Tournal of Engineering and Applied Sciences 13 (16): 6765-6770, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Parallel Implementation and Comparative Study of Gauss-Jordan and
Gauss-Huard Algorithms on a Cluster of Linux Workstations

MH. Al-Towaiq
Department of Mathematics and Statistics, Jordan University of Science and Technology,
P.O. Box 3030, 22110 Irbid, Jordan

Abstract: In this study, we present parallel implementations of the Gauss-Tordan and Gauss-Huard algorithms
with scaled partial pivoting strategy on a cluster of Linux workstations using MP1 as a parallel programming
environment. We present a comparative study of their performance. The obtained experimental results for the
test problems and the analysis of the two algorithms show that the proposed parallel algorithms offer high
speed, efficiency and numerical stability. The results also show that Gauss-Huard algorithm performs as good
as Gaussian elimination and 1s more efficient than Gauss-Jordan.

Key words: Linear systems, Gauss-Jordan, Gauss-Huard, algorithms, parallel computing, MPT

INTRODUCTION

In linear algebra the solution of the system of linear
Eq 1:
Ax=b (1)

where A is an n by n dense matrix, b is a known n-vector
and x 18 n-vector to be determined 1s probably the most
umnportant class of problems. It 1s needed in many areas of
science and engineering. Gaussian Elimination (GE) and
related strategies is the most powerful approaches for the
solution of (1). It 15 highly efficient, stable, easy to
understand and can be organized such that it performs
well on parallel systems (Al-Towaig, 2013, Duff and
Vorst, 1999; Marrero, 2016; Peters and Wilkinson, 1975,
Zhuand Sameh, 2007).1t 2 s 10(n?) requires floating-point
operations. 3

Two variants of GE reduce matrix A to the identity (or
diagonal) matrix: Gauss-Tordan (G-T) which is similar in
efficiency to GE 1s a viable alternative. In Gauss-Jordan
elimination, the coefficients above the diagonal as well as
those below the diagonal are reduced to zero during the
reduction stage. This means that no backward
substitution is required. This method requires about n’+O
(n®) floating-point operations. G-J with scaled partial
plvoting strategy 1s numerically stable (Jia and Jiang,
2015; Sidh, 2008; Trefethen and Schreiber, 1990). The other
variant of GE is Guass-Huard (G-H) method (Dekker et i,
1997) which reduces matrix A to the identity (or diagonal)
matrix. This method “Zeromg ™ all the elements mn the pivot
column below and above the current pivot equation. The
method 13 numerically stable as shown by Al-Towaiq
(2007) and Duff and Vorst (1999). In both variants, the
final step will vield the unique solution, if one exists.

GE and its strategies become the most useful method
for linear systems due to the parallelism, stability and
memory efficiency benefits it offers (Aizenbud et al., 2016;
Al-Towaiq and Al-Aamri, 2002; Al-Towaiq et al., 2008;
Zhang and Dai, 2016). The similarity in appearance
between G-J and G-H algorithms inspired us to implement
the two algorithms on a cluster of Linux workstations
using PVM as a parallel programming environment, verify
and validate them and conduct experimental testing. We
compare the two algorithms based on the obtained
experimental results and their analysis.

Description of the sequential algorithms: We consider
Gauss-Jordan and Gauss-Huard with scaled partial
pivoting strategy to achieve numerical stable

algorithms.

Gauss-Jordan algorithm with scaled partial pivoting: One
varlant of Gaussian elimination is the Gauss-Jordan
strategy by means of forward and backward elimination.
At stage kg, the variable x,, is eliminated from all equations
other than the kth. After n-1 stages, A is reduced to the
identity matrix, provided that the operations are
simultaneously applied to the right hand side vector, so,
the solution vector can be immediately obtained. We
describe the algorithm with scaled partial pivoting as
follows:

Algorithm 1; Gauss-Jordan algorithm:
Step 1: Initialize the row index vector 1=(1, 2, ..., n)'

Step 2: Compute the scaled vector 8 =(sy, 83, ..., 8.
where . max y .
gi= (|a1_]|), 1=i=n

1<j=n

6765

J. Eng. Applied Sci., 13 (16): 6765-6770, 2018

Phase 1; Forward Elimination:

In general, after the (k-1)* stage of elimination we are left with a system
of linear equationsA®" x = bV where the augmented matrix is of the form;
The Augmented matrix after the (k-1)* stage of G-I

