Tournal of Engineering and Applied Sciences 13 (17): 7162-7170, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Evolutionary Search Method for Removal of SQL. Injection Vulnerabilities

'K. Umar, A B. Sultan, *H. Zulzalil, >°N. Admodisastro and M. T. Abdullah
"Faculty of Computer Science and Information Technology, Bayero University, Kano, Nigeria
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia,
Selangor, Malaysia

Abstract: Existing literature focuses more on describing SQL Injection Attacks (SQLIAs) and less on describing
SQL Injection Vulnerabilities (SQLIVs), even though, the former 1s carried out to exploit the later. This study
describe root causes of SQLIVs and illustrates how SQLIVs could be exploited using different types of SQLIAs.
The study, also, presents proposal of a new method for automated detection and removal of SQLIVs. The new
method employs grammar reachability analysis to define enhanced static source code analysis for detection
of SQLIVs and employs Evolutionary Programming (EP) search strategy to automate source code modification
for removal of SQLIVs. Preliminary experimental results show that the new method is feasible and promising.

Key words: SQL mjection, vulnerabilities, attacks, exploitation, detection, removal

INTRODUCTION

Empirical evidences have shown that SQL Imection
Vulnerabilities (SQLIVs) exist in web application if
externally supplied input data containing malicious
SQL commands can get into generation and execution of
SQL query statements at runtime (Halfond et al., 2006,
Garg and Singh, 2013; Kumar and Pateriya, 2012; Shar and
Tan, 2013; Johari and Sharma, 2012; Anonymous, 2011,
2017). These kinds of vulnerabilities are exploited through
several types of SQL Injection Attacks (SQLIAs) which
can result in devastating consequences including basic
mformation disclosure information theft, remove code
execution, denial of service and total system compromise
among others. Static analysis techniques are among most
widely used approaches for detection and removal of
SQLIVs. However, grammar reachability analysis has not
been investigated for detection of SQLIVs. Siumilarly,
Evolutionary Programming (EP) search has not been
investigated for automating source code modification
for SQLIVs removal.

This study presents the root causes of SQLIVs
with the aid of an illustrative example. The study
demonstrates how a vulnerable web application can be
exploited using first order SQLIAs. Lastly, the study
presents proposal of method for automated detection
and removal of SQLIVs for web application.

SQL injection vulnerabilities: This study describes
security flaws that easily leads to SQL Imection
Vulnerabilities (SQLIVs) for web application. SQLIVs

refer to software security loopholes or flaws which
allows malicious SQL commands to be injected via. input
data into an application (Halfond er af., 2006, Garg and
Singh, 2013; Kumar and Pateriya, 2012; Shar and Tan,
2013; Johan and Sharma, 2012; Anonymous, 2011, 2017).
In web applications, the SQL
commands change the structure and outcome of query

injected malicious

statements that are generated and executed dynamically.
results in
vulnerable application. This occurs where developer 1s

Insecure coding practice can easily
either ignorant of techniques that ensure application’s
security or fails to implement them effectively.
Obviously, most programming languages do provide
built-in mechamsms for securing an application and
preventing attacks. For example, PHP provides
“mysql_escape string()” function that validates input
SQL
commands. Unfortunately, not all developers make

data for preventing iyection of malicious

effective use of language provided security mechanisms.
Poor mput data validation and poor out samitization are
among leading causes of SQLIVs. The former happens
when an application allows inclusion of externally,
supplied input data into generation of dynamic queries
without sufficiently checking the safety and legitimacy of
the mput data (Garg and Singh, 2013; Shar and Tan, 2013;
Tohari and Sharma, 2012). Whereas, the later happens
when likely output of dynamic query 1s not adequately
checked prior to execution of the query on database
server. Of cause, the former as well as the later are all
forms of insecure coding practice.

