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Abstract: Tn this study, the maximum likelihood and approximate Bayes estimators to the reliability function of
two parameter Lindley distribution have been derived when the data are shown in fuzzy form. Bayes estimators
have been derived based on mformative gamma priors with squared error and precautionary loss functions
according to approximate Lindley’s technicue. The generated samples that follow the two parameter Lindley
distribution are converted to fuzzy data based on a specific fuzzy information system. In addition, obtained
estimators to the reliability function have been compared numerically through a Monte-Carlo simulation study

n terms of their integrated mean squared error values.
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INTRODUCTION

Lindley distribution: Shanker ez /. (2013) introduced a
Two-Parameter Lindley (TPL) distribution. The probability
density and cumulative distribution functions of a TPL
distribution are given, respectively by:
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fo(x0,6)= x> 0,020, 0>6 (1)
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From Eq. 1, it can easily be seen that when ¢ = 1, a
TPL distribution reduces to the one parameter Lindley
distribution. When « = 0, a TPL distribution reduces to
the exponential distribution with parameter (6). The
reliability function of TPL distribution for a specified
period of time, say t (t=0) 18 given, respectively by:

w e, 9>0 a>-0

R(t;0,0)=1-F(t;a,8)=
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likelihood Suppose

s-(x.5,. .5, )be an 1i.d. random vector of a random

Maximum estimation:
sample of size n from a TPL distribution with probability
density function given by Eq. 1. If an observation of £
was observed accurately, then the
likelihood function, L{« 8|x) is given by:

complete-data

n n n
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Now, suppose that a random vector £ 1s not

observed accurately and only partial information about it
is available in the form of a fuzzy subset £ with the
membership function nz(x) (Pak ef al, 2013). For this
state, using the Zadeh’s expression of the probability of
a fuzzy event® in R* which defined as the expectation
of ug with respect to P where (R", X, P) be a probability
space, PIE)= [ &(X)®: for all xeR" (Denoeux, 2011; Zadeh,
1968). The observed-data likelihood function can be
obtained as:

L{a.B|X)= ﬁjfx(x; ot,@)p;(i (x)dx

eZn n
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Then, the observed-data natural log-likelihood
function can be obtained as:

¢ =0, 8]%) = in L (a, 6]%)

. 6)

@ =2n 1n6-n 1n(6+a)+z 1nj(1+ocx) e'expil (x)dx
i=1

The likelihood equations to & and 8 are given,
respectively by:
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Since, there are no closed forms of the solutions of
the above two likelihood equations, a Newton-Raphson
(NR) algorithm as an iterative technique can be used to
obtain the maximum likelihood estimations of the
parameters ¢ and 0. The NR algorithm can be summarized
by:

¢ (iven starting values of @ and 6, say ¢® and 6" and
set iteration T =0
e At iteration (I+1), estimate the new value of ¢ and 0

as
R o B o
007 [ z
o @ | oo Codo Jao.
guv | et | | e e %
3660 80° |e=a?[ 0o =
a=dl) g=d"

)
where, o@/de and 3g/00 as in Eq. 7 and 8, respectively:
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Repeat the second step until convergence occurs,
that 1s the absolute difference between two successive
iterations is less than pre-specified error tolerance, e>0.
When the convergence occurs then the current estimation
of ¢ and 0 at iteration (I+1) be the Maximum Likelihood
Estimates (MLE’s) of that parameters which we referred to

A8 (enr, B )

Then, according to an invariant property of the ML
estimation, the estimate of reliability function at time (t) of
TPL can be obtained by replacing ¢ and 6 in Eq. 3 by their
MLE’s as:

ﬁML(t): eMLJrnO’EMLJrG‘MLeMLteeML t=0 (13)
O F0yer
MATERIALS AND METHODS

Bayes estimation: Tn this study, we derive Bayes
estimators for the reliability function of TPL distribution
when the available data are in the form of fuzzy numbers.
Consider the prior distributions of TPL distribution are
taken to be independent gamma (a, b) and gamma (¢, d),
respectively with probability density functions:

a

I'(a)

a*le™ u>0, a, b>0 14

Pa)=

dc

P(0)= o)

ple®: 020, ¢, d>0 (15)

