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Abstract: In this study, we want to find the approximate solutions for fractional-order biological systems by
using Reduced Differential Transform Method (RIDTM). The fractional derivatives are described in the Caputo
sense. This method is easy to work out as it gives us very accurate solutions for solving fractional-order
biological systems all the results obtained are excellent through our use of a program Maple 14.
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INTRODUCTION

Mathematical models, using ordinary differential
equations with integer order have been proven valuable
i understanding the dynamics of biological systems.
However, the behavior of most biological systems has
memory or after effects. The modelling of these systems
by fractional-order differential equations has more
advantages than, classical mteger-order mathematical
modeling in which such effects are neglected.
Accordingly, the subject of fractional calculus (i.e.,
calculus of mtegral and derivatives of arbitrary order) has
gained popularity and importance, mainly due to its
demonstrated appli-cations in numerous diverse and
widespread-elds of science and engineering. For example,
fractional calculus has been successfully applied to
system biology (Ahmed et al., 2012; Arafa et al., 2012,
Cole, 1933; El-Sayed et af., 2007, Xu, 2009). In some
situations, the Fractional-Order Differential Equations
(FODEs) models seem more consistent with the real
phenomena than the mtegerorder models. This 1s due to
the fact that fractional derivatives and integrals enable the
description of the memory and hereditary properties
mherent in various materials and processes. Hence, there
is a growing need to study and use the fractional-order
differential and mtegral equations. Ordinary and delay
differential equations have long been used m modeling
cancer phenomena (Bellomo et al., 2010; Gokdogan et al.,
2011; Kirschner and Panetta, 1998; Rihan et al., 2012,
Yafia, 2007) but fractionalorder differential equations have
short history in modeling such systems with memory.
The researchers by Ahmed et al. (2012) used a system of
fractional-order differential equations in modeling

cancerimmune system interaction. Themaodel includes two
immune effectors; B, (t), E, (t) (such as cytotoxic T cells
and natural killer cells) interacting with the cancer cells, T
(t) with a Holling function of type 3. (Holling type 3
describes a situation m which the number of prey
consumed perpredator mitially rises slowly as the density
of prey increases but then, levels off with further increase
1n prey density. In other words, the response of predators
to prey 1s depressed at low prey density, then, levels off
with further increase in prey density). The model takes the
form (Rihan, 2013):

D*T = aT-5,TE,1,TE,
2
D*E, = -d,E, + Tz I P 1)
+k,
T’E
D°E, = -d,B, + ——2*
T?+k,

where, D" 1s Caputo fractional derivative operator
(El-Sayed and Salman, 2013; Agarwal et al, 2013;
Elsadany and Matouk, 2015; El-Shahed et al.,, 2017) with
O<<], T=T(), E,=E, (), E,=E,(t)anda, |, 15, d;, d,,
k, and k, are positive constants.

MATERIALS AND METHODS

Basic defnitions of fractional calculus: In tlus study,
we present the basic defnitions and properties of the
fractional calculus theory which are used further in
this study.
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Definition 1: A real function f (z), z>0 is said to be in the
space C,, ¢eR if there exists a real number p>o such that
f(z)=11 (2) where f, (2)eC [0, « )y and it 1s said to be in
the space C", if "€ C,,me N

Definition 2: The Riemann-Liouville integral operator of
order «>0 with a 0 is defined as (Rihan, 2013,
El-Sayed and Salman, 2013; Agarwal et al, 2013;
Elsadany and Matouk, 2015; Sabatier et al., 2007):

(1=)(z) = ﬁf:(z-t)m'lf(t)dt,x>a )

Definition 3: The Caputo fractional derivative operator D*
of order ¢ 18 defined mn the following form (Rihan,
2013; Fl-Sayed and Salman, 2013; Agarwal et al.m, 2013;
Elsadany and Matouk, 2015):

L ()
D*f(z)= ['(m-o) ! (Z-E_,)WW1
£ z)

d€ p<m-1<a< m(3)

a=meN

Basic Idea of Reduced Differential Transform Method
(RDTM): We consider a general fractional nonlinear
differential equation of the form (Garg et al., 2011; Keskin
and Oturane, 2010; Keskin and Oturanc, 2009):

DEZ(1)FRZ(t)+NZ(t) = g(t) 4
with m-1<¢<m and subject to the initial condition:

Z(0)=c, j=01,..,m1l (5)
Where:
pyZ(t) = The Caputo fractional derivative

g () = The source term

R = The linear operator
N = The general nonlinear operator

Let [t T] be the interval over which we want to
find the solution of the problem, the kth-order

approximate solution of the problem can be expressed
by the finite series:

lozi

Z(1)= S ZK)(t4,) te[in.T] (6)

where, 7, (k) satisfied the recurrence relation:

T{(k+1)o,+1)

Zk+1)=E(k Z,Z,,...Z
r(ka1+1) 1( +) 1( > 12 22 E n)

By applying the Reduced Differential Transform
Method (RDTM) on both sides of Eq. 4 we have:

I((k+1)o,+1)
o T 7 (k1) =G, (2)-NU, (2)-U, (z) )
o )= 02N ()0, 2)
here, U, (Z). G, (Z)and Nu, (Z) are the transformations of
the functions RZ (t) g (t) and NZ (t), respectively.
From the initial condition, we write:
Z,(0)=c, (8)
Substituting Eq. 8 in to Eq. 7 and by straightforward
iterative calculations, we get the following Z(k) values.

