Tournal of Engineering and Applied Sciences 13 (17): 7323-7328, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

An Approach for Big Data Interoperability

'Omar Hajoui, *Rachid Dehbi, 'Mohamed Talea, 'Zouhair Ibn Batouta and
'Abdellah Bakhouyi
'LTI Laboratory, Faculty of Science Ben M’sik
*LR2I Laboratory, Faculty of Science Ain Chock,
Hassan II University, Casablanca, Morocco

Abstract: No3SQL databases are increasingly used m big data and real-time web applications. But these
databases are heterogenecus. They offer different data storage models, implementations and languages to
developers and users. This wide variety of platforms makes it difficult data interoperability, data integration and
even data migration from one system to another. This study proposes a literature review of study related to big
data interoperability, the purpose of this study 13 to present and discuss the proposed solutions. Although,
these solutions are ambitious, they neglect the semantic aspect of data that is considered a main axis in an
effective solution to data interoperability. In this study, we present a new approach to data interoperability for
NoSQL databases, in particular, it 1s addresses the data semantics problem.

Key words: Big data interoperability, NoSQL databases, polyglot, persistence, ontologies, OWL

INTRODUCTION

With the constant growth of stored and analyzed
data, classic Relational Database Management Systems
(RDBMS) exhibit a variety of limitations. Data querying
loses efficiency due to the large volumes of data as well
as storage and management of larger databases becomes
challenging. NoSQL databases were developed to provide
a set of new data management features while overcoming
some limitations of currently used relational databases
(Anonymous, 2016a, b). NoSQL databases are not
relational and they don’t require a model or structure for
data storage which facilitates the storage and data
search. Also, they allow horizontal scalability, it gives
admimstrators the ability of increasing the number of
server machines to minimize overall system load. The new
nodes are integrated and operated in an automatic manner
by the system. Horizontal scalability reduces the response
time of queries with a low cost.

NoSQIL databases can be used alone or as a
complement to a relational database, they increase
performance while bringing different advantages and new
features. Currently, there are over 50 NoSQL databases
with various features and optimizations. Each NoSQL
database provides different mechanisms to store and
retrieve data which directly affects performance. Each
non-relational database has different optimizations,
resulting in different data loading time and execution times
for reads or updates (Anonymous, 2016a, b).

However, as the various systems have different
performances and different behavior in terms of
consistency and availability, it 1s meammngful to have
applications that are not satisfied with just one of them.
Also, let us assume that quantitative application use
several NoSQL databases, various components of this
application may wuse different systems. This case
corresponds to what is popularly referred to as the
polyglot persistence (Martin, 2011).

Unfortunately, writing the code of an application
that uses multiple databases 1s not easy and sometimes
very comstraiming for the developer. For example, in the
case of relational databases, just use the JDBC API to
access a My3QL database, Oracle and others. For cons,
the lack of a standard for accessing NoSQL databases
is a great problem as each NoSQI. database has its own
data model, query language and APIs. This kind of
problems related to the heterogeneity of NoSQL
databases has been evoked for the first time by
Stonebraker (2011).

The problem of big data interoperability is
produced when we want to exploit and analyze data
stored 1n heterogeneous systems. Storing data in different
representations makes data cquerying and interpretation
difficult. For example, this problem arises if you want to
make statistics on the data stored in several mstitutions
of the same orgamzation, several subsidiaries of the same
company, several commercial sites of the same mall or
intelligent sensors in the same city.

Corresponding Author: Omar Hajoui, L.TT Laboratory, Faculty of Science Ben M’sik, Casablanca, Morocco
7323

J. Eng. Applied Sci., 13 (17): 7323-7328, 2018

MATERIALS AND METHODS

Big data interoperability barriers: NoSQL databases
have different data models, query languages and APIs,
thus, making data interoperation a difficult task. Data
model heterogeneity is caused by the use of different
models or structural differences. Semantic heterogeneity
1s caused by different meanings or mterpretations of data
in various contexts.

Data model heterogeneity: The issue here 15 how to
map data structures and operations from one DBMS
into data structures and operations conforming to a
different DBMS. A data model mapping step is assumed
as a pre-requisite to data interoperability (Parent and
Spaccapietra, 2000) and is dealt with as a separate
problem. The needed mappings are those between any
local data model and the common data model.

