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Abstract: One of the drawbacks of MapReduce characteristic is overlap communication. Tt causes
unplementation mefficiency in the GPUs environment. However, this can be overcome using incremental
reduction method. This method will enhance the communication process on GPUs environment as an alternative
to execution using CPU. This enhancement is based on Python with support of CUDA technologies which can
execute this whole process in GPUs environment. In order to achieve the good performance, this study is
proposing to design the MapReduce with incremental reduction and then to construct it and finally to test the
enhancement method to the self-orgamzing map with handwriting dataset.

Key words: Self-organizing map, enhanced mapreduce, incremental reduction, graphical processing units,

enhancement, method

INTRODUCTION

Large data relates to volume, variety and velocity
that impose pressure i managing data by clustering and
extracting value towards predictive analytics and
decision-making (Chen and Zhang, 2014). Clustering is an
important unsupervised learning problem that deals with
organmizing objects into groups whose members have
similar patterns/characteristics which come with high
computational costs (Feizi-Derakhshi and Zafarani,

2012).
Kohonen's Self-Organizing Map (SOM) 18 an
unsupervised  clustermg  algorithm  that  maps

multidimensional data onto geometric relationships
topology-preserving map  which good
clustermg but high in computational complexity
(Kohonen, 2013).

This algorithm differs from other artificial neural
networks in terms competitive learning as compared to
back propagation with descending gradient which 1s
based on leammg through comection of errors.
Furthermore, it preserves the input space topological
properties by employing a neighborhood function. Tt has
been dubbed as one of the successful clustering
algonithm. Conversely, its high computational complexity
makes processing time consuming (Kohonen, 2013).

As the computational complexity increases, the need

constitute

for higher computing power 1s in big demand. Even with
the invention higher powered Central Processing Unit
(CPU)) such as Duo-core and the quad core could not
satisfy the need for better and faster processing

hardware. The success of gammg using the GPU has
diverted computer scientist from the super computer
which are large and not portable to focus on the ability of
the GPU as their faster and more efficient processing
power. The advent of GPU has managed to increase the
processing power in small computer such as personal
computers and laptops. Present day applications needs to
process large amount of data in a timely manner. Recent
research in the programmability of GPUs has allowed
graphics hardware to be used as general purpose platform
for computationally challenging tasks (Wittek and
Daranyi, 2013). GPU has provided a good platform in
terms of hardware. Graphical Processing Unit (GPU)
computing has been proved to optiunize for large data
of graphics applications and high throughput of
floating-pomt operations (Perelygin et al, 2014).
However, designing a good algorithm that was previously
implemented sequentially is not a trivial task. This
involves modification of the algorithm that can utilize the
GPU capability. The modification includes designing a
framework that can utilize this hardware.

NVIDIA created CUDA to increase the speed an
algorithm on parallel platform. Tt paves the way of
harvesting the capability of the Graphics Processing Unit
(GPU) to sigmificantly improve computing performance.
MapReduce is one of big data technology that emerges to
high computational challenges
organization posed by the massive creation of data in
various machines and media (Wittek and Daranyi,
2013). Tt is a well know paradigm to distribute load in
data-intensive tasks (Wittelkk and Daranyi, 2013). Many

overcome in an
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researchers have migrated to MapReduce framework to
provide a way to utilize the GPU. Many researchers have
deliberated on applying GPUs in problem domams
mvolving visualizations and scientific applications. GPU
plays the important domain to process high computational
complexity algorithms in MapReduce framework
(Elteir ef al., 2010). MapReduce frameworks are usually
umnplemented for processes workloads that are incremental
and repetitive in nature. Nonetheless, this framework
research in overlapping communication which create extra
overhead making mefficient during GPU tasks distribution
(Elteir et ai., 2010).

Since, the learning nature of Kohonen network
algorithms consists of repeating steps that have very little
changes in terms of mput data. Since, mcremental
MapReduce frameworks are usuvally implemented for
processes research loads that are incremental in nature,
hypothetically it should be able to improve speed of the
SOM algorithm.

This study proposes to ernhance Kohonen’s
Self-Organizing Map (SOM) clustering techniques by
incorporating MapReduce
framework to overcome overlapping commurication in
MapReduce. The number of tasks being reduced 1s
declared at the start of the job. This is very similar to the
original MapReduce framework. Reduction begins within
a reduce task when sufficient number of mapped outputs
are recelved. The results from tlus process are locally
stored. These processes are iterated and will terminate
when all the mapped output has been retrieved
(Elteir et ai., 2010).

mncremental  reduction

Literature review: Many clustering based algorithm such
as Kohonen network (SOM) needs a lot of repetitive
calculation that makes it slow to produce results. GPU on
the other hand helps to speed up processing. Many
attempts has been made to speed up algorithm such as
Kohonen networlk (Gajdos and Platos, 2013; Moraes et al.,
2012). Previous studies shows interconnection between
GPUs and MapReduce are challenged by the overlapping
communication with computation (Wittek and Daranyi,
2013). As pointed out in the previous section that the
1ssue of overlapping communication i MapReduce can
be overcome by mcremental reduction MapReduce
method (Elteir et al., 2010). This process of MapReduce in
GPUs environment is chosen as the framework or based
of operation of self-orgamzing map.

