Tournal of Engineering and Applied Sciences 13 (2): 478-483, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

A Novel Approach to Improve LRU Page Replacement Algorithm

"Nabeel Zanoon, 'Evon Abu-Taieh and “Hatem Salem Abu-Hamatta
'Faculty of Computer Information Systems, Al-Balga Applied University, Aqaba, Jordan
Faculty of Computer Information Systems, The University of Jordan, Aqaba, Jordan

Abstract: Tn the last decade’s several page replacement algorithms had been implemented such as Least
Recently Used (LRU), First Income First Out (FIFO) and optimal. Each of them has its own advantages and
disadvantages. The process of page selection 1s time-consuming and depends on many factors: operating
system and architecture as well as algorithms that will be used. Both LRU and optimal are implemented based
on page fault rate. This study proposed LRU-Time dubbed as LRU-T which 1s a new algorithm to limits the
number of pages the algorithm search through m order to reduce the page fault rate and tracking page

frequencies during specified amount of time. The proposed algorithm was tested against the mentioned
algorithms using a simulation program. The novelty behind the algorithm is improving the performance of LRUJ

algorithm and increases its efficiency.

Key words: Replacement algorithm, LRU-time, optimal, page fault, locality, access pattemn

INTRODUCTION

The process of replacing the page 13 wmportant for
operating systems whereas page replacement algorithms
are the one that decides which page should be removed
from the memory when a frame is not available. Some
algorithms are developed to solve this i1ssue these
algorithms are different from each other according to the
way they handle page removal process (Anthony, 2015).
All page replacement algorithms are internally similar to
the following: msertion, detection and searching for a
page. All mentioned algorithms depend on specialized
data structure where the performance of page replacement
algorithm can be improved by using effective data
structure (Kavar and Parmar, 2013). Most of the algorithm
must handle huge amounts of data. The locality of
references is considered as a shared attribute between
programs. Hence, the majority of applications do not
access all data at the same time. Instead of this, they
reference only small part of data at of different pomt time
(Shen et al., 2004). The locality of reference can be
adopted in two different approaches: spatial locality of
reference and temporal locality of references. The spatial
locality that nearby memory locations will be referenced
in the near future. Temporal locality depends on the time
the page spent in the frame (O’neil et al., 1993). The
locality of references can be mcreased by careful selection
of data structure used in the algorithm. The data structure
will reduce the page fault rate as well as the number of
pages in working set. For example, a stack has high
locality because the replacement algorithm of the stack

always accesses the top. Some measure: memory
reference, search speed and a total number of page
touched are used to measure the performance of page
replacement algorithm (Khulbe ef af., 2014). LRU suffers
from the following: first LR1J has a linked list of pages. In
the link list most recently used page at the front of the list
and the least recently used page at the rear of the list. The
linked list must be updated and maintained on every
memory reference cycle. The search process for a page in
the link list includes the calculation for all reference in the
memory. Hence, reducing the performances of the overall
algorithm LRU (Reddy, 2009). In this study, LRU-T was
suggested reducing the scope of search and count fault
page in that scope to mmprove search speed. LRU does
not take the previous factors into account.

Frames allocation and locality of references: Memory is
divided mnto a set of frames, frames are allocated for
pages. The distribution strategy for each incoming
process 1s of two types: equal allocation and proportional
allocation. Equal allocation approach each incoming
process gets the same number of frame (equal
percentage). In proportional allocation approach here
each process will get a proportional number of frames
based on its size in comparison with the total size of all
incoming processes (Chenglun, 2009).

The locality of process changes as it continues
execution this behavior of typical process in execution, in
its next phase of execution a process will reference a
different set of pages and the number of page referenced
may also be different the number of pages can decrease or

Corresponding Author: Nabeel Zanoon, Faculty of Computer Information Systems, Al-Balqa Applied University, Agaba, Jordan

J. Eng. Applied Sci., 13 (2): 478-483, 2018

Phase 3
Phase 1

Phase 4

Fig. 1: Example of localities of a process during execution

increase with time, all this means that process will require
anumber o f frames allocated which varies with time, they
are more frame allocated there will not beimprovement in
its behavior if there are fewer frames allocated as shown
mn Fig. 1 (Garrido and Schlesmger, 2008).

