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Abstract: Accurate detection and classification of transmission line faults for permanent protection in avoiding
costly maintenance remain challenging to power system engineers. To resolve thus issue, we used Wavelet
Transform (WT) and 3D-Wavelet Network (3DWN) to detect and classify various types of faults in
transmission lines depending on the emanating waves from the power system. First, the WT was used to extract
the vector features for each type of faults. Next, these features were analyzed using three level decompositions.
The wavelet toolbox m MATLAB/Siunulink was utilized to calculate the maximumm nermn values, maximum detail
coefficients and energy of the current signals. Furthermore, 3DWN was employed to classify the single line to
ground faults, line-to-line faults, double line to ground faults and three lines faults. Result obtained using WT
and 3DWN confirmed the possibility of developing an accurate fault classification scheme useful for reliable
transient-based protection approaches where tlus applicable for each case of faults.

Key words: Transmission line, fault detection, classification, WT, 3DWN, decompositions

INTRODUCTION

Transmission and distribution networks m power
system play paramount role towards uninterrupted and
safe operations (Osman and Malik, 2001). Power utility
compares assure their users to provide contmuous
power supply where in 1dentifying and locating various
types of faults promptly to protect the power system is a
priority (Osman and Malik, 2001 ). To attain such goal it is
essential to prevent complete power black outs and
maintain secure function of power systems. Modemn
power utilittes demand an efficient scheme to protect the
power
mnprove the performance under normal as well as

system and the associated equpments to

anomalous or faulty operational settings. Over the years,
various techniques have been developed to detect fault
disturbances in the transmission lines (Osman and Malik,
2001).

Diverse types of faults can occurm the transmission
lines with varied distances. Essentially, faults crop up
when one, two or more conductors come in contact
with each other or ground. The generated faults are
classified as single line-to-ground, line-to-line, double
line-to-ground and three-phase (Osman and Malile, 2001).
Occurrences of these faultsin the transmission lines are
not only detrimental for expensive electrical equipments
but also, responsible for power quality deterioration.
Therefore, it is mandatory to determine the nature and
location of fault son the line. This in turn helps the
engineers for taking remedial measure for prompt

clearance of faults to avoid severe damages. Successful
and hazard free operation as well as the durability of
power system are majorly decided by the prompt
detection and clearance of the faults (Osman and Malik,
2001). Wavelet Transform (WT) being a very effective
mathematical tool for detecting time dependent
fault-generated signals was widely utilizedin several
applications of signal processing (Daubechies, 1992).
Despite many dedicated efforts precise detection and
in-depth classification of diverse faults n transmission
lines using simple approaches are far from being
achieved.

This study reports the detection of various types of
faults that occurs m the transmission lmes and ther
subsequent classification via. three levels decomposition
mediated WT. Quantities such as maximum norm,
maximum detail coefficients and the energy of the current
signals were calculated. Computed values of these
parameters in each transmission line for all types of faults
were further fed to the proposed 3D-wavelet network to
classify the detected faults.

Wavelet transform: Detection and classification of
transmission line faults in the power system involves an
exceedingly large data set with varied fault situations. Tn
this regard, WT being a handy tool can deal with such
circumstances (Osman and Malik, 2001). In WT techrique,
fault disturbances in power system are usually detected
from the the alterations in the signal. Wavelet method is
more powerful m processing the stochastic signal than
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conventional approaches because in WT the waveform
are analyzed in the time domain (Daubechies, 1992). Using
diverse scale factors, the band in WT can desirably be
adjusted to window both the low and high frequency
components of the signal. Considering these benefits,
WT has widely been used in signal processing
applications including de-noismng, filtering and image
compression. Many pattern recognition algorithms were
developed based on the WT. Furthermore, depending on
the used scale factors the wavelet can be categorized into
different sections (Osman and Malik, 2004).

Generally, WT techmique involves the decomposition
of transients into a series of wavelet components where
each such component corresponds to a time domain
signal,covering a specific octave frequency band that
contains more detailed mformation (Shaaban and Hiyama,
2010). Such wavelet components are effective for the
detection and classification of the sources of surges.
Thus, the WT emerged as a feasible and practical
approach for analyzing power system transients and
disturbances (Osman and Malik, 2004).