Toag - . Ay ay - o. . Ay | b
oy 51} () (1)
0 1 Ay, A, - - - 8y | by
\
\
. [
(k1) (k1) (k1)
1 B - - gl by
(k1) (k) (k1)
0 ay . . . ay| by
\
\
. S
(k1) (k1) (k1)
o 0 Gy - - - a,| b, |

and the updated index vector is 1=(1,, 1, ..., 1)

fori =k ton repeat steps 3 to 6:
Step 3: let i be the first index corresponding to the largest of the ratio

o,

/SL-’ k<izn

Step 4: interchange | and I, in the index vector |

Step 5: scale row k by dividing the row by the new pivot elernent -1
Step & update the elements below the diagonal elements other tfan the
k™ equation and the right hand side as follows:

k) _ (k1) (k1) (k1)
T TR T

L) bi(k-l)_ai(ll;-l)bl({k-l)

i
Step 7: Phase 2: Backward Elimination

This phase will multiply equationl, k=n-1,n-2, ..., 1
by suitable multipliers a;, to reduce all the elements
above the diagonal of matrix A™ to zeros. simultaneously
update the right hand side vector b®. The resulting matrix
15 the 1dentity matrix and the right hand side vector 1s the
solution vector.

Gauss-Huard algorithm with scaled partial pivoting: The
other varant of Gaussian elimination i1s Gauss-Huard
(Delkdker et al., 1997) which reduces the coefficient matrix
to the identity (or diagonal) matrix. Using this method with
row pivoting strategy based on column interchanges
mstead of column pivoting 1s proven to be numerically
stable (Al-Towaiqg, 2007; Dekker et al., 1997). In this
paper, we consider Gauss-Huard method with row scaled
partial pivoting based on column interchanges to maintain
the stability of the algorithm. We describe the algorithm

as follows:

Algorithm 2; Gauss-Huard algorithm:
Step 1: Initialize the colurmn index vector ¢=(1, 2, ...,)
Step 2: Compute the scaled vector 8 =(sy, s, ..., 5,)'

where §= max (|g), l*i*n
After the (k-Dth stage™df elimination we assumne that the upper left hand
matrix of order (k-1) is transtormed to the identity matrix andall the elements
ay, 1* i*n and k* j* n including the right hand side are modified according
to the elimination process as it appears in algorithm2. The Augmented
matrix after the (k-1)th stage of G-H.

[(k-1 (k1) T
(k1)
1 0 0 ay | b
(k-1 (k1)
(k1)
0 1 P . 0 gy Ce gy | b2
[
[
S VIR
0 0 .. 0 1 Ar - e - By b,,
Ay Ayq - - ak’k,l Ay . - . aknl bk
Bt Bz o e Bear Bewx o - | by,
[
[I—
a a a, | b
L B w2+ 0 Bk Y L

Step 3: Eliminate the elements ay, j =1, ..., k-1 by the rows of the identity
matrix
Simultaneously, the elements ay, j =k, ..., n and by are modified
as follows:
fori=1tok-1 do
forj=k ton do

(k-1)

a, =a,-a, a,;

end do
end do

kj

fori=1to k-1 do
b, =b, 'akibfkrn

end do

Step 4: let j be the first index corresponding to the largest of the ratios
[al/5k, ke jon

Step 5: interchange columns 1 and k in the index vector |, Simultaneously
update the column index vector

Step 6: scale row k by dividing row k by the new pivot element ay

Step 7: perform column elimination by eliminating elements ag., 1+ i+ k-1
in column k by suitable multipliers of equation k.

Step 8: repeat steps 3-8

The resulting matrix is an n by n identity matrix and
the right hand side vector 1s replaced by a permutation of
the solution vector.

MATERIALS AND METHODS

Parallel implementation: Tn this study, we propose a
parallel implementation of Gauss-Jordan and Gauss-Huard
with scaled partial pivoting for solving the dense linear
system of Eq. 1. The performance of the two algorithms is
evaluated on a cluster of Linux workstations using PVM.
We start this section by mapping the elements of matrix A
onto the processors. We then present the parallel
implementation and comparative study of the two
algorithms.