The performance of paging algorithm depends on
the distance string. The distance string depends on
reference stting and the paging algorithm
(Tanenbaum and Bos, 2014). The stack distance affects
the number of tests to match the current page which
reflects negatively on the computing time according to
Bemett and Kruskal, 1975).

LRU neglects the page use frequency. Hence, it 18
possible for a high-frequency page to be evicted. This
makes LRU extremely vulnerable to scan access pattern.
Furthermore, LRU dees not work well with workloads that
have clear large-scale access patterns until the pages
belonging to the pattern fit to the main memory on the
other hand, LRU works well with stack distances with
common stationary distribution (Paajanen, 2007).

Page replacement evaluation metrics: The efficiency of
page replacement algorithm is an open question for the
study since there are several factors that effect on the
algorithm performances (Brinkhoff, 2002). The
memory-access has a clear impact on page replacement
algorithm performances (Anthony, 2015). The main
objective of page replacement algorithms was to reduce
page fault rate which i turn enhance the effective access
time of the memory. The effectiveness of the page
replacement algorithm is based on the application
behavior and memory access patterns (Rashidah ef al.,
2011). To analyze the performance of paging memory
system some page trace experiments were conducted. A
page trace is a sequence of Page Frame Numbers (PFNs)
generated during the execution of a given program
(Hwang and Jotwani, 2011). Several properties should

479

cover the effective replacement algorithm, it should be
able to distinguish between the hot and cold reside in
cache to reduce the number of page faults. Furthermore,
efficient algorithm implementation can be achieved if it
uses a constant and small portion of memory that stores
page history in the cache, it should not consume large
memory space. Finally, the smart algorithm should be free
from any assumptions that are not realistic and it should
adopt references string dynamically to reduce of page
faults (Dorrigiv et al., 2015).

Lru page replacement algorithm: The buffering algorithm
in LRU has a flaw: LR does not take into account the
number of references to the same page. Hence, pages are
all equal when evicted without noticing that one 1s more
frequently used (Bagchi and Nygaard, 2004). LRU
algorithm is based on a similar idea as to optimal by using
the requests to elements to determine which elements to
keep in the memory. LRU i1s usually implemented with a
linked list Therefore, it has a big drawback because
moving elements to the most recently used position in the
linked list at every request is expensive (O’neil et al.,
1999). Neither LRU or optimal belong to a class of
page-replacement algorithms called stack algorithms, a
stack algorithm is one in which the pages kept in memory.
Stack processing a trace that has a large number of
distinct pages or a large average stack distance may
require excessive computing time because of the number
of tests (Coras et al., 2012). The LRU algorithm fails to
handle the following three data access patterns:

Each data block 1s only accessed once in a format of
sequential scans

For a cyclic (loop-like) data access pattern where the
loop length is slightly larger than the buffer size, LRU
always mistakenly evicts the blocks that will be
accessed soon in the next loop

In multiple streams of data accesses where each
streamn has its own probability for data re-accesses,
LRU could not distinguish the probabilities among
the streams (Wang, 2014)

One of LRU problems 15 looking for page in large
scale of memory and it is necessary to maintain a linked
list of all pages in memory. The algorithm searching takes
extra time because the algorithm search for and update
page table when page fault occurs (Bansal and Modha,
2004). In additiony, frequently in pages is a problem since
the LRU algorithm does not take mto account frequency,
and this 1s an indication that it does not work well with
workloads that have wide-ranging access pattern
(Jtang and Zhang, 2005). LRU can suffer from its
pathological case when the working set size 1s larger than

J. Eng. Applied Sci., 13 (2): 478-483, 2018

the cache and the application has a looping access
pattern. Tn this case, LRU will replace all blocks before
they are used again, resulting an increase in the MISS
count (Juurlink, 2004).

Proposed approach (LRU-TIMEY): The policy implemented
i LRU-T 1is based on hmiting the pages to be searched
hence, reducing the target page. LRU-T concentrates on
frecuency of the target page and time limit. Target page is
chosen based on least frequently called, least recently
used within the past time limit. The following presents the
pseudo code of the suggested LRU-T:

Algorithm:
T, = E)
INPUT PAGES
FOR P,TOP,(n): P I+1
IF Frame =0 THEN
Replace page in firame
Else / search of page in memory
FORTv (i) TOTv (n) // interval of time
IF P,, =P, THEN
Take the Next Page (P,
Else (P, '=P,,) //Page fault
Boolen Found = (T,) [Last page and smallest frequently]
IF Found THEN Replace Page in Frame
V.P=P, /f victim pages
Remove Py,
Replace P,
End for
End for

The total memory size with respect to the nmumber of
page’s effects the performances of LRU algorithm. Thus,
the proposed approach came with the idea such that
reducing updating scope rather than update overall page
table. Furthermore, TRU-T takes into account the page
reference frequency and last page in mnterval time.