Wavelet transform owing to its capacity of

(Shaaban and
Hiyama, 2010) can efficiently be implemented using High
Pass (HP) and Low Pass (LP) filtersat level (k) for
fundamental  frequency  components  generation
(Daubechies, 1992). These results are down-sampled by
a factor of two. Same filters are applied to the output of

performing multi-resolution analysis

the low pass filter from the preceding stage of the signal.
The HP filter 1s derived from the mother wavelet function
directly to measure the details in a certain mput.
Conversely, the LP filter delivers a smoothen version of
the input signal that is extracted from a scaling function
assoclated to the mother wavelet as depicted in Fig. 1.
Results for the signal analyses are obtained using DB4 as
the mother wavelet. The wavelet energy is the sum of
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Fig. 1: Multi-resolution analyses

square of detailed wavelet transform coefficients. The
energy of wavelet coefficient is varied over different
scales depending on the nput signals. Energy of the
signal 1s contained mostly in the approximate part and a
little in the detail part. Actually, the approximate
coefficient at the first level hashigher energy than other
coefficients at that level of decomposition tree. It is
because the faulty signals have high frequency DC
components and harmonics that more distinctive to use
energy for detail coefficients (Sahu and Sharma, 2013).

MATERIALS AND METHODS

Proposed 3D wavelet network: Figure 2 illustrates the
work-flow of 3D Wavelet Network (3DWN) where the
input layer is comprised of three neurons because of the
three dimensional nature ofthe mput data.The activation
functionof the input data is one even for three
dimensional characters. The first hidden layer is
composed of six newons with each pair taking the
mimmurn value. Then, it reaches to the same neuron in the
second hidden layer for selecting the output in the output
layer.

The activation functions of the neurons in the first
hidden layer must be different. besides, the three
dimensional functions and the activation functions on the
second hidden layer should be dissimilar.The one
dimensional functionis selected depending on the
characteristics of the mput data. These functions are very
significant in order to attain the goal in minimum time
withless computational complexity. The output layer
is consisted of one neuron and the activation function
15 the summation of the mput to it Meanwhile, the

Fig. 2: Block diagram showing the proposed algorithm of
3DWN
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weights between the input and the hidden layer are equal
to one. Moreover, the weights between the second
hidden layer and the output layer are modified according
to the specified equations (Jana ef af., 2012).

Proposed 3DWN algorithm: The 3DWN architecture
approximated any desired signal (y) by generalizing a
linear combination of two set of daughter wavelets
denoted as and h, , , (x,-x;) and h, _, (x,x;) generated by
dilation (a) and translation (b) factors from two mother
wavelets, h; ., (T, ToT) and h , , (7., 7T.;7),
respectively with T, = x1-bfa, T, = x,-b/a and 1, = x;-b/a.
The expressions for the daughter wavelets yields:

X-b x-b x-b
N i B

hz’a’h(xl,xz,&)—hz[xl_b,Xz—_b,xj—_bj (2)
a a a

where, a>0 and (x,-x,) are the respective maximum norin,
maximum detail coefficients and the energy. The 3DWN
was consisted of three layers feed forward neural networlk.
Fiurst, the 3DWN parameters, dilation factors (a),
translation factors (b) and weights (w) should be
mitialized. Meanwhile, the desired datasets, the input
signal (x), the desired output (target, v), the number of
scaling functions (p = 2 in the present research) and the
number of wavelons (k = 3 in the proposed method) were
mputted. Furthermore, it was assumed that the network
output function satisfied the admissibility condition and
the network sufficiently approximated the target. The
approximated signal of the network (¥) can be represented
via. (Zayer, 2011):

k
F(x,%,.%,) = > we, , (Min) 3
1=1
Where:
(X,, X3, X;) = The three dimensional data sets
W, = The Weight coefficients between hidden
and output layers
1 = 1, 2, ..., k (mumber of wavelons in second
hidden layer)
8. = A daughter wavelets

Similar to WN, the training of 3D WN was started
after constructing the mitial 3DWN and computing the
output signal of the network. Tt was further trained by the
gradient descent algorithm called Least Mean Squares
(LMS) to minimize the mean-squared error. During the
learning process, the parameters of the network were
optimized.

The 3DWN parameters (a ;and b, ;) in the first hidden
layer was optimized in the LMS algorithm by mimimizing a
cost function or the Energy function (E) over all function
interval using the expression:

p=lse )

=1

| =

B= oY) ®)

Where:
y(x) = The desired output (target)
§(x) = The actual output signal of 3DWN

The method of steepest descent was used to minimize
E which required the gradients such as JLE/da , and
JE/9b; ; for updating the incremental changes to each
particular a  and b, , respectively. The gradients of E tock

1.k

the form:
a_E:_iExah(rl,rz,rj) )
éb,, o b, ,
ZE . &h(t OE
a——;Ex(rbrz,ra)%ﬂ)—(1:1,’52,’53) ) (7
b, b b
T, = 5 T, = %20 and T, = it (8)