6766

J. Eng. Applied Sci., 13 (16): 6765-6770, 2018

Mapping the matrix elements onto the processors:
Solving a linear system Ax = b using G-J or G-H requires
to distribute the n-by-n matrix 4 over a set of p processors
Pos ---» Dpy- The effective mapping of matrix elements to
processors 18 the key factor to efficient implementation
of the algorithms in parallel. There are different types
of matrix distribution techmiques, namely column blocked
layout, row blocked layout, column cyclic layout, row
cyclic layout, column block cyclic layout andcolumn and
row (or 2d) block cyclic layout (Hoffmann, 1998;
Kahou et al., 2008; Lastovetsky and Reddy, 2007). The
main issues of choosing a mapping are the load balancing
and communication time. In this study, all the parallel
complexities, both in computation and communication,
will be analyzed based on the column cyclic layout for G-I
algorithm and row cyclic layout for G-T algorithm. column
(row) model 18 a simple and practical model for parallel
computation. We select to use column (row) cyclic
mapping as it has offered good performance m previous
studies of GESPP (Al-Towaig, 2013).

We consider p processors numbered from 0 to p-1
and n matrix columns (or rows) numbered from O to n-1.
The Column Cyclic Layout assigns column i to processor
1 mod p. The Row Cyelic Layout 1s the transpose of the
Column Cyclic Layout. We found out that the load
balance is good but it takes more time for communication
time (Al-Towaig, 2013).

Parallel algorithms

Guass-Jordan algorithm: We now define the processes
(tasks) that are required for the parallel algorithm of G-J
with scaled partial pivoting. We choose to employ two

types:

Algorithm 3; A master process:
The following steps describe the parent operations in G-J
Step 1: allocate the processors ids, then store them in the vector tids
Step 2: broadcast vector tids to all processors
Step 3: receive the largest element of sub row i from each processor then
compute the largest element of row i then store it in the scaled
vector as S[i]
Step 4: broadcast 8 to all processors
Step 5: receive the index vector | from py
Step 6: receive the sub-solutions from processors
Step 7: combine the sub-solutions obtained by the processors into the
final solution

The worker (slave) process: The worker processors
together andconcurrently, perform the floating-pomt
operations required for the algorithm. The followmng
algorithm describes the operations performed by each
worker process p;:

Algorithm 4; Worker (slave) process:
Input: columns G, Cuy, ..., Cirpupy, of matrix A and
by, birg, ..., Dragupye of vector b
Output: sub-solution by, b, ..., bivggp. 1y
Process: Step 1: receive the id of processor i from master.
Step 2: find the index C of the id in vector tids
Step 3: read from a data file the columns of A and the elements of b
that correspond to p; .
Step 4: search for the largest (maximum) element in each column as
follows:
-for (j=0, j<n-1,j=j+1) do
lg=i
find maximum element for row j
send the largest element of row j to master
end do
Step 5: receive the scaled vector § from master
Step 6: reduce A to the identity matrix by performing the following
steps
for (k =0, k<n-1,k =k+1)
determine the index of the processor holding the current
pivot
ck =k mod p and its corresponding index in this
processor (rowi = k/p)
if (ck = ¢) then
find the pivot element for the k* colurmn that is
|ATIRA]I/SI[A]] is the largest for ke i<n
-store the index i in j
-interchange rows 1[i] and 1[k]
-broadcast the index vector 1
-for (i=k+1, i< n, i++)
A[[IIP] = ANUEIIG/p]-valuel i1 * ALK V]
ke i,j» nandj=c, ptc, ..., p-lptc
b[I[i}/p] = bll[i/p]- value[I[i]]*by
end for i
end fork

Step 7: divide every element in row i, i* 0<n by the pivot element
A[I[][1] as follows
-if (C =1imod p) then broadeast the scaled element A[1[i]][i]
else receive the scaled element
-divide elements of row i by the scaled element.
-If (C = I[k]] mod p) then divide b[I[i]] by the scaled
element
Step 8: reduce all the elements above the diagonal to zeros as follows:
-for (k =n-2, k= 0,k--) do
- it (C = (k+1) mod p) then
broadcast colurmn (k+1) mod p as value
else receive value
- if (C =1[k+1]] meod p) then
Broadcast by as by
else receive by
- update the matrix elements and the right hand side as
follows
for(i=k, i+ Qi)
A[IG/P] = AT R] -valuel L[] * A1k +11][/i]
@-D-(p-(C+1) == i
b[1[i])/p] =b[[il/p]- valuell[i]] *bk
end for i
end fork
Step 9. if (C = 0) send the latest 1
Step 10: send sub-solution to master
Step 11: exit PVM

Guass-Huard algorithm
The master process: The same as in Gauss-Jordan but we
use the rows mstead of the columns.