In case of page fault, the proposed approach LRU-T
finds and selects pages for removal that has least
frequently and last within a specified interval of Time (T).
LRU-T does not take into account which page to keep in
the stack when searching as shown in Fig. 2. LRU-T
assumes that all pages have same probability to reside
and replaced m/from the memory based on specified time
mnterval.

The algorithm policy (LRU-T) as in Fig. 2 shows that
when page number 6 was called, the memory already had
pages (3, 1 and 0) and page O was chosen to be evicted.
LRU choose page 0, since, page O is the least recently
used with no regard to how many times page 0 was called.
On the other hand, LRU-T and when page 6 was called
the evicted page is 1 because page 1 was the least
frequency and last within time frame. LRU take the
eviction decision based on the arrival time of the page
while LRU-T takes into account arrival time and the
frequency of the page calling within the specified interval
of time.

480

LRU algorithm

LRU algorithm

- /

Fig. 2: Example for LRU policy and LRU-T policy

MATERIALS AND METHODS

To evaluate the performance of the LRU-T, simulation
program was written using VB.Net 2013. LRUT-T was
compared with optimal and LRU by runming a number of
a sequence of memory references and counting page
faults. The pages are input to the simulation program the
simulator applies the policy of LRU-T, Opt and LRU and
counts the page faults and the miss ratio. Hence,
measuring the performance of each of the proposed
algorithm (LRU-T) with LRU.

RESULTS AND DISCUSSION

In the experiment shown m Fig. 3, the LRU was
applied on 20 pages with 3 frames. Notice that page
number 4 15 the targeted page to be replaced. The results
are shown in Fig. 3, the number of fault pages reached 14
and the miss ratio (70%) but the suggested algorithm
(LRU-T) that the number of fault pages reached 13 and the
miss ratio (65%) as in Fig. 4.

In Fig. 4 notice that LRU-T replace page 4 with page
10, since, the stack had (5, 4 and 5). Page 4 15 least
frequently used and least recently used. The miss ratio 15
65% since, as the number of pages increase the frequency
increases and the stack distance mcreases also. The miss
ratio will decrease as i the results next experiment.

Two experiments were conducted he Number of
page’s test were: 100, 200, 400, 600, 800 and 1000 m both
experiments representing the cache size. The first

J. Eng. Applied Sci., 13 (2): 478-483, 2018

ati
Page Replacement Algorithm

LRU
MHumber of Page:2Z8 Humber of Frame:3
Results

Frame In Memmoruy Page Fault
1 1y

=1=Jiadan |

WG]

7
7
8
B
5
5
5

L DIRE mmame-

[

18

=
iy

6
Simulation Results

14

Page Fault

Miss Ratio =

Fig. 3: Simulation results LRU with 20 pages and 3 frames

experiment was conducted with 4 frames and the results
shown in Fig. 5. As can be seen m the Fig. 5 the LRU-T
outperformed LR and optimal outperformed both. The
miss ratio in optimal was 57% while LRU was 79% and
LRU-T was 74% when the pages were 100. When the
pages mncrease to 200, the optimal miss ratio was 56% and
the LRU miss ratio was78% and LRU-T miss ratio was
735%. When the pages increase to 400, the optimal miss
ratio was 56% and the LRU miss ratio was 78% and
LRU-T miss ratio was 76%. When the pages increase to
600, the optimal miss ratio was 57% and the TLRU miss
ratio was 80% and LRU-T miss ratio was 79%. When the
pages mcrease to 800, the optimal miss ratio was 56% and
the LRU miss ratio was 79% and LRU-T miss ratio was
78%. When the pages increase to 1000, the optimal miss
ratio was 55% and the LRU miss ratio was 79% and LRU-T
miss ratio was 77%. Comparison of fault page rate in
page replacement algorithms, 4 frames. In the second
experiment, the number of page’s test was: 100, 200, 400,
600, 800 and 1000 in experiment representing the cache
size. Yet, the second experiment 8 frames were used as can
be seen m Fig. 6 the LRU-T outperformed LRU and
optimal outperformed both. The miss in optimal was 34%
while LRU was 64% and LRU-T was 60% when the pages
were 100. When the pages mcrease to 200, the optimal
miss ratio was 32% and the LRU miss ratio was 63% and
LRU-T miss ratio was 60%. When the pages increase to
400, the optimal miss ratio was 33% and the LRU miss
ratio was 58% and LRU-T miss ratio was 57%. When the
pages mncrease to 600, the optimal miss ratio was 35% and
the LRU miss ratio was 59% and LRU-T miss ratio was
58%. When the pages increase to 800, the optimal miss
ratio was 31 % and the LRU miss ratio was 57% and LRU-T
miss ratio was 57%. When the pages mcrease to 1000, the