In key-value store, data 1s sunply represented by a
key/value pair, both the key and the value can be of any
structure, their model can be likened to a distributed hash
table. These systems have a very high performance in
reading and writing but they offer simple HTTP query
mnterface.

Document stores extend the key-value paradigm
but the value is a document, the document tends to
semi-structured data (XML, JTSON), documents can be
very heterogeneous in the database. They offer complex
HTTP query interface.

In column-based store, data is stored as sections of
columns of data rather than as rows of data. Data stored
together with meta-data [typically mcluding row 1id,
attribute name and value, timestamp]. Read and write is
done using columns rather than rows. The pioneer of this
category is Google BigTable (Chang et al., 2008).

To solve the problem of data model heterogeneity in
NoSQL databases context an approach leverages on the
genericity of the data model to allow for a standard
development practice that 1s not bound to a specific
DBMS API but to a generic one (Bugiotti ef al., 2013);
(Cabibbo, 2013). Also, the researchers define a translation
process, from the generic model constructs, to coherent
system-specific structures and vice versa.

Semantic heterogeneity: Semantic heterogeneity is
caused by different meanings or interpretations of data in
various contexts (Fig. 1). The use of different terms and
conceptual notions of a domain still poses sigmificant
challenges. The proposed solution is to create formal
knowledge bases or ontologies to describe a domain and
use these to create semantic agreements and resolve
semantic differences.

User query: river

Database Database Database
agency agency agency
Stream Watershed Brooke

Fig. 1: Semantic interoperability example

Such knowledge bases hold terms that are generally
accepted in a community. These terms can potentially be
used in data sets created in the future and also be used to
resolve existing heterogeneity in legacy data through
mappings from ontology terms to local terms (Wiegand,
2011, 2013).

Prior solutions to avoid or resolve semantic
differences were to create and enforce standards or
resolve differences on an application by application basis.
Although, standards can be a good solution, they may be
difficult to create and if very general terms are used as
standard terms, they might not fully cover the nuances
and needs of local data. In any case, legacy data may not
conform to the standards. And as to “cne-of” solutions
on an application by application basis, after enough
unique “one-of” solutions are made, the need 1s
recognized for a more universal solution. Creating and
then consulting a comprehensive knowledge base for a
domain, 1.e., an ontology, results in a re-usable solution
across many applications.

Ontologies provide a promised technology to
solve the semantic heterogeneity problem because they
allow to explicitly representing common semantics of a
domain of discourse (Yalia ef al., 2012). An ontology can
be defined as a formal, explicit specification of a shared
conceptualization (Gruber, 1993). “Conceptualization”
refers to an abstract model of phenomena in the
world by having identified the relevant concepts of those
phenomena. “Explicit” means that the type of concepts
used and the constraints on their use are explicitly
defined. “Formal” refers to the fact that the ontology
should be machine readable. “Shared” reflects that
ontology should capture consensual knowledge
accepted by the communities. An ontology formally
defines different concepts of a domain and relationships
between these concepts, Fig. 2 shows an example for a
small ontology.

7324

J. Eng. Applied Sci., 13 (17): 7323-7328, 2018

Watershed

{ contains
\4

is a Waterbody

is a

Brook

Fig. 2: Possible local hydrology ontology

In ontology-based approaches for information
mtegration, local ontologies are used to describe the
semantics of local information sources. The more recent
Web Ontology Language (OWL) (Hitzler et al., 2009) has
become a popular standard for data representation
and exchange. The OWL supports the representation
of domain knowledge using classes, properties and
instances for the use in a distributed environment as the
World Wide Web.

Query languages and APTs: In the world of relational
databases, the SQIL language is a
querying any database, it allows for complex operations
such as joms aggregations and groupings, it's easy to
understand, this facilitates the task of developers. On the
other side, each NoSQL database has its own query
language, some are poor, they implement just the CRUD
operations, especially, those related to key/value store.
Others are rich, particularly those related to document
store and column-based store but they don’t rise to the
power of SQL, we can’t do joins or run certain
aggregate functions. Nonetheless, they mmplement the
framework MapReduce which is a very powerful tool for
making distributed calculations or statistics but the
programming of MapReduce jobs needs experienced
developers.