Corresponding Author: K. Umar, Faculty of Computer Science and Information Technology, Bayero University, Kano, Nigeria
7162

J. Eng. Applied Sci., 13 (17): 7162-7170, 2018

Error message feedback that are generated by
database server and displayed in client’s browser can
be used by an attacker to detect the type, version or
structure of the underlying database. Dynamic query
generation can also, lead to SQLIVs. This happens when
an application includes un-validated and un-sanitized
externally supplied input data into building and execution
of query statements dynamically. In such applications, the
“input data variables” in the dynamic query can be
exploited by attacker using, virtually, all type of SQLIAs.
The use of both system built-in and programmer-built
stored procedures can also, lead to SQLIVs. This happens
when input arguments to stored procedure are not
properly validated or when output from stored procedure
15 not adequately sanitized. Generous privilege 1s often
considered as mnsecure coding practice that can also, lead
to SQLIVs. For instance, it is not uncommon practice to
have an ‘admin’ or ‘user’ account with more privileges
that necessary, 1.e., the account has privileges for
accessing resources that are not required by user of the
account. Where an aftacker is able to hijack such
privileged account and bypass authentication, he/she
would have all the privileges associated with the account.
Good and secure coding practice 18 to give as few as
required privileges to any account and to always change
account privileges as the user’s functions/responsibilities
changes (Garg and Singh, 2013; Shar and Tan, 2013;
Johari and Sharma, 2012; Anonymous, 2017).
MATERIALS AND METHODS
Example vulnerable web application: This study
presents sample TSP web application that is used as a
running example to illustrate root causes of SQLIVs as
described in preceding study. The running example is
used to illustrate how SQLIVs 1s exploited. The sample
ISP web application consists of single webpage and
perform basic user authentication. The application
provides login form containing two data input fields.
The first data input field 1s the “username” field. The
second data mput field s the “Password™ field. Both
fields are not validated and therefore are vulnerable to
SQL injections. Hence, the application contains SQLIVs
which can be exploited using any type of SQLIAs.

The logm form contaming two data mput fields
“username” and “Password” is shown in Fig. la. These
fields are for collecting data from external source, i.e., user.
The code fragment from JSP servlet that receives the
mput data and perform basic authentication 1s shown in
Fig. 1b. Let us explain how the application works. In order
to authenticate user, the application collects “username”
and “password” through the login form. The collected

@
Login to App
User Name abc’ or "1" ="1 -
Password eessse
| Login |
(b)
1 | protected void doPost(HitpServletRequest
2 | request, HitpServletResponse response) {
3
4 Btring M ="",
3
[Btring Q =null;
-
8 | javasql Statement stat = null;

9 stt = conn create Staterment);

10 | javasqlResultet & = null,

11 | N =request getParameter("username"),

12 | Btring P =request getParameter("userpass");

14 | Q ="gelect UserMarme from userstbl where
15 | uname="'+ N + "' AND passwd =" +F+"";

17 | 8= Btmt executeQuery(Q),
18/ exec qry at sensitive sink
19}

Fig. 1: Sample ISP web application for running example: a)
Sample login form (with user input) and b) Code
fragment from JSP servlet that receives the input
data from from m (a) and perform basic user
authentication)

data (username and password) are included mn building
and execution of dynamic query that checks “userstbl”
table for existing record that matches the collected
username and password. If match is found, the user is
authenticated as legitimate and allowed to login.
However, if no match 15 found, the login attempt 1s
rejected through display of error message: “invalid
username or password” and the user is not allowed into
the application.

The authentication process that happens inside the
application is here explained. Typically, the input data
collected from user are stored in variables as in lines 11
and 12 of Fig. 1b. Thereafter, the variables may (or may
not) be validated. Observe that the sample application
performs no data validation for variable N (which stores
username) and also, no data validation for variable P
(which stores password). These varables are
subsequently used m generation of dynamic query
string at line 14. Finally, the dynamically generated query
string is executed by database server at line 17. The
result of the dynamic query execution s used for the

7163

J. Eng. Applied Sci., 13 (17): 7162-7170, 2018

authentication purpose. If matching record is found,
the query would returns the record from database and
consequently, the application authorize the login
attempt. If no matching record 1s found, the query
returns empty recordset and consequently, the login
attempt would fail. Tdeally input data sanitization or
validation should happen before or at generation of
query string (line 14) and presumably, prior to query
execution (line 17). Absent of input data sanitization or
validation is among root causes of SQLIVs. Hence, in the
code fragment of Fig. 1b, both username field and
password fleld are vulnerable to SQL imyection and
can be exploited by hacker.

RESULTS AND DISCUSSION

Tllustration of root causes of SQL injection vulnerability:
This study uses the running example of Fig. 1 to illustrate
root causes of SQLIVs. To achieve this, first, we describe
stages of generation and execution of dynamic query and
then, explain root causes of SQLIVs alongside. Tn web
application, generation and execution of dynamic query
mvolves three basic stages that span over the code
fragment of Fig. 1b. The three stages are described
below.