Self-organizing map: Self-organizing map is an
unsupervised competitive learning neural
characterized by clustering and visualization properties.
Constructed as a learning algorithm for numeric (vector)

network
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data, it has been applied in wide range of applications in
big data analysis including various fields such as medical,
businesses, bioinformatics and satellite (Gogoglou ef af.,
2016).

Kohonen (2013) introduced an  efficient
Self-Organizing Map (SOM) that displays hidden data
topological structures in one or two dimensional space. In
spite of its numerous advantages there still exist some
demerits quality associated with Kohonen neural network
that remains unexplored. Being an unsupervised neural
network, the algorithm inevitably dependents on massive
iterations that classify this algorithm as data intensive
computing complexity.

Graphical processing units: Graphical Processing Units
(GPUs) begmn its life as hardware to improve the
performance of graphics utilized in games. Tn time the GPU
become a focal point of computer scientist to improve the
performance of high computational complexity of their
algorithms. This m turns forces the GPU mdustry
to migrate the GPU design to cater for a more
general-purpose computation and called it the General
Purpose Graphic Processing Unit (GPGPU) (Kirk and Hwu,
2013). In the imtial phase the GPGPU were applied on
programming a complex calculator that involves a set of
fixed operations to produce a more desirable results.

Due to the orniginal idea of creating the GPU, mitially
the GPU utilization 1s mostly linked to graphics related
processes such as 2/3-dimensional images. The process
involves graphical primitives which are high in complexity
making it difficult in terms of design. However, as year
goes the development of a more robust lugh level third
party language has manage to remove the graphics
component. Further along, the invention of non-graphics
linked languages has made it possible to apply the GPGPU
on as general purpose applications. This opens the
horizon for many researchers to harvest the ability of
GPGPU in speeding up high computational complexity
algorithms. Several researchers have successful speedup
their algorithms (Wittek and Daranyi, 201 ; Lachmanr ef af .,
2013).

GPUs executable environment: Programming GPGPU 1s
not a simple task using low level programming language.
Recently, many wvery high level language has been
introduced to simplify the programming task. Python is
one of the new high level languages that have gain
popularity due to its easy and manageable mterpreted
language characteristics. However, it has always been
seen as a laid back language for high-performance
computing (Nvidia, 2017) which sigmficantly changed
when continuum analytics came up with NumbaPro
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Python compiler. CUDA Python also run on NumbaPro
Python compiler as part of the Anaconda accelerate which
allows programmer to reap the benefits of rapid iterative
development and speed by utilizing both CPUs and
Nvidia GPUs processing units. Thus, adapting regular
Python applications using this available tool on critical
data intensive iterative functions on GPUs will accelerate
the application (Nvidia, 2017). One of the success story
example is the MandelBrot calculation that was
accelerated with CUDA Python nineteen times speed-up
over the CPU-only accelerated version using GPGPUs and
a 2000 tumes speed-up over pure interpreted Python code.
Whereas an experiment on Monte Carlo Option Pricer with
CUDA Python manage achieved thirty times speed-up
over interpreted Python code (Nvidia, 2017).

MapReduce framework: MapReduce framework contains
mapping and reducing functions. Map and reduce were
previously common in functional programming. However,
i MapReduce framework the application of mapping and
reducing functions are used for a different purpose
(Dean and Ghemawat, 2008). This framework was
originally design for processing I/0-bound and data
mntensive. The main architecture the hardware 1s similar to
an organization consisting of entities where a leader is
appomnted to lead several subordinates as workers. These
entities are refered as master node and worker nodes in
the computer harware which forms a cluster. MapReduce
framework takes advantage of this architecture. The
mapping step nvolves the master node to subdivide the
input data or processes into smaller subproblems. Each
subproblems are mapped to the workers node. The
mapping step may be iterated by taking the worker node
as master node which creates a multilevel tree structure.
Fmally, the root node of the tree will be processed and the
result will be pass to the node lgher up the tree. This
process is called the reducing step. This mapping and
reducing steps are portray m Fig. 1.