Similarly, there isn’t a standard APT like TDBC which
allows applications to access NoSQL databases. Each
system has its own API which makes access to multiple
data sources quite complicated, the developer must study
and test each of these APTs.

standard for

RESULTS AND DISCUSSION

The different approaches for big data interoperability:
Currently, there are several works that address the big
data interoperability. In tlis chapter, we present only
implemented solutions.

ONDM; An Object NoSQL Datastore Mapper: ONDM
(Cabibbo, 2013) is a framework to facilitate the storage
and retrieval of persistent objects in NoSQL datastore
systems. ONDM aims at supporting several challenges
posed to application developers by the heterogeneity of
NoSQL databases. Tt provides developers with a uniform
application programming interface, transparent access to
different NoSQL data stores and the ability to select from
different data representation techniques for entity objects
and relationships between objects. The highlights of
ONDM are as follows: ONDM offers to application
developers an ORM-like API, a variant of the popular Java
Persistence API (JPA). By adopting this standard, it is
easy to move existing JPA applications into the NoSQL
realm and for developers it 13 simple to start writing
NoSQL-based applications. As JPA, the ONDM data
model is based on entities, relationships and embeddable
objects (i.e., complex values). ONDM currently supports
the access to a handful of NoSQL datastores (Apache
Cassandra, Couchbase, MongoDB, Oracle NoSQL and
Redis), belonging to different datastore categories. More
important, it has been designed to be easily extensible.
Indeed, the effort needed to implement m ONDM the
access to another data store 1s rather limited.

ODBAPI; A unified rest API for relational and NoSQL
data stores: In this study, Sellami ef af. (2014) proposed
a generic resources model to represent the different
elements of heterogeneous data stores in a cloud
environment. They also proposed a unique rest APT that
enables the management of the described resources m a
umform manner. This API 15 called ODBAPI and allows
the execution of CRUD operations on relational and
NoSQL data stores. To do so, they defined a resource
model representing the different resources that they target
within theirr APL In this version, they took mto account
only three data stores. These latter are a relational DBMS,
a key/value data store that is Riak and a document data
store which 1s CouchDB. In addition, they gave an
overview of ODBAPI and its different operations. This
APT is designed to provide utmost control for the
developer against heterogeneous data stores. ODBAPI
eases the interaction with data stores at the same time by
replacing an abundance of APIs. Moreover, it decouples
cloud applications from data stores alleviating, therefore,
their migration. However, the researchers do not deny that
1t still remans the problem of executing complex queries
(e.g., group by, like, join, etc.). They did not take into
account other categories of data stores such as graph
data stores and column data stores that they intend to
include in ther future work. In addition, they did not
ensure data transactions with REST architecture.

7325

J. Eng. Applied Sci., 13 (17): 7323-7328, 2018

Spring data framework: The spring data framework offers
some generic abstractions to handle different types of
NoSQL DBMSs. These abstractions are refined for each
DBMS. It provides a consistent programming model for
interacting with NoSQIL, databases, using patterns and
models from the spring framework. As a result, we geta
consistent way of interacting with different NoSQL
databases and we are able to leverage each one’s
individual strengths. However, the addition of a new data
store is not so easy and the solution is strongly linked to
the Java programming model.

A federated approach: The cbjective of this research
(Dharmasiri and Goonetillake, 2013) is to address the
heterogeneity of NoSQL data stores through database
federation which has been around since the early 80’s
which has proven to be successful in integrating
heterogenecus data storages.
successfully implemented a NoSQL federation with
Cassandra, MongoDB and CouchDB proving that NoSQL
federation is feasible with a certain degree of overhead.

A federated database management system can be
considered as a virtual DBMS. With the help of data
abstraction it enables users and applications to store and
retrieve data from several non-contiguous databases with
only a single query from its uniform interface.

With the tests and evaluation it can be concluded
that NoSQL federation 1s feasible and it will take off a lot
of time and effort taken in large scale data migrations. But
you have to choose carefully on which component data
stores to use as these choices have a great impact on the
end performance which 1s quite essential in NoSQL
systems.

The researchers have

DBMS+: In this study (Lim ef al., 2013), the researchers
make the case for developing a new breed of Database
Management Systems that they term DBMS+. A DBMS+
contains multiple NoSQL systems internally. An
application specifies 1ts execution requirements on
aspects like performance, availability, consistency,
change and cost to the DBMS+declaratively.