6767

J. Eng. Applied Sci., 13 (16): 6765-6770, 2018

The worker (slave) process: The worker processors
together and concurrently, perform the floating-point
operations required for the algorithm. The followmng
algorithm describes the operations performed by each
worker process p;:

Algorithm 5; The worker (slave) process:
Input: Rows R, Riv, ..., Ryyppypsi of matrix A, and
by, by -y b pypes from vector b
Output: sub-solution by, by, ..., b 1pei
Process: Step 1: receive the id of processor i from master
Step 2: find the index C of the id in vector tids
Step 3: read rows of A and the elements of b that correspond to pi
Step 4: initialize index vector 1, 1[i] =i, 0= i<n
StepS: perform the elimination operations as follows
-for (k =0, k* n, k =k+1) do
-determine which processor hold row k and its corresponding
index in this processor (Ri =k/p)
-if (C =k mod p)
-Find the scaled element in row k and save its column
index in j
-interchange rows 1[k] with I[j]
-divide each element in row Ri by the scaled element
-divide b[Ri] (that corresponding to row Ri) by the scaled
element
-Broadcast row RI as vector value ,b[Ri] as b, and |
-else receive value, b, and |
-reduce all the elemnents that are above A[Ri][1k]] to zeros as follows
Afor(j=C, jkj=jtp) do
-multiplier = A[j/p][1[k]]
Aljpl[k]] =0
-For(m = k+1,m<n,m=m+1) do
A [j/pI[1[h]] = AL/p][[h]]-multiplier*value [1[m]]
bli‘p] = b[i/p]-multiplier*bk
end for j
-reduce the elements in row k (from A[k+1][0] to A[k+1][Kk]) to zeros
as follows
-row;, j* k and its comresponding b are sent to Py woay as value
and b, respectively
-if(C = (k+1) mod p) then
for (j=0,j*k, j=j+1) do
receive value and by from pyyeay
multiplier = A [(k+1)/p][1[i]]
fori=k+1 ton-1 do
A[KH[1I]] = AR+1][[i]]-multiplier *value[I[i]]
end for i
b[¢k+1)/p] = b[(k+1¥p]-multiplier*bk
end for j
end fork
Step 6: if (C = 0) send the latest |
Step 7: send sub-solution to master
Step 8:exit MPT

RESULTS AND DISCUSSION

Performance evaluation: In this study, time models for
the proposed parallel algeorithms are presented. Let t, be
the parallel execution time, t, is composed of two parts,
the computational time t,,,, and the communication time
t

comm”

t =t

+t
4 Comp COLILTL

We calculate the computational time with respect to
the number of long operations (multiplications and
divisions). For the communication time we use the
commonly used model:

t =t +a.t

comm startup "~ data

where t,.,, is startup time (message latency). It includes
the time to pack a message at the source and unpack the
message at the destination. The startup time 1s assumed
to be constant. The parameter * 1s the message size and
tyxa18 the transmission time per data item.

We have experimentally determined the startup time
to be in the range of 32*10° sec and the transmission time
in the range of 3000*10° sec. We assume that the time for
sending and the time for broadcasting are the same.

Algorithm 6; Gauss-Jordan algorithm:
We divide the algorithm into the following three main tasks

T1: finding the scaled vector
T2: forward elimination
T3: backward elimination

In T1 takes O¢n) computational time to find maximums. However, there is
a communication time where each processor sends the maximum element in
each row to master. Hence, the total communication time here is 0¥t
+1%t4) that is O(n).

T2 is divided into the following subtasks

Computational time

1. finding the pivot row, takes n*(n-k) floating-point operations.
2. dividing the pivat row by the pivet element, takes n*(n-(k+1))
3. forward elimination, takes n*[(n-(k+1))*n/p+1)]

Communication time

1. broadcasting the index vector 1, n times, takes n*(tun, + N%tan)
2. broadcasting row Ri, n times, takes n*(fmy 1% ta..)

3. broadcasting by, n times, costs n* (tp 1 ®tg.)

Hence, the total number of floating-point operations for T2 is n*[(3n-3k-
2+n/p*in-k-1)] that is On®) and the communication time is n%(3 tyy ot
(2+1)*tg,,,) that is O(n?)