A jomt prior distribution of ¢ and 6 of the form P
(e, 6) =P () P (6) will be:

_bd ot ipete et (1e)

PO papro)

The joint posterior density fumction of ¢ and 8 given
fuzzy data can be obtained by combining likelihood Eq. 5
with Eq. 16 as:

L(a, 61%)P(2, 6) P(ew0]%)
(@61%)~ Jof (et 8] %) P(06)dordd H (0,6 %) dodd
a7
Where:
o BT g Yo e ( x
i N (e A

In our situation we have two parameters to be
estimated, so, Bayes estimation of any function of the
parameters, say u (¢, 0), relative to squared error and
precautionary loss functions, ug, (¢, 0) and ug, (¢, 0) can
be obtained, respectively as:

[5[ru(0.6)P(0.6]%)dods
[y ij oze\x)docde

liys(a, 0) E[u a, 0) \X

(18)
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Equation 18 and 19 are of the form of ratio of two
integrals which cannot be simplified into a closed form.
However, we use Lindley’s approximation form to
Lindley (1980)
developed an approximate procedure for assessment of
the ratio of two integrals. Consider1(£) defined as:

approximate these Bayes estimators.

j j )e? ™ Tdode

20
j j“’ ‘F’*”edade 20

where, u (&, 8) is a function of & and 8 only, @ is the
natural log-likelihood function defined by Singh et al.
(2013), pla, 0) is the natural log-joint prior density
function. Then for sufficiently large sample size, the ratio

of two mtegrals can be approximated as Singh et al.
(2013):

(%)= u(d,é)+%[(ﬁm+2ﬁuf>a)&w+(ﬁue+2ﬁmﬁe)&UBJr

. PP N RN 1 ..
(uequzuepm)Geu+(uee+2uepe)Gea]+_[(uesus+

o
uec +uDLGeU. ) ( (pBEBGBB+(P8uBGGU, +(pc1886u6 +(pm86m )]

2D

where, & and 0 are the ML’s of ¢ and 8, respectively. o,
is the (I, )™ elements of matrix [-F@Bud0]' where
sub-scripts (T, j) refer to «, 0, respectively. fig and g are
the first derivative of the function u (a, 8) with respect to
« and O, respectively evaluated atéanddfigis the
second derivative of the function u (a, 0) with respect to
« evaluated at & and & . Other expressions can be inferred
exactly in similar style:

. OnP(a,8) a-1
———==) =ZT.p 22
Pa do a=h O (22)
8=6
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=__ N7 J = _d 23
Ps B e B (23)
8=5

And from Eq. 10-12, we can get:
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n jx2(1+ax)e' y.ﬁi X dxjxe'éxpﬁl(x)dij
S (JOe)e g (x)d)
('[X(l‘FéX)e'éx}J.;{] (x)dx)2 J-xeiexpg] (x)dx ]
% (J(1x)e ™ (x)ax)
i=1 J.X(lJréX)eéx},Lii (x)dxsze'éxpii (x)dx
([(r+ax)e ™ (x)e) |
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Now, according to the above defined expressions, we
can obtain the approximate Baves estimators of the
reliability function of TPL distribution relative to squared
errorloss function by assuming that (¢, ) = R" = 6+a+a
0t0+ae™ and then:
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and the approximate Bayes estimations for reliability
function relative to precautionary loss function, would be
as fellows: Assume that u (¢, 0) = R*(t) = 0+u+u 6t/a+0
e™? and then:

_ 282t(6+cc+cc8t) e L
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(30)
RESULTS AND DISCUSSION

