence closure
relations for the Reynolds stress tensor) allows the
calculation of (g™, <§>(h+l) at time t&

The solution procedure for the fluid motion equations
uses a five stage fourth order accurate Strong Stability
Preserving Runge-Kutta (SSPRK) fractional-step method
for the momentum equations and applies a pressure
correction formulation to obtain a divergence free velocity
field at each time level Let, (z,*" be the value of the i-th

component of the fluid velocity at the time level n. The
fluid velocity field (g™ at the time level ntl is

calculated through the following five stage iteration
procedure. Let:

@y =@ ™ (7)

Ateach stage p (where, p=1, 2, ..., 5) an auxiliary velocity
field, (5} is obtained directly from momentum, Eq. 2

using values from the previous time level:

p-1

@' ® =310,y + Atg,, D[ (u ), 1% + d At ]
gq=0
(8)

having indicated with T [{u}, t] the right-hand side of
Eq. 2 divided for AA, m which the last term related to the
pressure gradient has been omitted. Spiter: and Ruuth
(2002) for the values of the coefficients . ¢, and d,. In
general, the auxiliary velocity field of Eq. 8 will not satisfy
the continuity equation. As a result, the velocity and the
pressure fields are corrected in the following manmner. By
introducing a scalar potential  the well-known poisson
pressure equation appears m the following integral form:

ay 6] N
[ ndL = - [ (@, ®n, dL (9)
aX1 L

L

where, L and n, represent, respectively the contour of the
calculation cell and the i-th component of the outward
unit vector normal to the contour. The solution of Eq. 9
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provides the calculation of the above-mentioned scalar
potential . The corrector velocity field (@ y® 1is

calculated through the following relation:

(n)
@y = (10)
' &x,

The calculation of the velocity at stage p 1s given by:
@Y = @y 4 () (11)

The fluid velocity and pressure fields at the instant t®'"
are respectively given by:

@Y = gy By = iqﬂ) (12)

For the calculation of term D [{u), t] the numerical
approximations of integrals on the right-hand side of
Eq. 2 is required. The aforementioned calculation is based
on the following sequence:

High order WENO reconstructions from cell averaged
values of the point values of the unknown variables at the
centre of the contour segments which define the
calculation cells. At the centre of the contour segment
which 18 common with two adjacent cells, two pomt
values of the unknown variables are reconstructed by
means of two WENO reconstructions defined on two
adjacent cells.

Advancing m time of the point values of the
unknown variables at the centre of the contour segments
by means of the so-called exact solution of the Riemann
problem with imitial data given by the pair of point values
computed by two WENO reconstructions defined on the
two adjacent cells. Calculation of the spatial integrals
which define D [{u}, t].

For further details on the WENO reconstructions,
the advancing m time of the unknown variables and
on the calculation of the spatial integrals which define D
[{u}, t], Galleranc and Camnata (2011b), Gallerano ef ai.
(2012, 2014). integration of the
turbulence closure relations allows the calculation of
™" and the Reynolds stress tensor at the time
t*'Y via. Eq. 3. Discretising Eq. 8 and 9 using the

The numerical

numerical method mmtroduced above, entails the risk of
introducing mass sources or sinks in the flow field if the
velocity u,; and the change velume over time are not
treated consistently. For this reason, The Geometric
Conservation Law (GCL):

2
4 da+ [Seaa-o (13)
ax.

dt Aa Al 1

needs to be satisfied. To warrant consistency, Eq. 13 1s
used to determine the grid velocity by the given change
of volume of the computational cell (Hertel et al., 2013). In
order to update the coordinates of the control volume
vertices at all times, a mesh movement algorithm based on
using inverse distance weighting (Uyttersprot, 2014) has
been used in order to interpolate the displacements of the
boundary nodes to the whole flow mesh.

RESULTS AND DISCUSSION

Details of the numerical simulation: The proposed
simulation model 1s used m order to evaluate the
aero-elastic stability of the Forth Road Bridge deck in its
current configuration (configuration 1). Figuer 1 shows
the geometric characteristics of the forth road bridge deck
1n its current configuration (configuration 1) are shown.
Table 1 shows the values of the geometrical parameters
(overall width and maximum depth) and the structural
parameters (mass per unit length and mass moment of
nertia per umt length, natural heaving frequency and
natural torsional frequency, heaving and torsional
damping ratios) of the Forth Road Bridge deck are listed.