T3 is divided into two main subtasks

1. dividing each row by the pivot element which costs about n/p
floating-point operations and n*(tumet1*taw,) communication time
2. reducing all the elements above the diagonal to zeros. This costs (n-
2)*(k*n/ptk*1)
floating-point operations that is O(n?/p). In this task n-2 messages
(column) will be sent and this costs n% (L o N*te.)

Thus, T3 costs k*n/pn-2)-k(n+2) that is O(n’/p) floating-point operations
While it takes n*(2ty (rt1) *ty,,.) that is O(n?) communication time
Owerall, the total time £, for this algorithm is

@

3 3
tey = Z T (computational 7time)+z T (computationali time)
i=1 i=1

That is the total cost is approximately Om*)+O(n%/p) computational time
and O (2.n%) communication time

6768

J. Eng. Applied Sci., 13 (16): 6765-6770, 2018

3007 (a) 204 (b)
—-G-H
- G-J
154
. 200 8 —- - - .
E £
> 5 10
a [
1004
5
04— —i il // 0 T T T T 1

(c)

Time in sec
- o ~
O =4 >
1 1 1

w
1

=3

Time in sec

804 (@

o
=
L

IS
=
1

1~
1

0

T T T
64 128 256 512

Matrix size

T
1024

1 T
2048 64 128 256 512

1024 2048

Matrix size

Fig. 1: Algorithm for a system of order: a) One processor; b) Two processor; ¢) Four processor and d) Eight processor

Algorithm 7; Gauss Haurd’s algorithm:
We divide this algorithm into the following three main tasks

T1: finding and scaling the pivot column
T2: reducing all elements above the diagonal to zeros
T3: reducing elements that are in the left of the diagonal element to zeros

In T1 no communication time is needed. But it costs only n*(n-k+1)
floating-point operations

In T2 , the elements of the pivot rows and b, are broadcasted n times, so it
COBtS N* (g *tan) ANd N*(Lyy, o7 1%0) respectively. Also, there are
about n’p floating-point operations to reduce all elements that are above the
diagonal to zeros

There are 2n*(n/p) messages (half to send by and the other half to send the
rows) that must be sent. This means T3 cost n*(V/p)* (2%t M1 *y.0)
communication time. There are n*(n-(k+1)) floating-point operations are
needed to reduce the left diagonal elements to zeros

Overall, the total time tg; for this algorithm will be

16)]

3 3
toy = 2T, (computational _time)+ T, (computational _time)
i=1 i=1

That is the total cost is approximately O (n® /p)+O(2.1¢) computational time
and O /p)+O(n?) communication time

From the above, we conclude that Gauss-Huard
algorithm has less computation time but more
commurication time than Gauss-Jordan algorithm.

The two algorithms are implemented using the
academic cluster built in the Department of Computer
Science at Jordan University of Science and Technology.
This cluster contains 1 management node and 18 Linux
(Kernel 2.4.20.8 RedHat 9) workstations connected as a
star network, each of which has a simgle IBM Pentium 4
with 2.4 GHz, 512 Cache, 512 MBs of memory and 40 GBs

disk space. These hosts are connected together by fast
ethernet, 1 GB switch and 1 optical interconnection
switch. We use the Message Passing Interface (MPI) with
the MPICH wversion 1.5.2 as a message passing library
throughout the implementations. The barrer
synchronization and blocking point-to-point
communication are used. The graphs reported in the
figures represent the average speedup and efficiency over
many runs of the algorithms.

In the implementation process we used the same
matrix A, vector b and column/row cyclic layout in both
algorithms. Without loss of generality we choose the
order of the systems as a power of 2 such as 64, 128, 256,
512, 1024 and 2048. Timing measurements for the
execution time were conduced. The obtaned results are
shown in the following four figures. These results
suggest the following.

The required execution time increases as the order of
the matrix increases in both algorithms. Gauss-Huard
algorithm takes less execution time than Gauss-Tordan
algonthm 1n all cases. As matrix size increases the number
of exchange messages in both algorithms increases.
Beyond a certain limit this increase causes communication
conhgestion resulting in high communication delays
(Fig. 1).

The speedup and efficiency ratios relative to the
sequential execution time for the two algornthms for a
system of order 2048 on & processors are shown mn Fig. 2.
The speedup decreases as number of processors
increases on Gauss-Jordan algorithm but not too many
changes in the speedup ratios on Gauss-Huard algorithm.
The speedup ratios are comparable beyond & processors.