The incremental changes (Aa and Ab) of each
coefficient were simply the negative of their gradients as
depicted in Eq. 9:

Ab= _F 9
b

Ag= (10)
a

Thus, each coefficient b and a of the network was
updated following the rule given by:

b(t+1) =b(t)+p,Ab (11)
bty =a(t)+un,Aa (12)
where, (y, = P, = 0.1 or <1). The training algorithm of the
proposed 3DWN was comprised of the following six

steps:

Step 1: Initialization ofall three parameters for p = 2 and
two mother wavelets filters.
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h Xl_b1 Xz'bi Xa'b1 h Xl'bi Xz'bi Xj'bi
1 ai i ai | a'l i ’ a'l | ai i a'l

The desired sets of data, the input signals (x,-x,) the
desired output (target y) and the number of wavelons
(equal to 3).

Step 2: Setting the number of tramings (iter = 0), the
incremental changes of each coefficient (Aa and Ab = 0)
and the initial square error (E,, or <1).

Step 3: Calculation of the approximate network signal ()
using Eq. 3.

Step 4: Calculation of the gradients of each coefficient
using Eq. 6 and 7. Use Eq. 3 to evaluate the incremental
changes of coefficients that are being negative of their
gradients.

Step 5: Choosmg constants b, |, = 0.1 and calculating
the new coefficients by, and a,,,., of the network in
accordance with Eq. 11 and 12.

Step 6: Calculation of the square error B, using Eq. 5. If
E,... was sufficiently small (as required or reach the
desired value) then the traming was good and
theexecutionwas stopped. Otherwise, iter = iter+1 was set
and moved on to step 3.

In the second hidden layer, the method of steepest
descent was used to mimmize E which required the
gradients JE/Jw, JE/dc ;and JE/Fd | for updating the
icremental changes to each particular parameter w;, ¢; and
d,, respectively. The gradients of E are given by:

dE T
—=-> Exg(r (13)
- 2 Exg(r)
T
o .Z:Exwi % (v) (14)
ad, o éd,
T
E_Spew®E_ & as)
o, = od,  ad
With:
. Mind 16
¢

The derivatives of the various wavelet filter dg(1)/3d,
with respect to its translation were given. The incremental
changes of these coefficients were sinply the negative of
their gradients expressed as:

aE,Ad:_@ AC:_"LE (17)
ow ad &

)

The coefficients such as w,, ¢, and d,, of the WN were
updated according to the following rules:

w(n+l)= w(n)mn.Aw
( d(n)n,Ad (18)
(

o

where, 1 is the fixed learning rate parameter. The
incremental changes of each coefficient were simply the
negative of their gradients as in Eq. 18 Thus, each
coefficient w, d and ¢ of the network was updated in
following the rule given m Eq. 13-15. The traming
algorithm of the second hidden layer parameters were
obtained via. the following six steps.

Step 1: Initialization of the parameters such as dilation (c),
translation (d) and weight (w), p= 1, two mother wavelets
filters [g(min-d/c;)] the desired datasets, the input signal
(%), the desired output (target, v) and the number of
wavelons (equal to 3).

Step 2: Setting the number of trainings (iter = 0), the
incremental changes of each coefficient (Aw, Ac, Ad = 0)
and the 1mtial square error (E,,, = 0.1).

Step 3: Calculation of the approximate networlk signal (¥)
using Eq. 3.

Step 4: Calculation of the gradients of each coefficient
using Eq. 13-15. Use of Eq. 18 to compute the incremental
changes of coefficients those is negative of their
gradients.

Step 5: Selection of constants My, Me M. = 0.1 and
calculation of the new coefficients w,, ., d..., and ¢, of
the network according to the rules provided in Eq. 18.

Step 6: Calculation of the square error E,,., using Eq. 5. If
Eipery was small enough (as required or reach the desired
value E, ., = 0.001) then the training was good and the
program execution was stopped. Otherwise, iter = ite +1
was set and moved onto step 3. Figure 2 displays the
working mechanism of the 3DWN traimng algorithm.