~ 7

&
(< e

Fig. 1. Forth road bridge deck; a) Configuration 1-
construction state configuration: B deck width; b)
C onfiguration 2-configuration with cross-section
details: 1 Vertical barriers, 2 Dividing strip; 3
Railings; ¢) Configuration 3-configuration modified
through a couple of sloping barriers and 4 Sloping
barriers
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Table 1: Geometrical and structural parameters of the forth road bridge deck
(Robertson et ai., 2003)

Veriables Values
Overall width 31.2m
Maximum depth 32m

Mass moment of inertia per unit length 2.13x107 (kgm%m)

Mass per unit length 17.3x1¢° (kg/m)
Torsional damping ratio 0.14%

Heaving damping ratio 0.31%

Natural torsional frequency 0.4 Hz

Natural heaving frequency 0.174 Hz

The flow domain considered for the bridge deck is
10B by 5B. At the upwind boundary of the computational
domain a zero gradient boundary condition is imposed for
the fluid pressure while a constant value is set for the
other fluid quantities (velocity, turbulent kinetic energy
and turbulence frequency). The Reynolds mumber
used in every simulation derives from the undisturbed
mflow wind velocity U, the actual kinematic viscosity
(v .= 1.23x10° m?sec) and the width B of the
cross-section. In particular, the Reynolds number used for
an undisturbed wind velocity U = 87.4 m/sec is about
1.95x10°. At the solid walls the near-wall treatment
proposed by Menter et al. (2003) is used which makes it
possible to switch automatically from a classical low-Re
formulation on fine grids to a wall function formulation on
coarser meshes. At the outlet a constant pressure
boundary condition is set while the zero gradient
boundary condition 1s imposed for the other fluid dynamic
quantities (fluid velocity, the turbulent kinetic energy and
the turbulence frequency). In all the simulations a
maximum Courant number of 1.0 is imposed which
produces a minimum time step close to At =1x107 s at
Re =1.95x10"

The aerodynamic fields which develop around the
Forth Road Bridge deck in its current configuration are
simulated by using the wall-function. The simulations are
performed on a grid made up of 275360 cells in which the
cell size is varied gradually with a geometric progression
of 1.02 in all directions. For an undisturbed wind velocity
U =87.4 m/sec, at the solid walls the average value of the
non-dimensional height v* 1s close to 20 and the maximum
value 1s close to 80.

Accuracy of the proposed model: Aiming to verify the
spatial convergence of the numerical simulations, a grid
convergence test 1s performed. In particular, similarly to
that made by Haque ef af. (2015), the grid convergence
test proposed by Roache (1998) 1s carried out. This test
which is based on the principle of Richardson
extrapolation, requires three different grids: specifically, a
fine grid (1), a medium grid (2) and a coarse grid (3). An
estimate of the per cent error obtained with the fine grid
(1) with respect to the converged solution 1s given by the
grid convergence index GCIL, ;:

gt - ool a9
r -1
Where:
¢ and ¢ = The target parameters obtained, respectively
by grid (1) and (2)
Fy = The safety factor
T = The adopted refinement factor
P = The observed order of convergence

A safety factor Fo= 1.25 is adopted and a constant
refinement factor r; = 13 = 1 = 1.40 1s used where r; 1s
estimated as the ratio between the grid spacing of the fine
grid and that of the medium grid and r;, is estimated as the
ratio between the grid spacing of the medium gnd and that
of the coarse grid. The value of P 13 calculated by the
relation (Roache, 1998):

P—ln[m}’ln(r) (15)
2 1

where, &, is the target parameter obtained from grid (3). In
order to check that the solution obtained with the fine grid
(1) reaches the asymptotic range of convergence (ARG),
the following relation 1s used:

ARC =S¢ (16)

where, GCI,; is calculated by replacing ¢, with ¢, and ¢,
with ¢,. If Eq. 16 yields a value of 1, this implies that the
fine grid (1) reached the ARC.