Stage 1; Assign input data to variable: User submits mput
data through data entry fields on the login form. The
submitted data gets assigned to variables inside the
application as in lines 11 and 12. Ttis important to mention
that the pomt at which submitted data is assigned to
variable such as line 11 and line 12 in Fig. 1b 1s referred to
as Application’s Entry Point (AEP) (Medeiros et al.,
2014). The variables are used at a later stage for building

dynamic query.

Stage 2; Input data validation: At this stage, the variables
that stored input data should be validated or sanitized.
Basically, sanitization or validation is to ensure that input
data are safe for use mside an application. Omnce,
validation is done or no validation is done (as in lines 11
and 12), the input data variables are used in building of
dynamic query string. In the runming example, dynamic
query string 18 built at ines 14 and 15.

Stage 3; Query execution: In the last stage, generated
dynamic query string 1s executed by database server. The
query execution i1s done by mvoking database server
function with the query string as an argument. Notes that,
the point at which dynamic query is executed such
as line 17 in Fig. 1b 13 referred to as semsitive sink
(Medeiros ef al., 2014). With reference to Fig. 1, ideally,

validation of input data should happen at stage 2, before
execution of dynamic query at stage 3. Unfortunately, the
running example does not perform data validation at all.
Thus, it 1s associated with some root causes of SQLIVSs.
Tt is obvious that the application fails to perform data
validation for the two submitted input data, namely
username and password. This kind of missing data
validation for input fields constitutes typical example of
ingsecure coding practice which results in SQLIVs.
Moreover, the munning example generates and executes
dynamic query. As explained in preceding study inclusion
of un-validated mput data mto building and execution of
dynamic query results in SQLIVs. Unfortunately, the
running example includes the input data collected via.
usermname and password fields mto building and execution
of dynamic query without validation. Hence, besides
insecure coding practice associated with the running
example, it is apparent that, generation of dynamic query
18 another root cause of SQLIVs inherent in the rumming
example web application Having illustrated some root
causes of SQLIVs and how they occur in the running
example vulnerable web application in the following
study, we demonstrate how SQLIV can be exploited using
the 7 types of first order SQLIAs.

Exploiting vulnerable web application: This study
describes how SQLIVs can be exploited using different
types of SQL Injection Attacks (SQLIAs). The
exploitation is demonstrated using 7 types of SQLIAs,
namely, tautologies, logically incorrect gueries, union
queries, piggy-backed queries, stored procedures,
inference and alternate encodings.

Tautology attack: This attack injects code that adds one
or more conditional sub-expression into SQL query,
thereby, making the query to always evaluate to true. The
attack is carried out by injecting malicious SQL string
through input data submitted to an application
(Halfond et al., 2006, Abawajy, 2013; Balasundaram and
Ramaraj, 2012). In order to exploit the SQLIVs in the
running example using tautology attack an attacker could
submits the malicious string “*or 1 = 1-* for ‘username’
nput field and submits blank in password field. The
resulting dynamically generated SQL query string would
be as shown in Algrothim 1. As shown in Algrothim 1, the
injected malicious string (*or 1 = 1) adds a conditional
sub-expression to the first part of the WHERE clause.
This causes it to always evaluate to true and there by
transforming the query to tautology behavior. The second
part of the WHERE clause starting from “AND Userpass
= “ 13 transformed mto comment by the injected comment
characters (--). The effect of thus 15 that the query would

7164

J. Eng. Applied Sci., 13 (17): 7162-7170, 2018

evaluates to true and the application would grant access
to the attacker, thus, causing authentication bypass
(Halfond et ai., 2006, Balasundaram and Ramaraj, 2012;
Cecchini and Gan, 201 3).

Logically incorrect queries attack: This attack reveals
important information through display of error messages
i the client’s browser such as the type, version and
structure of database underlying a web application. The
attack is carried out by injecting malicious SQIL string
which causes syntax error, type conversion emror or
logical error. The database server responds by generation
and display of appropriate error message in client’s
browser. An attacker infers useful information from the
error messages (Halfond et al., 2006; Shar and Tan, 2013;
Abawajy, 2013; Balasundaram and Ramaraj, 201 2). Tn order
to exploit the SQLIVs m the runming example using this
type of attack an attacker could submits the malicious
string “convert(int, (SELECT top 5 name from userstbl
where userType = "07)) --" in the “Username™ field and
submits blank for the “Password”. The resulting
dynamically generated SQL query would be as shown in
Algrothim 2. In this example, a select query 1s imected
through username field. The injected select query
attempts to extract the top five first-names (fname) from
users table where type of user 15 0. However, the injected
malicious string attempts to perform an illegal type
conversion of a recordset into an integer. This would
make the database server to throws an error. For instance
with Microsoft SQI. Server, the error would be as follows:

Algrothim 1; Example tautology attack SQL query:
“Microsoft OLE DB provider for SQL Server (0x80040E07) error
converting nvarchar value *AbdulKarim’ to a cohunn of data type int”

“SELECT UserName FROM userstb]l WHERE
uname=""" or 1=1 -- and passwd=""

Algrothim 2; Example logically incorrect attack SQL

query:
SELECT UserName FROM userstbl WHERE uname = convert
(int,(select top 5 fname FROM userstbl] WHERE userType="0)) --
AND passwd =*

Clearly, from the above error message, the attacker
could know that the underlying database server is
Microsoft SQL server and the first name in the table is
‘AbdulKarim’. By repeatedly performing variations of the
above attack an attacker could finger-print the database,
discover vulnerable parameters and extract vital
mformation (Halfond et al., 2006, Kumar and Pateriya,
2012; Shar and Tan, 2013; Balasundaram and Ramaraj,
2012).

Union queries attack: This attack 1s used to change the
recordset returned by a given query, thus, extracting data

in the process. This attack could make an application to
return data from table different from the one intended by
original query. The returned recordset becomes the union
of results from the original query and the mnjected query.
The attack 1s carried out by injecting a SQL query string
that nsert SELECT query into dynamically generated
query using the UNTON keyword. In order to exploit the
SQLIVs in the running example using this type of attacl,
first, let us assume that an attacker has performed
logically incorrect query attacks and discovered
‘CreditCardsTbl” as a table m the database. The attacker
could imyect the malicious string “” UNION SELECT *from
CreditCards --” through the username field and submits
blank in the password field. The resulting dynamically
generated SQL. query would be as shown in
Algrothum 3. In this example an addition select query is
iyjected 1nto the original query. The origmal query
returns “empty recordset” because there is no “uname”
equals to blank in the database. The injected query
returns all records from the “CreditCards™ table. The
database combines, (i.e., unions) the results from the
two queries (original and injected) and returns it to the
application, thus, revealing credit card information to the
attacker (Balasundaram and Ramaraj, 2012; Shahnar and
Zulkernine, 2012; Lee et al., 2012).

Piggy-backed queries attack: This type of attack injects
additional query without modifying the origmal
developer intended query. Thus, the database server
considers the injected query and the original query as two
separate queries and are both executed alongside each
other. The attack is carried out by injecting additional
query as an attachment to the original query, ie., the
added query 1s “piggy backed” on the original query.
Thus, the database server receive and execute multiple
queries. In order to exploit the SQLIVs in the running
example using this type of attack an attacker could
submits the value “kbr” for the username and submits the
malicious string™; exec (SHUTDOWN) - - ** for password
field. The resulting dynamically generated SQL query
would be as shown m Algrothim 4. As shown in
Algrothim 5, the mjected SQL query is appended to the
original query (separated by “;” mark). The original query,
(i.e., first query) returns “empty recordset” because no
user “kbr” with blank password exist in the database. The
iyjected query (Le., second query) would cause the
database server to execute SHUTDOWN command. This
attack would performing remote code execution leading to
denial of service by shutting down the database server
(Halfond et al., 2006; Balasundaram and Ramaraj, 2012;
Shahriar and Zulkernine, 2012).

Algrothim 3; Example union query attack SQL query:
SELECT * FROM userstble WHERE uname=""* UNION SELECT
* from
CreditCards -- AND passwd =7

7165

J. Eng. Applied Sci., 13 (17): 7162-7170, 2018

Algrothim 4; Example pigy-backed attacked SQL query:
SELECT * FROM userstble WHERE uname = kbr AND
passwd =*; exec (SHUTDOWN) - -