Simulation study: Tn simulation study, the sample sizes
are selected to be n =20, 30 and 50 in order to represent

small, moderate and large sample sizes, respectively. Set
the true (default) values for the TPL distribution, ¢ = 0.5
and 3, 0 = 1.5 and 3. Select different values of hyper-
parameters associated with gamma priors to deal with
non-informative and informative priors, respectively as:
prior I: a=b=c=d=0.0001 (use very small non-negative
it will make the
informative priors as proper non-imformative priors: (Press
and Tudith, 2001) and prior 2. =3, b=2,¢=2,d = 2. Select
four times (t = 1, 2, 3, 4) to evaluate the estimating
reliability function. Since, the explicit form of the inverse

values of the hyper-parameters,

function of Lindley distribution cannot be obtained, the
random samples of size n followed TPL distribution can be
generated depending on the fact that Lindley distribution
15 a special mixture of exponential distribution with
parameter (8) and gamma distribution with parameters (2,
0) and mixing proportion 8/6-+q. Generate u~ Uniform (0,
1),1=1,2, .., n Generate v~ Exponemtial (), 1=1,2, ..,
n. Generate w,~ Gamma (0, 0),1=1, 2, ..,
0/0+c , then set x; = v, otherwise, set x, = w,. Then based
on the fuzzy information system which appears in Fig. 1,

n If u<p =

encode the generated data where each observation in
sample will be fuzzy based on a suitable selected
membership function of the followng eight membership
functions:

1 it x =0.05,
) = 100X 6 05 <x <025,
0 . otherwise,
-0.05
* -0.05<x < 0.25,
0.2
05-x
. ()= ;025 <x<0.5,
ng( ) 0.25
0 ; otherwise,
1_
8
)
3
R
=
2
g
-
O T T T T T T T T 1
0.05 025 0.5 0.75 1 1.5 2 3
X
Fig. 1: Fuzzy information system used to encode the

simulated data (Pak et al., 2013)
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x-025 e formulas that obtained in the previous studies. The
025 0.25=x205, iterative process of NR algorithm stops when the absolute
0.75-x difference between two successive iterations become
Mg, (X) = 05 0.5=x=075, <g =0.0001. Repeat the steps 1000 times and then compare
’ . the obtained estimates of reliability fimction with different
0 ; otherwise, . . .
times according to the average integrated mean square
error (IMSE) as:
-0.5
Xo Lo 1055x=075, L A
- IMSE(R(t)) ——Z Z(R (t)-R(t, )) (31)
Mo, ()= —— (0.75<x <1, Lz, J
* 0.25
0 ; otherwise, where, R(t,) is the estimates of R (f) at the j* replicate and
i® time. L is the number of sample replicated chosen to be
(1000). n, 18 the mumber of times chosen to be Eq. 4. The
2075 x 1, — .1 x 15, results of simulation study have been summarized in
0.25 0.5 Table 1-3 and Fig. 2-4.
W (X)=1 L.5-x (1<x <15, p X) = iZ_X ;15=x=<2, 0.009
- i O i 0.5 0.008 ~
T : - T : ; . 0.007
1I_ 0 . otherwise, 1 0 ; otherwise, 5 0006
[ ] £ 0.005 -
2 0.004
S 0.003
| c = T 0.002 1
e = = : 0.001 -
.I. 05 .} X 2 ’ 2 S X S 3, 0000 l T T | | | T T T T
u- ) =7 3-x CZEXESZ, p- (= 1 . x3 3, Case i 34
: 0 : otherwise, 1 0 ;otherwise Sample size 20 E i 30
7 : . .
Calculate the ML and Bayes estimates of the Fig. 2: IMSE values for ML estimators of R(t) with
reliability function of TPL distribution based on the different cases
0.009
0.008 Be —
0.007 | | B
0.006 — B
£ 00054 M ) B
E 0.004
22}
= 0.004-
0.003
0.002
0.001
0.000 T 1 T 1 T T T T T 1 T T T T T T T T T 1 L
Prior 12 12 12 12 12 12 12 12 12 12 12 12
case 1 2 3 4 1 2 3 4 1 2 3 4
Sample size 20 30 50