The test is conducted in a static configuration (all the
degrees of freedom of the cross-section are blocked) for
an undisturbed wind velocity U = 87.4 m/sec. For every
simulation performed the time histories of the drag and the
lift forces and the aerodynamic moment are determined,
together with those of the fluid velocity at two different
points placed in the wale of the body. The time averaged
and the root-mean-scuare values of the drag coefficient
Cp=Fp/0.5pUD), the lift coefficient C, = F A0.5pUf B) and
the moment coefficient C,, = MA0.5pUPB%), together with
the value of the Strouhal number St = (£,D)/U, are taken as
parameter of interest. Fy,, F, and M are respectively the
drag force, the lift force and the aerodynamic moment
exerted by the fluid on the structure, U the undisturbed
wind velocity, D and B the depth and the width of the
deck cross-section, p the fluid density. f; is the shedding
frequency and is computed from the time history of the
fluid velocity at the two different points placed in the
wake of the cylinder. In order to perform the above test,
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Table 2: Grid convergence test for the forth road bridge deck

Grid convergence test

Target parameter
Mean drag

RMS of drag
Mean lift

RMS of lift
Mean moment
RMS of moment
Strouhal number

Coarse grid
0.6313
0.0082

-0.6632
0.2679

-0.4568
0.0558
0.253

Medium grid
0.6413
0.0079

-0.6801
0.2877

-0.4479
0.0576
0.253

Finest grid
0.6443
0.0078

-0.6851
0.2934

GCL; (%)
0.8353568
2373177
1.3325739
3.4776917

GCL, (%6) ARC
0.2494401 1.004678
0.8012821 0.9873418
0.397625 1.0074559
0.9817039 1.0158123
-0.4453 1.0250658 0.3012059 0.9941951
0.0581 1.5024038 0.4137429 1.0086806
0.253 0 0 1

three grids are used: a fine grid (described before) that is
made up of 275360 calculation cells and hereafter is named
GRID1 a medium grid, named GRIDZ2 which is composed
of cells a coarse grid, named GRID3 which is composed
of 72448. For the latter grids, at the solid walls the average
value of the non-dimensional height ¥ is respectively, 28
for GRID?2 and 39 for GRID3 and the maximum value 1s
respectively 111 and 144. The geometric progression 1s
1.03 for GRID2 and 1.04 for GRID3. These geometric
progressions (as well as the grid spacings) are
selected such that r, = r;; = 1.40. Table 2 shows the time
averaged and the root-mean-square values of the
aerodynamic coefficients and the Strouhal number
obtained by using the three different grids are reported,
together with the results of the grid convergence test. By
observing Table 2, it 1s possible to deduce that each grid
level yields solutions which are in the asymptotic range of
convergence for the computed solution and the fine grid
has a maximum error >5%. In the following it 1s implied
that the results are obtained by using GRID]1, if otherwise
not stated.

Stability analysis: The mitial conditions in the stability
analyses must be treated carefully. The instantaneous
application of the full wind speed to an mtially stationary
structure leads to large transient initial motions from
which 1t 1s difficult to extract defimtive conclusions about
the stability of small oscillations. To eliminate this
problem, according to Frandsen (2004) for every
simulation performed the structural damping values are
set to near-critical values for the first ten seconds of the
sinulation until the structure settles into a near-stationary
configuration after which the damping values are changed
to their estimated full-scale values. During this transient
phase, the stiffness constants of the vertical and torsional
spring are gradually relaxed from magnified values to
those calibrated to give the correct natural frequencies in
the fundamental modes.

Figure 2 shows the time histories of the torsional
displacements and the vertical displacements produced
for an undisturbed wind velocity U =74.9 m/sec (UJ; = 6.0
where U, = U/(f;B) is the reduced wind velocity and f; is
the natural torsional vibration frequency of the cylinder)
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19
[
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Fig. 2: Forth Road Bridge deck; a) Time lustory of the

torsional  displacements and b)  Vertical
displacements (configuration 1-U, = 6.0)