Stored procedures: This type of attack execute built-in
stored procedures as well as developer built stored
procedures. The attack is carried out by injecting
malicious string into arguments of a stored procedure and
then triggering execution of the procedure (Halfond et af.,
2006; Abawajy, 2013; Balasundaram and Ramaraj, 2012). In
order to exploit the SQLIVs in the running example using
this type of attacl, first, let us consider the parameterized
stored procedure shown in Algrothim 5. The stored
procedure performs basic user authentication and
returns a true/false value to indicate whether the user’s
credentials are authenticated correctly or not. Username
and password are passed to the stored procedure via. the
parameters @userlD. and @Userpass, respectively. Let us
further assume that the running example uses invokes the
stored procedure for the authentication by passing
usermname and password as parameters. An attacker
could submit the value “kbr” for the usemname and
submits the malicious string “ ; exec (SHUTDOWN); - -©
for password. This would cause the stored procedure to
generate the dynamic query shown in Algrothim 6. As
shown in Algrothim 6, the attack would result m two
queries (as in piggy-backed query attack). The first query,
(i.e., original query) is executed normally as intended by
the developer. The second injected malicious query 1s
executed alongside the first query.

Algrothim 5; Example parameterized stored procedure:

CREATE PROCEDURE DBO isAuthenticated
f@user]D varchar2, (@Userpass varchar2

A8 EXEC("SELECT UserName FROM usersthl
WHERE uname =" +{@userID+ " AND passwid

=" +@Userpass)
GO

Algrothim 6; Dynamic query from attacked stored

procedure:
SELECT UserName FROM userstbl WHERE uname = kbr and

passwd ="
exec(SHUTDOWN) --

In this example, the injected query causes the
database server to execute SHUTDOWN command and
thus, resulting 1 demal of service (Halfond et al., 2006;
Kumar and Pateriya, 2012; Balasundaram and Ramarayj,
2012).

Inference attack: This type of attack ijects malicious
code that modifies original query into form of action
which is executed conditionally. After the attack is
performed, the response and behavior of the website is

carefully observed. From the website’s responses an
attacker could infer certain vulnerable parameters,
database schema information and so on. There are two
variations of this type of attack (Balasundaram and
Ramaraj, 2012; Lee et al., 2012; Focardi et al., 2012).

Blind injection. This variation of inference attack asks
the server trueffalse questions and mfer answer from
behavior of website after attack. If website continues to
function normally after attack, it means the injected
malicious string evaluates to true. If the observed
behaviour changes after attacl, it means the injected
malicious string evaluates to false.

Timing attack: This varation of mference attack injects
malicious string in form of an*TF, ..., THEN, ...,” structure
with multiple branches. The branches contain SQL
constructs that take a known amount of time to execute
such as WAITFOR command. By measuring website’s
response time after different attacks an attacker could
infer which branch was followed in the injected string
and also, infer some information as to why such branch
was taken. Let us demonstrate how the SQLIVs in our
running example could be exploited using blind injection
attack. Assuming an attacker wants to check whether the
username field is vulnerable or not. The attacker needs to
have a valid user name and password for this purpose. Let
us assume that “Smith” is a valid user name with
password “Kline”. Tn order to check the username field,
the attacker needs to perform two separate attacks and
observe response of each. The first attack submits the
malicious string “Smith AND 1 =1 - -” for username field
and submits “Kline” for password field. The resulting
dynamically generated SQL query would be as shown in
Algrothim 7. The second attack submits the malicious
string “Smith AND 1 = 0 - -7 for username field and
submits “Kline” for password field The resulting
dynamically generated SQL query would be as shown in
Algrothim 8.

Algrothim 7; Dynamic query for first attack:
SELECT UserName FROM userstbl WHERE
uname = Smith AND 1 =1 AND passwd = Kline

Algrothim 8; Dynamic query for second attack:
SELECT UserName FROM userstbl WHERE
uname = Smith AND 1 = 0 AND passwd = Kline

Tt can be seen from Algrothim 7 and & that the two
dynamic queries resulting from first and second attacks
are slightly different. Consequently, the attacker would
observe the responses of the application after each attack.

7166

J. Eng. Applied Sci., 13 (17): 7162-7170, 2018

If the application returns error message for the two attacks
it means there is proper mput data validation and
username field is not vulnerable. However, if only the
second attack returns an error message, it means there is
no nput data validation and username field 1s vulnerable
(Balasundaram and Ramaraj, 2012; Lee et af., 2012
Focardi et al., 2012).