481

Simulation
A Hovel Approach
umber of Page:Z8
Results
Frame In Memmorwy
2 1

LRU-T Algorithm
Humber of Frame:3

Page Fault
[11

Results
13

Simulation

Page Fault

Miss Ratio

Fig. 4 LRU-T simulation results with 20 pages and 3
frames
707
601 ::::::*:::==*=====*=====*=====*
£ 501
2 401
a 30+ ._"‘—-l————‘4.-—-_-4.hhh"“-lb-—-".
é 20{ = OPT
104 - LRU
0 - LRU-T
100 200 400 600 800 lbU
Cache size (pages)

Fig. 5: Comparison of fault page rate in page replacement
algorithms, 4 frames

100 = OPT
%0 - LRU
— -+ LRU-T
0] e e——————t
8 -
B
=1 —y - 3
g 30
s 20
10 1
0 L] T L] T 1
100 200 400 600 800 100
Cache size (pages)

Fig. 6: Comparison of fault page rate in page replacement
algorithms, 8 frames

optimal miss ratio was 33% andthe LRU miss ratio
was 60% and LRU-T miss ratio was 59%. LRU-T and LRU
were compared with simulation with pages ranged from
100-1000 as can be seen m Fig. 5 and 6; the first
experiment was tested with 4 frames and the second with
8 frames. One can notice the improvement m certain
parts.

J. Eng. Applied Sci., 13 (2): 478-483, 2018

CONCLUSION

The development of memory and operating systems
requires an acceleration in the pages replacement, this
paper proposed an approach to develop the (LRUJ)
algorithm, in terms of the search range for the victim
pages where the proposed approach works to narrow the
search range by specifying a time period with the
probability to survive and exit all the pages, so, that the
page will be selected based on the least used (LRU)
algorithm policy, the one that hasn’t been used for a long
time within the specific period which will leads to an
increase in the speed rate of finding the vietim page and
helps to facilitate the execution process of the (LRU)
algorithm. Based on the results, both number of page’s
fault and the memory access speed rate have been
reduced which led the proposed approach (LRU-T)
algorithm to advance 1n front of the (LRU) algorithm for
the optimal algorithm.

REFERENCES

Anthony, R., 2015. Systems Programming: Designing and
Developing Distributed Applications. Elsevier,
Amsterdam, Netherlands, ISBN:9780128008171,
Pages: 548.

Bagchi, S. and M. Nygaard, 2004 A Fuzzy
Adaptive Algorithm for Fine Gramed Cache
Paging. In: Software and Compilers for
Embedded Systems, Schepers, H. (Ed.). Springer,
Berlin, Germany, ISBN:978-3-540-23035-9, pp:
200-213.

Bansal, S. and D.S. Modha, 2004. CAR: Clock with
adaptive replacement. Proceedings of the 3rd
USENIX Conference on File and Storage
Technologies (FAST’04) Vol 4, March 31, 2004,
USENIX Association, San Francisco, California, pp:
187-200.

Bemnett, B.T. and V.J. Kruskal, 1975. LRU stack
processing. IBM. J. Res. Dev., 19: 353-357.

Brinkhotf, T., 2002, A Robust and Self-Tuning
Page-Replacement Strategy for Spatial Database
Systems. In: Advances in Database Technology,
Jensen, C.S., S. Salterus, K.G. Jeffery, J. Pokorny and
E. Bertino et al. (Eds.). Springer, Berlin, Germany,
ISBN:978-3-540-43324-8, pp: 241-276.