are shown. From the Fig. it can be seen that during the
first seconds of the simulation (t<10 sec) in which the
structure is gradually released, the gravity centre slightly
drifts downward from the equilibrium position and the
deck shightly rotates in a clockwise direction. In the
instants immediately after t = 10 sec the structure
continues to rotate clockwise so much, so that, the wind
angle of attack exceeds the value for which the resultant
of the aerodynamic forces and consequently, the vertical
displacement of the gravity centre change direction (from
downward to upward). From the figure itself it can be seen
that the oscillatory motion produced after this transient
phase shows a slow but constant decay of both the
vertical and angular displacements: the value of the
imposed wind velocity (U = 6.0) lies under the critical
flutter wind velocity value. Figure 3 shows the time
histories of the rotations and the vertical displacements
obtained for an undisturbed wind velocity U = 87.4 m/sec
(U = 7.0) are shown. In both cases, a constant growth of
the displacements 15 observed: the value of the imposed
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Fig. 3:Forth road bridge deck; a) Tune history of the
torsional  displacements and b)  Vertical
displacements (configuration 1-U; =7.0)

wind velocity (U, = 7.0) lies above the critical flutter wind
velocity. From Fig. 2 and 3, it can be seen that the value of
the mean rotation around which the instantaneous values
of the rotation oscillate 1s not fixed but increases (in
absolute value) gomng from the first to the second case. It
follows that also the mean wind angle of attack increases
(in absolute value) going from the first to the second case.
Specifically, for U = 74.9 m/sec the mnstantaneous values
of the wind angle of attack oscillate around a mean angle
of attack roughly ecual to -0.019 rad whilst for 17 = 87.4
m/sec the mstantaneous values of the wind angle of
attack oscillate around -0.027 rad. Consequently the
aerostatic vertical displacement which 1s due to the
aerostatic component of the wind load increases from
about 0.4 m to about 1.5 m, i.e., more than linearly with the
square of the wind velocity.

Validation of the proposed model: The numerical results
are compared with those obtained from the wind tunnel
tests described in the work by Robertson ef al. (2003).
Figure 4 shows the damping coefficient of the rotations
versus the reduced wind velocity curve is plotted The
critical flutter wind velocity cbtained is U" = 79.1 m/sec
(Ut=634) 1 very good agreement with the
experimental results reported by Robertson er al
(2003) (u;=635 ). For each of the considered reduced
velocity, the frequencies of the rotational and vertical
motion are calculated: it is found that for wind velocities
equal to or greater than the critical flutter velocity these

0.1+

0

Damping coefficient
: &
n

0.2
0.3 — ; 3
! To* = 6.34 1
Reduced velocity

Fig. 4: Forth Road Bridge deck. Damping coefficient of the
displacements vs. reduced velocity (configuration

1)

=7 —— Numerical results
--®-- Experimental results

6 62 64
Reduced velocity

Fig. 5:Forth road bridge deck. Root mean square of
torsional displacements vs. reduced wvelocity
(configuration 1): numerical results (present work)
and experimental results (Robertson et al., 2003)

frequencies synchromze on a common frequency. This
result is consistent with that shown in Robertson et al.
(2003). Lastly, in Fig. 5 the root mean square values of
rotational displacements are plotted against the reduced
velocity values. In the latter figure, the values obtained
numerically are shown together with those obtained in the
wind turmel tests reported by Robertson er al. (2003).
From Fig. 5, it can be seen that the numerical results are in
good agreement with the experimental ones.

Coupled flutter mechanism: In the following the onset
mechanism of the aeroelastic instability 15 shown. The
evolution of the aerodynamic fields and the structural
motion for an undisturbed wind velocity U = 87.4 m/sec
(U, =7.0) is analysed during a structural oscillation cycle
in which the oscillaton amplitudes are still limited.
Figure 6a shows the time histories of the infinitesimal
vertical displacement of the gravity centre and the
resultant of the forces (per unit area) normal to the deck
surface exerted by the fluid on the structure (aerodynamic
forces) are shown jomntly. In Fig. 6 b the time lustories of
the infinitesimal angular displacement of the deck and the
twisting moment generated by the same resultant are
shown jomtly. The cycle of structural oscillation
shown in Fig. 6a,b corresponds to the time interval
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Fig. 6: Forth road bridge deck-configuration 1; a) Time
histories of the infimtesimal vertical displacement
of the gravity centre (solid line) and the resultant
of the aerodynamic forces (dashed line) and b)
Time lustories of the infimitesimal angular
displacement of the deck (solid line) and the
twisting moment generated by the resultant
(dashed line)

between two instants (indicated with the letters A and E
in Fig 6 a, b when the infinitesimal vertical displacement of
the downward moving gravity centre assumes a relative
mimmum value.