For all requests (eg., queries) made by the
application, the DBMS+ will select the execution plan that
meets the application’s requirements best. A umque
aspect of the execution plan in a DBMS+ is that the plan
includes the selection of one or more NoSQIL systems.
The plan 1s then deployed and managed automatically on
the selected system(s). If application requirements change
beyond what was planned for originally by the DBMS+,
then the application can be optimized and redeployed,
usually with no additional effort required from the
application developer.

A new approach to data interoperability for NOSQL
databases: As stated in the second chapter, the first
obstacle 1s the diversity of data storage models. NoSQL
databases can be classified mto four models (Key-value
stores, document stores, column-based store and
graph-based). The second problem is data semantics,
for example, mn two different databases the same
information may have different names. This requires a
domain ontology mapping. Our approach to allow data
interoperability in for NoSQL databases is described by
the model shown m Fig. 3. This model 15 original,
thereafter, we will test and improve it. Our model can be
divided into three main layers.

Meta layer: The processed data come from several data
sources, each one has its own data storage model. The
purpose of this layer is to overcome this problem, for the
moment in our model, we adopt a metamodel based
approach. This approach leverages on the genericity of
the data model to allow for a standard development
practice that is not bound to a specific DBMS APT but to
a generic one. The meta layer is composed of a set of Java
API (Application Programming Interface). The role of
these APIs is to translate the data from the original model
to a generic model.

Semantic layer: It i1s a busmess representation of
corporate data that helps end users access data using
common business terms. The aim is to insulate users from
the technical details of the data store and allow them to
create queries m terms that are familiar and meaningful.

' Application

Data warehouse

| Web services

NoSQL
»| database

Domain
ontology

Semantic layer

| Domain ontology mapping API

Create

[> Metadata
Metamodelling APT | @
Hbase MongoDB
handler handler

3
MongoDB

Meta layer

Redis
handler

Fig. 3: Model to data mteroperability for NoSQL
databases

7326

J. Eng. Applied Sci., 13 (17): 7323-7328, 2018

The semantic layer is configured by a person who
has knowledge of both the data store and the reporting
needs of the business. The person creating the semantic
layer chooses to expose appropriate fields in the data
store as “Business fields” and to hide any fields that are
not relevant. Hach business field 1s given a friendly,
meaningful name and the business fields are organized in
a way that will make sense to business users. Semantic
layer delivers a number of benefits.

A semantic layer removes the dependency between
queries and the data store. A change to the data store can
often be handled globally, without the need to modify
individual reports. So, we don’t need to modify the SQL
within hundreds of reports to accommodate a database
design change.

Knowledge of the mappings between business fields
and database fields resides in the semantic layer, not in
the heads of developers. This makes it much easier for
developers to understand and maintain reports that have
been created by others.

An ad hoc query environment that uses a
semantic layer allows developers and analysts to work
interactively with business users to prototype the reports
that are needed. This can be mmmensely valuable. The
presence of a semantic layer simplifies the creation of
queries.

Data Warehouse (DW): It 1s a set of data which 1s stored
in a structured way to enable easy analysis, extraction or
other use of data for better understanding data meaning.
In our case, data is stored in a specific document store
database, for example, MongoDB which its query
language is similar to SQL and can be easily accessible
with JTava or PHP languages. This NoSQL database
allows different types of data analysis as the results of
data analysis should be delivered to the users, access to
data can be enabled directly or through the web

services.
CONCLUSION

In this study, we introduced a new approach
to data interoperability for NoSQIL databases. Our
model 1s a stack of three main layers: meta layer,
semantic layer and data warehouse. Fach layer is for
overcoming a particular obstacle to the interoperability of
data. The meta layer APIs are responsible for data
translation from original database to a common data
model. After this step, mapping the data from common
data model with the domain ontology 1s done by semantic
layer APTs. Then, the resultant data is stored in the data
warehouse which 1s a system used for reportingand data
analysis.

RECOMMENDATIONS

In future research, we will test our model on a set of
NoSQL databases (MongoDB, Redis and HBase). The
choice of these systems is based on ow comparative
study between NoSQL systems (Hajow et al, 2015).
Especially, these databases belong to different categories.
Finally, we will see how to improve our moedel to make 1t
more efficient and operational.