Alternate encodings attack: This type of attack injects
malicious string written 1n alternate method of encoding
such as hexadecimal ASCII and unicode character
encoding. The attack allows an attacker to avoid (or
dodge) detection and exploit vulnerabilities that might not
otherwise be exploitable. To perform this type of attack an
attacker converts malicious string into different encoding
system before injecting into wvulnerable field of an
application (Halfond et al, 2006, Lee et al, 2012
Focardi et al., 2012). In order to exploit the SQLIVs in the
running example uwsing this type of aftack an
attacker could submits the malicious string *; exec (char
(0x736875746461776¢)) - - for usemame field and submits
blank for password field. The resulting dynamically
generated SQL query would be as shown in Algrothim 9.

Algrothim 9; Example alternate encoded attack SQL

query:
SELECT UserName FROM userstbl WHERE uname = ;
exec(char(0x73687574646f776€)) - - AND passwd ="

This example injected malicious string in an alternate
encoded form. The string “0x736875746461776e™ is the
hexadecimal encoding of “SHUTDOWN™. Therefore, the
function call char (0x73687574646f776e) would return the
SQL command SHUTDOWN and consequently, the
database server would execute the command
Consequently, the above attack would results in demal of
service by shuttng down the database server

(Halfond et ai., 2006, Lee et al., 2012; Focardi et al., 201 2).

Automated detection and removal of SQLIVs: Static
analysis techniques are among most widely used
approaches for detection and removal of SQLIVs during
testing phase of web application’s development.
Although, there have been considerable mumber of
static analysis techmques for SQLIVs detection
(Almorsy et al, 2012; Shar and Tan, 2013a, b;
Razzaq et al, 2009, Qu et al, 2013, Gupta et al.,
2014, Fu and Qian, 2008; Gould et al., 2004), the area of
SQLIVs removal has not been adequately explored.
In fact, very few static analysis techniques
addressed removal of SQLIVs (Medeiros et al, 2014;

Thomas et al., 2008, Al-Khashab et al., 2011). Obviously,
1t would be highly desirable to have a teol that can take-in
source code of vulnerable web application as mnput and
produce reliably secure version which 18 ready for
deployment to live environment. This kind of tool would
reduce human efforts and costs associated with testing
phase of web application’s development and thus,
facilitates improvement of software quality.
Consequently, we employ context free grammar
reachability analysis to define enhanced static source
code analysis for automated detection of SQLIVs. In
addition, we employ Evolutionary Programming (EP)
search strategy to automate source code modification
for SQLIVs removal. The conceptual model of our method
1s depicted m Fig. 2. As shown in the figure, conceptually,
the key goal of the method 15 to receive mput of source
code of vulnerable web application (WAuT) and produce
output of modified (and secured) version of the web
application (WAUT new). For achieving the stated goal,
the method consists components,
namely, grammar rules extractor component, EP search
component, SQLIVs detector component and SQLIVs
remover component. The components perform series of
inter-dependent processing activities in such a way that
output from one component serves as input to the

of four main

subsequent component.

The processes performed by the components and
sequence of
diagrammatically represented using activity diagram of
Fig. 3. With the aid of Fig. 2 anoverview of activities

interactions between them 1s

Input . Output

Sorce code
of WAuT

Modified version Security test
of WAuT reports

Proposed method

extractor

]
]
1
1
]
I EP reachability search
1
]
]
]
1
L

1
I
1
1
1
I
1
Grammar rules :
1
I
1
1
1
I
1
1

SQLIVs detector
SQLIVs remover

S

Fig. 2: Activity diagram for the new method

7167

J. Eng. Applied Sci., 13 (17): 7162-7170, 2018

Grammar rules

EP search
extractor

SQLIVs detector SQLIVs remover

> (Init first)
generation
A 4
X pdate candidates)
y population
xtract info dec A
and assign stmt;
4 Produce next
(Generate) generation

CFG rules A

Generate
off springs

Read WP

Fig. 3: Conceptual model of the method

performed by the method for automated detection and
removal of SQL injection vulnerabilities is presented
below.

Grammar rules extractor component: As shown in
Fig. 3, the working of the method starts in the grammar
rules extractor component. The component reads and
analyzes source code file of subject web application. Tt
uses string analysis based parsmg to recognize all
declaration and assignment statements from the source
code and then extracts CFG production rules for each of
the extracted statements.

EP search component: The collection of extracted CFG
production rules serve as input to second component, 1.e.,
EP search component which performs EP reachability
search. The component uses EP search to evolve
candidates which are represented as productions
sequences. The EP search process begins by seeding first
generation with randomly built candidate solutions.
Fitness of candidates is evaluated to check for optimal
solutions. Thereafter, if optimality is not reached, the
component selects parent, produce offspring and
combines them to produce population of next generation.
The EP search process is repeated through generations.
When optimal result is achieved, the EP search process
stops and forward all optimal solutions to the third
component for analysis.