Transmission line: Tn every electric power system,
overhead transmission lines constitute the main
components that comect the generating stations and
load centers. Often, these lines are hundreds of kilometers
long because the generating stations are far away from
the load centers. However, these lines must be isolated
immediately because occurrences of faults can destabilize
the power system results in power black outs. Faults
analyses are extremely crucial in power system
engineering to clear them quckly for immediate power

7735



J. Eng. Applied Sci., 13 (18): 7732-7738, 2018

Table 1: Model parametersof the power system for constant £= 50 Hz, V=
400 Vand L =300 km

yA(9)] Y C(nF/km)
R1=131 R1=825 Cl1=13.0
R2=233 R2=825 C2=8.50
X1=150 X1=945 -
X2=2466 X2=308.0

Bus 1 Bus 2

Fig. 3: A model for single line diagram representing the
power system

supply restoration withoutany nterruption. Thus, the
detection of faults and locating them accurately is
essential for necessary repairs and to avoid permanent
damages of power system. In fact, the quality of the
power delivery 1s affected by the time required to locate
the fault point along the transmission line. Protection of
transmission lines is asignificant issue in power system
engineering because = 85-87% of faults in power system
are occurred in the transmission lines (Borkhade, 2014).

Model description: Following the earlier research by
Borkhade (2014) present a study used the same model
wheremn the single line diagram of the simulated power
network was used as indicated in Fig. 3. The power
system was consisted of two sources A and B with buses
1 and 2 separated by a transmission line of Length (L) 300
km. Table 1 enlists various model parameters such as
sources Voltage (V), frequency (f), Capacitances (C),
impedances of the sources (7) and transmission lines (Y)
used.

Fault classification using 3DWT: The output of the
wavelet transform after three levels decomposition
(Daubechies, DB4) was selected as mother wavelet. The
time resolution of DB4 was accurate for providing the fast
transients induced by faults. Maximum norm values,
maximum detail coefficient and energy of the current
signal were calculated from the wavelet toolbox in
MATLAB/Simulink. These values were used for feature
extraction of signals. The WT was mainly advantageous
in attaining sufficient information about the signal with
mirmeal vector dimension. It could decompose current and
voltage signals in the time and frequency domam to
detect the fault accurately.

The vector of feature extraction (maximum norm
values, maximum detail coefficient and energy of the
current signal) for each line wasthen entered as mnput to
the 3DWN to train and adapt an excellent pattern
recognition, classification and generalization. The 3DWN

structure consisted of input layer having three nodes that
was fed by the feature vector of three phases at each type
of fault. Input nodes were fully mterconnected with the
first hidden layer where the ludden nodes had the
activation function. First hidden layer was not fully
interconnected with the second hidden layer that had
one dimension activation function. The second
hidden nodewas fully intercomected with the output
node.

The input featureswere (x,; maximum norm of phase
A, maximum norm of phase B and maximum nomm of
phase C) (x; maximum detail coefficient of phase A,
maximum detail coefficient of phase B and maximum detail
coefficient of phase C) and (x; energy of the current
signal for phase A, energy of the current signal for
phase B and energy of the current signal for phase C).
The target of the 3DWT for fault classification under
normal condition were varied from 1-11 with
corresponding faults of LA-G, LB-G,LC-G,LL-AB-G,
LL-AC-G, LL-BC-G, LL-AB, LL-AC, LL-BC and LLL.

Training of 3DWT: Input feature vector of each signal
was provided for adapting the network according to the
target. Five different positions for each fault were
considered to adapt the network. Then, thesewere
savedas the weight (w,-w,) in a matrix with dimensions of
(15x11) where (15 = 5% 3). The feature matrix included 5
positions, 3 weights and 11 faults.

Testing of 3ADWT Any signal to be tested was entered in
the 3DWN and its weights vector was compared with the
feature vectors matrix. The results were obtained by
determining the correlation between these vectors. The
maximum value of correlation impliedthe representation of
faults feature where the value of maximum correlation
place was 1n its column.

RESULTS AND DISCUSSION

Analysis of simulation results

Normal condition: Figure 4 shows the three-phase current
and voltage signals (color of A is red, B is blue and C is
yellow) at no fault condition. Tn the absence of any fault,
the detail coefficients for all three phases were found to
beclose to zero and only appearedas ending effect of
daubechies wavelet which was very small. The values of
energy of the signal, maximum norm and maximum detail
coefficient for normal condition are summarized in
Table 2.