6760

J. Eng. Applied Sci., 13 (16): 6765-6770, 2018

15 @
—-G-H
134 4@~ G-J

Speedup
-
1

159 ()
134

Efficiency
)
1

-1 T 1
8

No. of processors

<
=

Fig. 2: Two algroithm for a system of order 2048 on 8
processors

After this limit the difference in the speedup ratios
decreases between the two algorithms because the
required number of exchange messages for Gauss-Huard
algorithm mcreases more than what s required for
Gauss-JTordan algorithm .

CONCLUSION

This study has conducted a comparable study of
parallel implementation of Gauss-Jordan and Gauss-Huard
algorithms for solving dense systems of linear equations.
Timing models are first derived. Then experimental
performance results are obtained for an implementation
of the algorithms on a cluster of Linux workstations
interconnected by a high speed star network. The
obtained results mdicate that both proposed parallel
algorithms offer high speed, efficiency and numerical
stability. = However, the Gauss-Huard parallel
implementation has slightly outperformed than
Gauss-Jordan parallel implementation.

REFERENCES

Alzenbud, Y., G. Shabat and A. Averbuch, 2016.
Randomized T.U decomposition using sparse
projections. Comput. Math. Appl., 72: 2525-2534.

Al-Towaig, M. and H. Al-Aamri, 2002. A parallel
implementation of GESPP on a cluster of Silicon
Graphics workstations. Proceedings of the Sth
International Conference on Parallel and Distributed
Systems, December 17-20, 2002, TEEE, Taiwan, China,
Pp: 226-230.

Al-Towaig, M., 2007. Clustered Gauss-Huard algorithm for
the solution of Ax = b. Appl. Math. Comput., 184:
485-495,

Al-Towaiqg, M., F. Masoud, A.B. Mnaour and K. Day,
2008. An implementation of A parallel iterative
algorithm for the solution of large banded systems on
a cluster of workstations. Intl. J. Model. Simul., 28:
378-386.

Al-Towaiq, M.H., 2013, Parallel implementation of the
Gauss-Seidel algorithm on K-Ary n-Cube machime.
Appl. Math., 4: 177-182.

Dekker, T.J., W. Hoffmann and K. Potma, 1997.
Stability of the Gauss-Huard algorithm with partial
pivoting. Comput., 58: 225-244.

Duff, LS. and HAV.D. Vorst, 1999. Developments and
trends in the parallel solution of linear systems.
Parallel Comput., 25: 1931-1970.

Hoftmann, W., 1998. The Gauss-Huard algorithm and
LU factorization. Lmear Algebra Appl, 275
281-286.

Ha, J and Y. Tiang, 2015, Two symbolic
algorithms for solving general periodic
pentadiagonal linear systems. Comput. Math.

Appl., 69: 1020-1029,

Kahou, GAA., L. Grigori and M. Sosonkina, 2008.
A partitioning algorithm for block-diagonal matrices
with overlap. Parallel Comput., 34: 332-344.

Lastovetsky, A, and R. Reddy, 2007. Data
distribution for dense factorization on computers
with memory heterogeneity. Parallel Comput., 33:
757-779.

Marrero, T.A., 2016. A numerical solver for general
bordered tridiagonal matrix equations. Comput. Math.
Appl,, 72: 2731-2740.

Peters, G. and J.H. Wilkinson, 1975. On the stability of
Gauss-Jordan elimination with pivoting. Commun.
ACM,, 18: 20-24.

Sidi, A., 2008, Vector extrapolation methods with
applications to systems of
equations and to PageRank computations. Comput.
Math. Appl., 56: 1-24.

Trefethen, I.N. and R.S. Schreiber, 1990. Average-case
stability of Gaussian elimination. SIAM. J. Matrix
Anal. Appl., 11: 335-360.

Zhang, I. and H. Dai, 201 6. Tnexact splitting-based block
preconditioners for block two-by-two linear systems.
Appl. Math. Lett., 60: 89-95.

Zlw, Y. and AH. Sameh 2007. PSPIKE+ A family
of parallel hybrid sparse linear system solvers.
I. Comput. Appl. Math., 311: 682-703.

solution of large

6770

	6765-6770 - Copy_Page_1
	6765-6770 - Copy_Page_2
	6765-6770 - Copy_Page_3
	6765-6770 - Copy_Page_4
	6765-6770 - Copy_Page_5
	6765-6770 - Copy_Page_6