SQLIVs detector component: The component performs
grammar reachability analysis. This component analyzes

Evaluate
fitness

Analyze
candidates

v

Gen. SQLIVs
params report

Gen. data
validation stm

A 4

Modify WP
source code

v

roduce secure
yersion of WP,

all collected optimal solutions and sort then into two
categories, namely, level 1 fitness optimal solutions
(which reveals SQLIV parameters) and level 2 fitness
optimal solutions (which reveals validated parameters).
The component passes all level 1 fitness optimal solutions
to the fourth component for source code modifications. In
addition, this component generates report of vulnerable
parameters as well as validated parameters.

SQLIVs component: This component
constitutes part of the EP search variation operations and
performs source code modification for SQLIVs removal.
The component receives all level 1 fitness optimal
solutions and generates appropriate data validation
statement for each associated SQLIV parameter. Finally,
the component produce modified version of a subject
webpage containing insertions of the auto generated data
validation statements at appropriate location.

remover

CONCLUSION

The root causes of SQL ijection vulnerabilities for
web application were presented in this study. In addition,
an 1llustrative example was used to demonstrate how SQL
iyjection vulnerabilities can be exploited using several
types of first order SQL injection attacks. Thereafter, a
proposal of new method for automated detection and
removal of SQL injection was presented. The new method
leverages grammar reachability analysis to enhance
SQLIVs detection through static analysis approach and

7168

J. Eng. Applied Sci., 13 (17): 7162-7170, 2018

also, leverages Evolutionary Programming (EP) search
process to automate source code modification for SQLIVs
removal.

RECOMMENDATIONS

In ouwr future work, we plan to fully define and
develop all the components and processes of the newly
proposed method for automated detection and removal of
SQLIVs for web application.

ACKNOWLEDGEMENTS

We acknowledge that, tlus research received
support from the Fundamental Research Grant Scheme
FRGS/1/2015/ICTO1/UPM/02/12 awarded by Malaysian
Mimstry of Education to the Faculty of Computer Science
and Information Technology at Umversiti Putra Malaysia.

REFERENCES

Abawajy, T, 2013, SQLIA detection and prevention
approach for RFID systems. J. Syst. Software, 86:
751-758.

Al-Khashab, E., F.S. Al-Anzi and A A. Salman, 2011.
PSTAQOP: Preventing SQI. injection attacks based on
query optimization process. Proceedings of the 2nd
Kuwait Conference on E-Services and E-Systems,
Aprl 5-7, 2011, Kuwait, TJSA.

Almorsy, M, I Grundy and A.S. Ibrahim, 2012.
Supporting automated vulnerability analysis using
formalized vulnerability signatures. Proceedings of
the 27th TEEE/ACM International Conference on
Automated Software Engineering (ASE), September
3-7, 2012, IEEE, Essen, Germany, [SBN:978-1-4503-
1204-2, pp: 100-109.

Anonymous, 2011. CWE-SANS top 25 most dangerous
software errors. Common Weakness Enumeration
(CWE), Virginia, UJSA. http://cwe.mitre.org/top25/

Anonymous, 2017. Category: OWASP top 10 project.
OWASP, Maryland, USA. https:///www. owasp.
org/index. php/Category: OWASP Top Ten Project

Balasundaram, I. and E. Ramaraj, 2012. An efficient
technique for detection and prevention of SQL
injection attack using ASCIT based string matching.
Procedia Eng., 30: 183-190.

Cecchim, 3. and D. Gan, 2013. SQL iyjection attacks with
the AMPA suite. Intl. I. Electron. Secur. Digital
Forensics, 5: 139-160.

Focardi, R., F.I.. Luccio and M. Squarcina, 2012. Fast SQL
blind injections in high latency networlks.
Proceedings of the 2012 IEEE 1st AESS European
Conference on Satellite Telecommunications (ESTEL),
October2-5,2012, IEEE, Rome, Italy, ISBN: 978-1-4673-
4687-0, pp: 1-6.

Fu, X, and K. Qian, 2008. SAFELI: SQL injection scanner
using symbolic execution. Proceedings of the 2008
International Workshop on Testing, Analysis and
Verification of Web Services and Applications, July
21,2008, ACM, New York, USA., ISBN:978-1-60558-
053-1, pp: 34-39.