Figure 1 shows the run-time system concurrently
split tasks mto instances in the map tasks phase with the
sub input data that are processed at the root of the tree to
produce intermediate results. These intermediate results
are in turn copied to the reduce tasks phase. This process
are iterated until the final output are produced. All the
input data are stored as key/value pairs for efficient data
indexing and partitoming. The original MapReduce design
enforced are bounded with the rules where the reduce
phase only begins when the map tasks phase 1s
completed.

Incremental reduction: Incremental Reduction (TR) is a
framework that defines the number of task reduction at the
start of the process which is similar to the original
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Fig. 1: MapReduce framework based on Perelygin et al.
2014)

Write
final
output

(@@ Map task

@ Reduce task

[] Assigned map output
O Reduce computation

Fig. 2: Incremental reduction in MapReduce based on
Elteir et al. (2010)

MapReduce framework. However, the reduction phase
begins early in the reduce task (Elteir et al., 2010). The
reduction phase starts immediately when enough number
of map outputs which are stored locally are received
within a reduction task. These process is repeated until
the map outputs are completely generated.

IR framework consists of three phases as shown in
Fig. 2. The first phase 1s the shuffling phase. In this
phase, the intermediate results of upper level mapped
tasks are copied from the output of all its sub map tasks.
The second phase 1s sorting where the retrieved
intermediate results are sorted and merged according
to their keys. The final phase is the application of
reduce function on the values associated to each key.
The shuffling phases are usually run concurrent with
the sorting phase to enhance performance (Elteir et al.,
2010).

MATERIALS AND METHODS

This research proposes to compare the performance
of Kohonen network constructed in the original
MapReduce and an improvised incremental reduction
MapReduce framework.
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Fig. 3: Process flow of MapReduce intergrate with
method on GPUs environment
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Fig. 4: Hierarchical reduction in MapReduce based on
Elteir et al. (2010)

This research improvises incremental reduction
framework to overcome the issue overlapping
communication on MapReduce process (Elteir ez al., 2010)
in the CPU and GPUs environment. Figure 3 shows the
research framework with the intention of comparing the
performance of utilizing the hierarchical MapReduce
(original MapReduce) and with the incremental reduction
MapReduce framework in the GPU environment.

The algorithm incorporates into the two MapReduce
frameworks with Kohonen network for the purpose of
performance measurement. Both frameworks are
constructed in the GPU environment.

Hierarchical MapReduce: The original MapReduce
framework which is also called the hierarchical reduction
framework is also constructed. This framework is depicted
in Fig. 4.

Figure 4 shows how the hierarchical reduction
purposely overlapped the map and reduces phases. The
reduce phase aggregates the partly reduced tasks forming
a tree-like hierarchy structure.

Mapreduce with incremental reduction: The
incorporation of incremental reduction into MapReduce
framework involves rendering the reduction task as early
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Fig. 6: Workflow of PyCUDA GPU program compilation
based on Klockner et al. (2012)

as possible i the MapReduce framework. Ths
improvised structure of meremental reduction MapReduce
is depicted in Fig. 5. The main aim is to enhance the
MapReduce performance so as to overcome the issue of
overlap communication. This framework is implemented

using CUDA technologies from Nvidia.

Python in GPU environment: As previously discussed,
python language are used to develop the MapReduce
framework by utilizing CUDA technologies (GPUs)
called as PyCUDA executing on GPUs environment
(Klockner ef ai., 2012). The overall research flow that
utilizes the PyCUDA 1s shown m Fig. 6.

The gray shaded area is an automated PyCUDA
process of accumulation (GPUJ compile process) and
caching. The Kohonen network algorithm structure are
implemented in Python programming language which
incorporates MapReduce
frameworls of the utilization of available GPUs on a Tupyter
notebook.

incremental  reduction

This research proposes to compare the performance
of Kohonen network in hierarchical MapReduce and
incremental reduction MapReduce framework simulation.

Hierarchical method: This method just reads the data or
files which are then distributed by the mapping task in the
map phase. This method then reduces the distribute data
by passing the parameter to the assigned reduce tasks.
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Incremental reduction method: In this method, begin
reading the data or file without the distributing process.
This method reduce the data by passing the parameter to
the assigned reduce tasks.

Both methods is structure  of
MapReduce framework which utilizes the built in python
library as array management and parallel processing. The
testing phase imvolves using Kohonen network as testing
tool to determine the efficiency of the framework.

constructed as

Testing with Kohonen network: Kohonen network
algorithm 1s selected as the testing algorithm due its
unsupervised characteristics of data and iterative
intensive properties. This algorithm is used as a case
study to compare the performance of both MapReduce
frameworks by measuring the speed of processing.
Kohonen network are adapted to fit into the hierarchical
and incremental reduction framework.