The exammation of Fig. 6 stresses that during the
time interval A-B and D-E of the above cycle the resultant
of the aerodynamic forces acts in the opposite direction
to the vertical velocity of the deck gravity centre, whilst
in the time interval B-D the resultant acts in the same
direction as the vertical velocity. The result of the ntegral
of the research, defined as the product between the
resultant and the infinitesimal displacement of the gravity
centre of the deck, over the interval B-D 13 approximately
equal to 261 kJ. This integral 1s much higher, in absolute
value, than the sum of the integral calculated over A-B
(approximately -97 kI) and the integral calculated over D-E
(approxmmately -59 kI). The net energy contribution
(approximately 104 kJ) of the resultant of the aerodynamic
forces to the translational motion of the deck is that of
making the same motion unstable. Similar considerations
can be made regarding the twisting moment generated by
the resultant of the aerodynamic forces.

Based on the analysis of the aerodynamic fields and
the structural motion during the first cycles of oscillations
of the deck (when the structure still exhibits oscillations

of small amplitudes), it is then possible to deduce that the
reason for the onset of the instability lies in the fact that
there are some portions of the cycle within each of the
first oscillation cycles in which the aerodynamic field
provides both the translational and the rotational motion
with a higher supply of energy than that subtracted from
the deck motion in the rest of the cycle.

Once the two-degree-of-freedom instability has been
triggered, a progressive mncrease of the maximum
amplitudes of the rotation angle takes place. Once a
threshold wvalue of the above angle is exceeded the
recirculation bubble which pulsates in proximity of the
leading edge during the onset phase just described,
starts to drift along the deck surface. From this point
on the moedalities of amplification of the oscillations have
a different dynamic to the one described above.
Figure 7a-g show the fluid velocity fields that develop
around the deck in four instants within ' cycle in which
the amplitudes of the oscillations have reached high
values. In Fig. 7b, d, f and h are shown the distributions
of the forces per unit area normal to the deck surface
exerted by the fluid on the structure (aerodynamic forces)
in the same instants.

From the examination of Fig. 7, it results that the
reason for the amplification of the instability lies in the
formation and the drift of large vortical formations along
the deck surface. From the simulation of the phenomenon
it emerges that during the whole ' cycle of structural
oscillations (as previously defined), the sign of the
twisting moment generated by the resultant of the
components normal to the upper surface of the forces
acting on the structure 1s always coherent with the sign of
rotation. Consequently, there is a continuous supply of
energy from the fluid dynamic field to the structure, that
constitutes the reason for the amplification of the
instability of the torsional motion.

Effect of the aerodynamic appendices: [n this section, the
effects of aerodynamic appendices on the flutter
characteristics of the Forth road bridge are mvestigated
via. the proposed simulation model. Two case studies are
considered: in the first one (configuration), the impact of
cross section details (vertical barriers, railings, dividing
strip) 1s evaluated; in the second one (configuration), the
efficacy of a couple of sloping barriers at the edges of the
deck 1s assessed. Figure 1b, ¢ show, respectively the
geometrical features of the deck in its two variants. The
dividing strip, the railings and the vertical barriers shown
inFig. 1b are respectively 2.0, 0.73 and 0.75 m high whilst
the sloped barriers shown in Fig. lc are inclined by 45
degrees to the vertical and are 2.0 m high. The siumulations
are performed on a grid made up respectively of
548020 cells for configuration 2 and 276520 for
configuration 3.
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Fig. 7: Forth road bridge deck-configuration; a, ¢, e and g)
Velocity fields of the flid during the oscillation
and b, d, f and h) Distributions of the aerodynamic
forces during the oscillation

Firstly, the static behaviour of the basic configuration
(configuration 1) and the two modified configurations 1s
investigated. To this purpose, the calculation is performed
of the static aerodynamic coefficients (lift, drag and
moment coefficients) in all the three considered
configurations. Table 3 reports the time-averaged values
of the lift coefficient C,, the drag coefficient C, and the
moment coefficient C, computed for the three considered
configurations at  different  Reynolds numbers
(1.39x10°<Re<1.95x10"). This table reports, for each of the
considered quantities, two different values: the first value
is related to the lowest Reynolds number (Re = 1.39x107),
whilst the second value 1s related to the highest Reynolds
number (Re = 1.95x10%). By examining Table 3, it is
possible to deduce that, compared to configuration 1, the
presence of the cross-section details (configuration 2)
does not provoke relevant changes in the lift coefficient
whilst, as a result of the substantial growth of the vertical
area exposed to the incident wind, a significant increase
in the drag coefficient is observed. With regard to
configuration 3, it is possible to understand that the