REFERENCES

Anonymous, 2016. DB-Engines. Solid IT Company, USA.
https://db-engines.com/en/

Anonymous, 2016, Next Generation Databases mostly
addressing some of the poimnts: being non-relational,
distributed, open-source and horizontally scalable.
NoSQL, USA. http://nosqgl-database.org/

Bugiotti, F., I.. Cabibbo, P. Atzeni and R. Torlone, 2013. A
logical approach to NoSQL databases. Adv. Inf. Syst.
Eng, 1:1-12.

Cabibbo, L., 2013. ONDM: An object-NoSQL datastore
mapper. MSc¢ Thesis, Faculty of Engineering, Roma
Tre Umiversity, Rome, Italy.

Chang, F., J. Dean, S. Ghemawat, W.C. Hsieh and D.A.
Wallach ef af., 2008. Bigtable: A distributed storage
system for structured data. ACM. Trans. Comput.
Syst., 26: 1-26.

Dharmasiri, HM.L. and M.D.I.8. Goonetillake, 2013. A
federated approach on heterogeneous NoSQL data
stores. Proceedings of the 2013 International
Conference on Advances in ICT for Emerging
Regions (ICTer), December 11-15, 2013, TEEE,
Colombo, Sri Lanka, ISBN:978-1-4799-1275-9, pp:
234-239.

Gruber, T.R., 1993, A translation approach to portable
ontology specifications. Knowledge Acquisit., 5
159-220.

Hajoui, O., R. Dehbi, M. Talea and 7.1. Batouta, 2015. An
advanced comparative study of the most promising
NoSQL and NewSQL databases with a multi-criteria
analysis method. J. Theor. Appl. Inf. Technol., 81:
579-588.

Hitzler, P., M. Krotzsch, B. Parsia, P.F. Patel-Schneider and
S. Rudolph, 2009. OWI. 2 Web Ontology Language
Primer. W3C Recomimendation, Vol. 27,

Lim, H., Y. Han and S. Babu, 2013. How to fit when no one
size fits. Proceedings of the Sixth Biennial Conference
on Innovative Data Systems Research CIDR Vol. 4,
Jamary 6-9, 2013, Asilomar, CA, USA., pp: 1-12.

Martir, F., 2011. Polyglot persistence. Martin Flower.com,
UK. https://martinfowler.com/bliki/
PolyglotPersistence. html

7327

J. Eng. Applied Sci., 13 (17): 7323-7328, 2018

Parent, 2000. Database
Integration: The Key to Data Interoperability. In:
Advances m Object-Oriented Data Modeling,
Papazoglou, M.P., S. Spaccapietra and Z. Tar
(Eds.). The MIT Press, Massachusetts, TJSA., pp:
221-254,

Sellamy, R., S. Bhiri and B. Defude, 2014. ODBAPI: A
unified REST API for relational and NoSQL data
stores. Proceedings of the 2014 TEEE International
Congress on Big Data (BigData Congress), Tune
27-July 2, 2014, IEEE, France, ISBN:978-1-4799-5057-7,
Pp: 653-660.

Stonebraker, M., 2011. Stonebraker on NoSQL and
enterprises. Commun. ACM., 54: 10-11.

C. and 8. Spaccapietra,

Wiegand, N., 2011. INTEROP network to support
geospatial data semantic interoperability.
Proceedings of ASPRS 2011 Annual Conference on
Ride on the Geospatial Revolution, May 1-5, 2011,
Milwaukee, Wisconsin, pp: 1-5.

Wiegand, N., 2013. Semantic interoperability for data.
Proceedings of the Workshop on Semantics 1n
Geospatial ~ Architectures: Applications and
Implementation, October 28-29, 2013, University of
Wisconsin-Madison, Madison, Wisconsin, pp:
1-26.

Yahia, N., S.A. Mokhtar and A. Ahmed, 2012. Automatic
generation of OWL ontology from XML data source.
Intl. J. Comput. Sci., Vol 9,

7328

	7323-7328 - Copy_Page_1
	7323-7328 - Copy_Page_2
	7323-7328 - Copy_Page_3
	7323-7328 - Copy_Page_4
	7323-7328 - Copy_Page_5
	7323-7328 - Copy_Page_6