Kohonen network also known as Self-Orgamzing
Map (SOM) 1s a neural network that visualizes the
clustered output. The structure of a SOM consists of an
m-dimensional grid (usually bi-dimensional) is made up of
a set of neurons, called nodes. Each node 1s associated to
a weight vector which has the same dimension as the
input samples used for training the network (Kohonen,
2013). The adjacent nodes are arranged interconnecting in
a topological network that creates a topological
neighborhood (or map). The most commonly used
neighborhood is rectangular or hexagonal. During the
training stage, similar weight vectors will migrate and
clustered into adjacent nodes (Kohonen, 2013).

The basic self-orgamzing map traiming algorithm
consists of four steps. In the first step is to initialize the
welght of neuron nodes. The second step is to calculate
distance between input space and neurons. The metric
used to identify the distance is the Euclidean distance.
The third step is to find the closest neuron which labeled
as Best Matching Unit (BMU). Finally, during adaptation,
the weight vectors of the winner node and its neighbors
are updated (Kohonen, 2013).

The self-organizing map is constructed by importing
the available functions in the Python PyMVPA library
collection. These functions are then incorporated mto the
hierarchical and icremental reduce MapReduce
frameworks to be executed on the GPU environment.

This process of MapReduce in self-organizing map
15 happen when self-organizing map find the matching
find the nearest neuron that have their closest weight
therefore the MapReduce is doing their job by reducing
the task of finding using MapReduce algorithm in finding
the nearest neuron. The process 1s shows as
llustrate.
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Fig. 7: Process of MapReduce 1n self-organizing map

Figure 7 shows how SOM are mcorporated into the
MapReduce frameworlk to be executed on the computers
GPU. The SOM algorithm adapted into the MapReduce
frameworks are step 3 which is finding the best matching
neuron and step 4 which is updating the weight of
neuron.

The data collected for this experiment 13 a multi
dimensional data set of handwriting data which consists
of records and five attributes. The main focus of the study
is to access the performance of the MapReduce
framework which 1s the time taken to execute the whole
process. The SOM map are of no importance. This syntax
of the process training SOM is “som.train()”. The speed
are captured using “%etime”. This will display the time
taken to process the SOM m seconds The evaluation are
made according to the following steps.

Step 1: Capture the process speed value of both
hierarchical and mecremental reduction MapReduce
framework.

Step 2: Compare the speed of the two framework and
calculates the percentage of the speed based on the
highest and the lowest speed. The percentage are
calculated based on the following Eq. 1:

((Pﬁghest—Lowers)x 100)
Highest

(1

Percentage =

Step 3: Repeat the experiment.
RESULTS AND DICUSSION

In this study, we evaluate the results after repeating
the experiment for five times.

Experimental platform: The process of parallelizing the
self~orgamzing map with MapReduce are done on Nvidia
Geforce GT 635M 2GB. This GPU can deploy CUDA
technology which is important to execute MapReduce
framework design on GPU environment. Jupyter notebook
are runming based on Google Chrome browser which is on
GPU environment.
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Table 1: MapReduce performance in GPUs enviromment process
self-organizing map algorithm by using handwriting data

Incremental reduction Normal
Test rounds MapReduce (sec) MapReduce (sec) Percentage
1 8.99 9.34 3.75
2 27.80 29.60 6.08
3 9.02 10.50 14.10
4 9.08 933 2.68
5 9.23 9.33 1.07

Result of MapReduce performance: Table 1 shows the
resulting performance of the self-organizing map algorithm
constructed in the hierarchical and mcremental reduced
MapReduce frameworle. The percentage difference
between the MapReduce frameworks are presented in the
Table 1.

Table 1 shows the speed of processing SOM on both
i frameworks. It 1s found that the performance of the
MapReduce supersede the
Hierarchical framework n all the five experiments. The low

incremental framework
percentage of speed up is small because it was tested on
small multidimensional data.

The percentage of improvement 1s different in every
testing round so the result is not consistent in term of
processing in different testing round times due to the
hidden processing during the test. Nevertheless, the
incremental

reduction MapReduce does

processing speed.

Lprove

CONCLUSION

The hierarchical MapReduce framework 1ssue of
overlap communication can be improved with incremental
reduction framework executed on the GPU environment.
This research has verified that adapting Mapreduce
framework with incremental reduction can speed up the
of SOM or other

parallelization similar

algorithms.

Process

RECOMMENDATIONS

For the future research, this research needs to
extend into another test module that employs different
techmques with the aim to seek the different n
performance, finding the reason of inconsistency of result
and in depth analysis. As well, larger dataset should be
considered in the experiments.
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