Garg, A. and 3. Sigh, 2013. A review on web application
security vulnerabilities. Intl. I. Adv. Res. Comput. Sci.
Software Eng., 3: 222-226.

Gould, C., Z. Su and P. Devanbu, 2004. JDBC checker: A
static analysis tool for SQL/IDBC applications.
Proceedings of the 26th International Conference on
Software Engineering, May 23-28, 2004, IEEE,
Washington, DC, USA., pp: 697-698.

Gupta, MK., M.C. Govil and G. Singh, 2014. An approach
to mimimize false positive in SQLI vulnerabilities
detecion techniques through data mimng.
Proceedings of the 2014 International Conference on
Signal Propagation and Computer Technology
(ICSPCT), Tuly 12-13, 2014, TEEE, Ajmer, India,
ISBN:978-1-4799-3140-8, pp: 407-410.

Halfond, W.G., T. Viegas and A. Orso, 2006. A

of SQL-injection attacks and
countermeasures. of the IEEE
International Symposium on Secure Software
Engmeering, March 13-15, 2006, Washington, DC.,
USA.

Johari, R. and P. Sharma, 2012. A swvey on web
application vulnerabilities (SQLIA, XS8) exploitation
and security engine for SQL injection. Proceedings of
the 2012 Intemational Conference on Commurncation
Systems and Networlk Technologies (CSNT), May
11-13, 2012, IEEE, Rajkot, India, ISBN:978-1-4673-
1538-8, pp: 453-458.

Kumar, P. and R.K. Pateriya, 2012. A survey on SQL
injection attacks, and prevention
techniques. Proceedings of the 3rd International

classification
Proceedings

detection

Conference Computing Commumication and
Networking Technologies, July 26-28, 2012,
Coimbatore, India, pp: 1-5.

Lee, I, 8. Jeong, 3. Yeo and J. Moon, 2012. A novel
method for SQL mjection attack detection based on
removing SQL query attribute values. Math. Comput.
Modell., 55: 58-68.

Medeiros, I, NF. Neves and M. Correia,
Automatic detection and
application vulnerabilities using data mining to
predict false positives. Proceedings of the 23rd
International Conference on World Wide Web, April
07-11,2014, ACM, New York, USA, [SBN:978-1-4503-
2744-2, pp: 63-74.

2014.
correction of web

7169

J. Eng. Applied Sci., 13 (17): 7162-7170, 2018

Qu, B, B. Liang, S. Jiang and Y. Chutian, 2013. Design of
automatic vulnerability detection system for Web
application program. Proceedings of the 2013 IEEE
4th International Conference on Software
Engmeering and Service Science (ICSESS), May
23-25, 2013, IEEE, Beijing, China, ISBN:578-1-4673-
4997-0, pp: 89-92.

Razzaqg, A., A. Hur, N. Haider and F. Ahmad, 2009.
Multi-layered defense against web application
attacks. of the
Conference on Information Technology: New
Generations ITNG'09, April 27-29, 2009, IEEE, Las
Vegas, Nevada, USA. ISBN:978-1-4244-3770-2, pp:

492-497.

Proceedings 6th International

Shahriar, H. and M. Zulkernine, 2012. Information-
theoretic detection of SQL injection attacks.
Proceedings of the 2012 TEEE 14th International
Symposium on High-Assurance Systems Engineering
(HASE), October 25-27, 2012, IEEE, Omaha, Nebraska,
ISBN:978-1-4673-4742-6, pp: 40-47.

Shar, L.K. and H.B.K. Tan, 201 3a. Defeating SQL injection.
Comput., 46: 69-77.

Shar, I..K. and H.B.K. Tan, 201 3b. Predicting SQL injection
and cross site scripting vulnerabilities through
mining mput samtization patterns. Inf. Software
Technol., 55: 1767-1780.

Thomas, S., L. Williams and T. Xie, 2009. On automated
prepared statement generation to remove SQL
injection vulnerabilities. Inf. Software Technol., 51:
580-508.

7170

	7162-7170 - Copy_Page_1
	7162-7170 - Copy_Page_2
	7162-7170 - Copy_Page_3
	7162-7170 - Copy_Page_4
	7162-7170 - Copy_Page_5
	7162-7170 - Copy_Page_6
	7162-7170 - Copy_Page_7
	7162-7170 - Copy_Page_8
	7162-7170 - Copy_Page_9