Bayes estimators

Fig. 3: IMSE values for Bayes estimators of R(t) wnder squared error loss function with different cases and prior
distributions

Table 1: IMSE values for ML estimators of R ()

Cases
N x=050=1.5 x=050=3 a=50=1.5 x=50=3
20 0.0058073 0.0081462 0.0058708 0.0074983
30 0.0053200 0.0071459 0.0053213 0.0066047
50 0.0044161 0.0054454 0.0044941 0.0052971
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0.009 7
0.008
0.007 1 -
0.006 1
0.005 1
0.004 1
0.004 1
0.003
0.002
0.001

IMSE values

0.000 T T

Prior 12

case 1 2 3 4 1
Sample size 20

30 50
Estimators

Fig. 4: IMSE values for Bayes estuimators of R(t) under precautionary loss function with different cases and prior

distributions

Table 2: IMSE values for Bayes estimators of R (t) under squared emror loss fimction with different prior distributions

Cases
x=050=15 x=0.50=3 x=50=15 x=5,0=3
N Prior 1 Prior 2 Prior 1 Prior 2 Prior 1 Prior 2 Prior 1 Prior 2
20 0.0057046 0.0052733 0.0086770 0.0079854 0.0057615 0.0053293 0.0087801 0.0072215
30 0.0053491 0.0049422 0.0082312 0.0070467 0.0052495 0.0049313 0.0076164 0.0064927
50 0.0048902 0.0042774 0.0066847 0.0053930 0.0044689 0.0043518 0.0059570 0.0052611
Best Prior Prior 2 Prior 2 Prior 2 Prior 2
Table 3: IMSE values for Bayes estimators of r (T) under precautionary loss function with different prior distributions
Cases
x=050=15 x=0.50=3 x=50=15 x=5,0=3
N Prior 1 Prior 2 Prior 1 Prior 2 Prior 1 Prior 2 Prior 1 Prior 2
20 0.0056137 0.0051031 0.0082211 0.0078562 0.0056684 0.0052577 0.0081607 0.0071770
30 0.0051820 0.0048897 0.0081800 0.0070342 0.0051882 0.0049068 0.0073411 0.0064731
50 0.0043667 0.0040967 0.0058550 0.0053725 0.0044470 0.0042337 0.0057352 0.0052587
Best Prior Prior 2 Prior 2 Prior 2 Prior 2
CONCLUSION With different cases and all sample sizes under
study, the performance of Bayes estimates with

The estimation methods adopted to estimate the
reliability fuinction of TPL distribution based on eight
fuzzy linear membership functions are the maximum
likelihood estimation and Bayesian estimation
methodswhen prior distributions are specified as
mndependent gamma distributions with squared error and
precautionary loss functions as symmetric and
asymmetric loss functions, respectively. The important
conclusions from the empirical part with a Monte Carlo
simulation study that performed to evaluate the behavior
of obtained estimators for the reliability function of TPL
distribution based on fuzzy data with different cases can
be summarized by.

With different cases and all sample sizes under study,
the performance of obtained Bayes estimators according
to Lindley’s approximation is better than that of maximum
likelihood estimators.

informative priors assumption (prior 2) is better than that
with non-informative priors assumption (prior 1).

The performance of Bayes estimates according to
Lindley’s precautionary
function is better than that according to squared error
loss function for different cases and all sample sizes under
study.

Increase the value of the parameter 6 increasing the
values of integrated mean square error associated with all
considered estimators for different cases and all sample
sizes under study.

The mtegrated mean square error values associated
with maximum lhkelthood and Bayes estimates are
decreasing as the sample size increases. The performance
of different estimators is almost identical with large sample
size.

approximation under loss

7675



J. Eng. Applied Sci., 13 (18): 7670-7676, 2018

Hence, based on fuzzy data with such different cases
and sample sizes under study, we recommended to use
Bayes estimators according to Lindley’s approximation
under precautionary loss function with informative gamma
prior to estimate the reliability function of TPL distribution
comparing with squared error loss function.
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