Chenglun, W., 2009. The research on the dynamic
paging algorithm based on working set.
Proceedings of the 2nd International Conference

Future Information Technology and

Management Engmeermg (FITME'09), December

13-14, 2009, IEEE, Sanya, China,

ISBN:978-1-4244-5339-9, pp: 396-399.

on

482

Coras, F., A. Cabellos-Aparicio and I. Domingo-Pascual,
2012. An Analytical Model for the LISP Cache Size.
In: Networking, Bestak, R., L. Kencl, LE. L1, I.
Widmer and H. Yin (Eds.). Springer, Berlin, Germany,
ISBN:978-3-642-30044-8, pp: 409-420.

Dorrigiv, R., MR. Ehmsen and A. Lopez-Ortiz, 2015.
Parameterized analysis of pagmng and list update
algorithms. Algorithmica, 71: 330-353.

Garrido, TM. and R. Schlesinger, 2008. Principles of

& Bartlett

USA.,

Modemn Operating Systems. Jones
Learning, Buwlington, Massachusetts,
ISBN-13:978-0-7637-3574-6, Pages: 489,

Hwang, K. and N. Jotwam, 2011. Advanced Computer
Architecture, 3e. McGraw-Hill Education, New York,
USA., [SBN:9789335220038, Pages: 723.

Hang, S. and X. Zhang, 2005. Token-ordered LRU: An
effective page replacement policy and
implementation in Linux systems. Perform. Eval., 60:
5-29.

Juurlmk, B., 2004, Approximating the optimal
replacement algorithm. Proceedings of the 1st

its

Conference on Computing Frontiers, April 14-16,
2004, ACM, Tschia, Ttaly, ISBN:1-58113-741-9, pp:
313-319.

Kavar, C.C. and S.S. Parmar, 2013. Improve the
performance of LRU page replacement algorithm
using augmentation of data structure. Proceedings of
the 4th International Conference on Computing,
Communications and Networking Technologies
(ICCCNT13), July 4-6, 2013, TEEE, Tiruchengode,
India, ISBN:978-1-4799-3926-8, pp: 1-5.

Khulbe, P, S. Kumar and N. Yadav, 201 4. An assessment
of hybnd LRU (H-LRU) with existing page
replacement algorithms. Intl. J. Comput. Appl., 99:
51-53.

O'neil, EJ., P.E. O'Neil and G. Weikum, 1999. An optimality
proof of the LRU-K page replacement algorithm. T.
ACM,, 46: 92-112.

O'neil, E.J., P.E. O'neil and G. Weikum, 1993, The LRU-K
page replacement algorithm for database disk
buffering. ACM. Sigmod Rec., 22: 297-306.

Paajanen, H., 2007. Page replacement in operating system
memory management. Master’s Thesis, University of
Tyvaskyla, Jyvaskyla, Finland.

Rashidah, A., C.I.. Gan and M.Y. Rubiah, 2011. Recovery
of Memory Based on Page Replacement Algorithms.
Tn: Informatics Engineering and Information Science,
Abd-Manaf, A., A. Zeki, M. Zamam, 5. Chuprat and
E. El-Qawasmeh, (Eds.). Springer, Berlin, Germany,
ISBN:978-3-642-25452-9, pp: 499-511.

J. Eng. Applied Sci., 13 (2): 478-483, 2018

Reddy, CM.K., 2009. Operating Systems Made Easy.
University Science Press, New Delhi, India,
[SBN:978-81-318-0743-9, Pages: 103,

Shen, X., Y. Zhong and C. Dmg, 2004. Locality
phase prediction. ACM. Sigplan Not., 39
165-176.

483

Tanenbaum, A.S. and H. Bos, 2014. Modern Operating
Systems. 4th Edn., Prentice Hall, Upper Saddle River,
New Jersey, USA., ISBN:5780133591620, Pages: 1101.

Wang, H., 2014, Study of page replacement algorithm
based on experiment. Appl. Mech. Mater., 330
895-898.

	478-483_Page_1
	478-483_Page_2
	478-483_Page_3
	478-483_Page_4
	478-483_Page_5
	478-483_Page_6