Single phase to ground fault: Three-phase current and
voltage signals for phase A to ground fault 1sillustrated in
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Table 2: Values of Maximum Detail Coefficient (MDC), Maximum Norm

Table 4: Values MDC, MN and E of three phases A-C at double phases to

(MN) and Energy (E) of three phases A-C at normal condition ground fault
A B C A B C
MDC E MN MDC E MN MDC E MN F MDC E MN MDC E MN MDC E MN

0.358 79.12 0433 0.4585 80.72 0.433 0.3195 8l.6 0.433

Table 3: Values MDC, MN and E of three phases A-C at single phase to

Ground (G) Fault (F)
A B C
F MDC E MN MDC E MN MDC E MN

A-G 0.923 188540 3.874 0.123 7843 0585 0135 81.54 0383
B-G 0.285 99.452 0348 2.423 209.60 4.207 0.362 103.90 0.339
C-G 0.315 92112 0420 0.221 90.36 0411 0924 195.90 5.018

Values

-500 r— r r r 1 r 1 1 111 11 1 1. 1T 1T T 11
0 3 6 9 121518 21 24 27 30 3336 3942 45 48 5154 5760
Variables

Fig. 4: Phase voltage and current at normal condition

x10'  Fault point

Fig. 5: Phase voltage and current at line to ground fault

Fig. 5. The values of detail coefficients revealed that the
fault inception began at the instant fault occurred on
phase A without altering other phases compared to phase
A. The values of energy of the signal, maximum norm
value and maximum detail coefficient for line to ground
condition are presented in Table 3. Because the faulty
phase maximum norm value, energy of signal and

AB-G 0.908 195.420 4.458 0.881 177.500 4.521 0.321 81.50 1.652
BC-G 0.211 86.856 1.332 0.839 179.930 5.021 0.812 184.20 5.161
CA-G 0.791 191.640 4.619 0331 83.643 1.594 0.753 186.32 4.602

<10 Fault point

-2000

T
SVPERS VL AP IR SO

Variables

Fig. 6: Phase voltage and current for line to ground fault

maximum detail coefficients was highest, thus, it was
needed to be cleared immediately upon detection in the
transmission line.

Double phase to ground fault: Three phase current and
voltage signals with phases A-B to ground fault are
shown in Fig. 6. In this case, only two faulty phases at the
fault inception time caught a substantial change and high
level of detail coefficient despite no change in the healthy
phase (Table 4). Literally no change in the healthy phase
could mamtamn nearby normal condition in the energy and
maximum norm, although, faulty phases were so different.
Tt implied that these phases were in fault condition and
when making the maximum detail coefficients for two
faulty phases were different (not identical). This indicated
that these faulty phases were connected to the ground of
transmission line.

Double phase fault: Figure 7 depicts thethree phase
current signals with phases A-B fault. Only two faulty
phases at fault time was found to catch substantial
alteration, although, the healthy phase had nearly zero
change Table 5. No change m the healthy phase and
maintenance of nearby normal condition in the detail
coefficient, energy and the change of energy ratio clearly
indicated that the faulty phases were very different than
normal condition where the maximum detailcoefficient of
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Table 5: Values MDC, MN and E of three phases A-C atdouble phases fault
A B c

F MDC E MN MDC E MN MDC E MN
AB 0213 180.210 592 0.307 178430 5890 025 82456 0301
BC 0361 77442 045 0.281 184.210 3.980 0.34 180.371 3.582
CA 0411 187320 5.01 0.369 76981 0421 0.39 190.027 4.790

Table 6: Values MDC, MN and E of three phases A-C atthree phases fault
A B C

F MDC E MN MDC E MN MDC E MN
ABC 0.481 180.561 5.382 0.502 18545 4.98 0.378184.93 4839

»10* Fault point
07 ()

Values

Values

SEPL R P PSP LILFE PSS SIS
Variables
Fig. 7: Phase voltage and current for 3-line to ground fault

these faulty phases were found to be above 0.001. It
implied that these phases were in fault condition and
when making compression the amount of energy change
ratio of two faulty phases were typically same (negligible
difference). This clearly indicated that the occurred faulty
phases were not connected to the ground.

Three phase fault: Figure 7 presents the three phase
current and voltage signals with three phase fault. In this
case, at fault inception timea great changes were observed
in all phases energy, maximum norm values and maximum
detail coefficients as described in Table 6.

CONCLUSION
We applied WT and 3DWN to detect and classify

various types of faults appeared n the transmission line.
WT could detect the faults accurately by decomposing

the signal into bands in the time and frequency
domain Values of maximum norm, maximum detail
coefficients and the energy of the current signal were
calculated using wavelet toolbox within
MATLAB/Simulink. These values were further fed to the
proposed 3DWN algorithm. 3DWN provided very good
classification and was robust than other types of
classifiers. Result obtamed usmg WT and 3DWN
confirmed the possibility of developing an accurate fault
classification scheme useful for reliable transient-based
protection approaches. The performance of the proposed
classifier was evaluated by altering the network
configuration. It was concluded that the developed
scheme was easily comprehensible, deterministic and
feasible for practical implementation.
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