Table 3: Time averaged drag, lift and moment coefficients and strouhal
number of the Forth Road Bridge deck
Drag Lift Moment Strouhal
Veriables coefficient coefficient coefficient mumber
Configuration 1 0.578+0.644 -0.584+-0.685 -0.391+0.445 0.23+0.25
Configuration 2 0.982+1.134 -0.595+-0.696 -0.452+0.628 0.22+0.24
Configuration 3 0.379:0.441 -1.951+-2.444 -0.018+0.043 0.24+0.27

moment coefficient noticeably decreases as a result of the
introduction of the sloping barriers whilst only slight
variations are observed in the drag and the moment
coeflicients.

Table 3 also reports the values of the Strouhal
number St computed for the three configurations in the
same range of Reynolds number (1.39x107<Re<1.95x10%).
The examination of Table 3 allows one to deduce that the
Strouhal number slightly changes when passing from the
basic configuration (configuration 1) to the two modified
configurations. In particular, as a results of the
introduction of the sloping barriers a slight mcrease 1s
registered in the computed values of the Strouhal number,
which range between 0.23 and 0.25 in configuration 1 and
between 0.24 and 0.27 in configuration 3. Based on the
Strouhal number, the critical velocity for which the Vortex
Induced Vibration (VIV) instability takes place can be
estimated by means of the expression U" = (1 D)/St,
bemng €, the natural heaving frequency of the bridge
deck. Hence, the critical wind VIV velocity 1s estimated to
be slightly lower in configuration 3 (2.2 m/sec) than in
configuration 1 (2.3 m/sec), from which it is concluded
that the introduction of the slopmg barriers slightly
deteriorate the deck sensitivity to the VIV mstability.

Lastly, the critical wind flutter velocity is identified
for the three considered configurations. In configuration
2, this velocity is found to be T = 78.5 m/sec (U, =529 ),
so slightly lower than m configuration 1. Therefore it can
be deduced that the presence of the cross-section details
has a negative impact on the aero-elastic stability of the
deck. This can be explained by considering that due to the
presence of the cross-section details, the flow detachment
near the leading edge 13 magnified and consequently, the
formation and drift of large vortices along the deck
surface 1s facilitated. By contrast, n configuration 3 the
critical wind flutter velocity value is found to be (U =
82.6 mfsec (U:=6.62)), so, slightly higher than in
configuration 1. Compared to the basic configuration, a
relevant decrease in the amplitudes of the wind-induced
oscillations is registered. This is due to the fact that the
presence of the sloping barriers reduces, compared to the
basic configuration, the flow detachment at the leading
edge, thus, delaying the formation and the drifting of large
vortices along the deck surface. Consequently, this
modification can be considered effective with regard to
the flutter sensitivity of the deck.
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CONCLUSION

In this research the effects produced by aerodynamic
appendices on the aeroelastic stability of long-span
bridge decks have been investigated. A simulation model
has been presented by which the structural motion and
the fhud flow are together and simultaneously simulated.
The proposed finite volume method 1s based on high
order Weighted Essentially Non-Oscillatory (WENO)
reconstructions. The time discretisation is performed by
a five stage fourth order accurate Strong Stability
Preserving Runge-Kutta (SSPRK) method. It has been
shown that the proposed numerical method makes it
possible to ensure both high accuracy in time and space.
The simulation model has been validated by comparing
the numerical results with experumental data and has
been applied to the evaluation of the aercelastic
stability of the forth road suspension bridge deck. The
effects of aerodynamic appendices on the flutter
characteristics of the Forth Road Bridge have been
investigated via the proposed simulation model. Tt has
been demonstrated that the presence of the cross-section
details (barriers, railings, dividing strips) makes the
aeroelastic stability of the deck worse and that the flutter
sensitivity is mitigated by introducing a couple of sloping
barriers at the edges of the deck.
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