Then, the inverse transformation of the set of values
Z (k)% = 0 gives the approximation solution as:

z(t)= Y Z(k)r ©)

where, n is order of approximate solution. Therefore, the
exact solution of the problem is given by:

Z(t)=1=, > Z (k) (10)

¥ s

RESULTS AND DISCUSSION

Applications: To demonstrate the effectiveness of the
proposed algorithm, one special cases of fractional-order
biological systems (Table 1). All the results are calculated
by using the symbolic calculus Software Mathematica.

Example: Let us consider fractional-order biological
systems on homogenous networks 1s given by Rihan
{2013}

D*T = aT-TE,,TE,
TE
D°E, = -dE, + " 0O<axl
T +k,
2
D, -z, + LB
T +k,

where,a=r,=1,=1,d,=0:3,d,=0.7,k,=03,k, =07 and
different O<¢l <1 with tinitial condition:

T(0)=0.8,E,(0)=0.L.E,(0)=0.2 (11

First by applying Reduced Differential Transform
Method (RDTM) on both sides of Eq. 1, thus, we get:
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Table 1: Basic transformations of RDTM for some fimctions
Transformed form

Uy (x)= Uk! [a%at u (x, D)]i-o

Wi (30 = Uy ()#Vy ()

Wy (x) = aU; (), (& constant)

& k-n),dK ={1k=0,0k=0
Wi () = X Uy, (X)

W (x)- T L UL VL (-

oV x)U L (2D

w (X, 1) = 3/3tux, t) W, =k+Dk+2,..,
w X, t) = 3/3,ux, t) Wy (k) = d/dx Up(x)

WX 1) =348t (x. t) Wy (k) =325t Uy ()

Functional form

u(x t)

w (3, 1) = u(x, tulx, t)
w X, t) = oulx, t)

w (3, 1) =

wx, ) =x"" (x, 1)
W, D=0 ) vt

(k+ 1) U, (0

w )= 2 T ke 7 TG B )
[{(ket D)ot E PIRUVLGILIG)
mﬂ(kﬂ) { ST ()T(IJ{) }
(I T)ex1) 02 o T THIE (k)
“Tary s ante- Z B
(12)
(k 1 k;olﬁ‘l [a {E k—1 'rzE Ez }
Do) S ST )
E(kﬂ)r(koﬁl){dﬁ() DTl Tk ) }
Mol o 3% TOTGH)E
E, (k) —W{dﬁz(k) S DT(i)T(k-i)kz w

(13)

By using the 1mitial condition Eq. 11 we get the reduced
transform form:

T(0)=0.8.E,{0)=0.1LE,(0)=02

By substituting Eq. 11-13, we have:

i 1 - -]
.[ (t)= G(a+1)[ T(0)-5T(0)E, (0),T(0)E, (0)]
! - T2 (0)E, (0)0 a4
! _ = 1 y
T @i g o
T .
i _ 1 ¢€ T*(0)E,(0)0
%EZ(kH)_G(a+1)gdzE2(O)Jr T?(0)+k, a
054
= T(or1)’
 0.0381
E)= T(o+1)"
g (1) = 0018
To+1)

By similarity we get:

0.3971
I'(z+1)
'0'01143+ 0.114x (o, +1)
I'2a+1y T'(2a+1)[0.896+0.31 (o +1)]
0.031136 0.1507=I (e, +1)
(2o+ly (2 a+])[0.896+0.7]'(o +1)]

T(2) =

E2)=

E,(2)=

In view of the differential mverse transform, the
differential transform series solution for the system Eq. 13
can be obtained as:

We get the solution as series:

054, 03971,
e ——— S
Motl) T2+
E @G- 01+ 00381 @ 001143 e
Moty  TRotD)
00MA8 , OBII36 ;.
ot [2ot])

TH)=08+

01140y +1)
T2 09603 (ot 1))

015070 (e 1+1) o
[(2 o+ D[089GH L (o +1)]

tZDL_,’_

E,()=02

It 1s evident that the effciency of this approach can
dramatically enhanced by com-puting further terms of
T(t), E,(t) and E,(t) when the Reduced differential
transform method 1s used. The results in Fig. 1-3
show the the behavior of T(t), E,(t) and E.(t) at
¢ = 0:8 and the results are in full agreement with the
results obtained by Garg et al. (2011) using the reduced
differential transform.
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Fig.1: The behavior of approximate solution of T(t) at
o =0:8
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Fig. 2: The behavior of approximate solution of E(t) at

o =08
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Fig. 3: The behavior of approximate solution of E,(t) at
¢ =08

CONCLUSION

This present analysis exhibits the applicability of the
Reduced Differential Transform Method (RDTM) to solve
systems of fractional-order biological systems The
research emphasized our belief that the method is a
reliable technique to handle linear and non-linear
fractional diderential equations. It provides the solutions
in terms of convergent series with easily computable
components n a direct way without using linearization,
restrictive assumptions. The results of this method are in
good agreement with those obtamned by usmng the
variational iteration method and the Adomian
decomposition method. Generally speaking, the proposed
method 1s promising and applicable to a broad class of
linear and nonlinear problems in the theory of fractional
calculus.
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