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Very Deep Convolutional Neural Network for Speech Recognition Based on Words

Tavier O. Pinzon, 'Robinson Jimenez-Moreno, 'Oscar Aviles, “Paola Nino and *Diana Ovalle
'Faculty of Engineering, Nueva Granada Military University, Bogota, Colombia
nstituto Politecnico Nacional, Mexico DF, Mexico
Farcisco Jose de Caldas District University, Bogota, Colombia

Abstract: This study presents the implementation of two very deep convolutional neural network architectures
applied to speech recognition based on the usage of complete words for this case 12 specific words in order
to evaluate their performance in two types of environments, one semicontrolled and another non-controlled.
One of the architectures developed 1s based on the use of linear filters only in frequency while the other
consists of linear filters in both frequency and time. It 1s proposed to use the power spectral density with its
first and second derivatives as mput of the network mn order to strengthen the variety of feature maps that can
be used in neural networks for speech recognition. Finally, in the tests performed in real time, the architecture
with filters of frequency and time reaches an error rate of 16.67% in a semicontrolled environment while the other
architecture obtained a 41.67%. This means that the architecture with the lowest error rate has better
performance for word recognition, even with small databases and specialized in a particular group of people.
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INTRODUCTION

In recent years, neural networks of deep learning have
taken force in the field of artificial sensory development
such as machine vision (LeCun et al, 1998). In the
emulation of this sense, the developments evolve from the
segmentation of objects into images (Ondruska et al.,
2016; Girshick, 2015 object recognition (Schmidhuber,
2015) and localization of elements, e.g., localization of
pedestrians (Crozeco et al., 2016) where more recently,
these techniques of usage of neural networks have been
applied to voice recognition.

The mitial developments that made use of neural
networks in speech recognition, began to implement
different types of basic networks such as time-delay
neural networks (Weibel et al., 1989). Due to the low
processing capacity that computers had in the 90’s, the
neural networks did not have great depth, however,
thanks to the progress in processing speed, it was
possible to start deploying ever deeper neural networks,
making them increasingly efficient i pattern recognition
(Deng et al., 2013) for this reason the interest has arisen
in the application of these in tasks of speech recognition,
even above other recognition techniques.

The mntroduction of Deep Neural Networks (DNN) for
speech tasks began in the early 2010°s (Seide et of., 2011;
Hinton et al., 2012) developing DNN in combination with
the Hidden Markov Model (HMM), since, it allows

modeling the sequential structure of a speech signal
(Deng and 1.4, 2013, Mohamed et al., 2012). Consequently,
due to the high performance that Convolutional Neural
Networks (CNN) have had in pattern recogmtion
(Krizhevsky ef al., 2012) it have been begun to apply the
concepts of convolution in DNN to speech recognition
(Abdel-Hamid et «l., 2012, obtaining hybrids between
convolution and fully-connected layers. However, at first
they did not exceed 3 convolution layers combined with
a higher number of fully-connected layers which limits the
ability to acquire patterns and makes the performance
not really high Recently, architectures began to be
developed deeper and in combination with other types of
neural networks such as the recurrent neural networks
(Hsu et al., 2016) which help in the temporal relationship
that may exist between signal divisions, improving the
reduction of error in phonetic recognition.

The architectures that have been developed,
according to the state of the art have as input feature
maps of phonemes which are used in large vocabulary
continuous speech recognition (Samnath ef af, 2015),
however for more basic applications, the use of phonemes
makes them more complicated for its implementation, so,
an alternative to reduce the complexity is the recogmtion
of certain number of words delimited by the application,
making the implementation of a CNN more feasible and
achieve a better performance by the amount of parameters
that have to learn. For this reason in this work two CNN

Corresponding Author: Javier O. Pinzon, Faculty of Engineering, Nueva Granada Military University, Bogota, Colombia
6680



J. Eng. Applied Sci., 13 (16): 6680-6683, 2018

architectures based on the recognition of complete words
are built which have not been developed in the state of
the art as a complement to this research area.

CNN architecture
Conventional network
architectures: For applications of object recogmtion in
images, different CNN architectures have been developed,

ranging from the most basic that comprise only a

convolutional neural

convolution layer and a layer of pooling, followed by a
fully-connected (Abdel-Hamid et ai., 2012) to very deep
architectures, consisting of up to 19 convolution layers
(Simonyan and Zisserman, 2014) but these latter are
mainly used for the recognition of images, depending on
the robustness and the amount of features that are
thought to have taking into account the complexity of the
elements to recoghize. However, for speech recognition
applications it 13 not “So easy” to create an architecture
compared to architectures created for images, since in the
images it is possible to have an idea of the dimension of
the object to recognize and based on this, start with filter
kernels that allow to identify general characteristics of the
objects in speech recognition the patterns that are to be
recognized are not so obvious, since in this it depends on
many factors, e.g., the types of feature maps that are used
mn the entry and their structure or size. Here, are some
designing a CNN for speech
recognition applications.

considerations for

Configuration: Currently, some structures have been
mnplemented for speech recogniton. A typical
convolutional neural networle for speech tasks is based on
the developments made by Abdel-Hamid et al. (2014)
where it uses a convolution/pooling/fully-connected
architecture achieving 6-10% error reduction, compared to
DNNs. An improvement of this architecture is exposed by
Sainath et al. (2015) replacing fully-connected layers by
additional convolutions, obtaimng deeper architectures
for speech tasks, obtaining even an additional reduction
of 2%. Additionally, the configurations of each of the
layers tend to be 9x9 and 4%3 in the first and second
convolutions and a pooling layer over time of size 1x3
(Sainath et al., 2015), simce, thus configuration has
demonstrated a high performance. However, Qian and
Woodland (2016), they implement very deep architectures
with configurations of 3x3, 3x1 and 1x3 in thewr
convolutions and pooling in both frequency and time, 2x1
and 2x2 in order to optimize speech recognition in a noisy
environment.

Padding: In contrast to CNN configurations made for

images in speech recognition it is not very common for
layers to contain padding (Qian and Woodland, 2016).
However because the input sizes are really small, each
input volume of the coming layers will be very small,
malking the networks not very deep in terms of the number
of convolutions to be made, basically making the network
become a fully-cormected. Therefore including padding in
the layers, allows to maintain the size of the output
volume to be able to add more convolution layers and to
improve the network performance (Yoshioka et al., 2016),
since, it allows to better process the information of the
borders of the feature maps.

Input: As input to the network, multi-scale features are
used, emulating the structure of an image m terms of the
RGB channels (Sercu et of., 2016) for which the Mel-
Frequency Ceptral Coefficients (MFCC) with its delta and
delta-delta features are the most used.

MATERIALS AND METHODS

Input dataset: The main function of the network to be
implemented 1s the recognition of 12 words recorded with
a group of 4 persons (which are not native English
speaking) for which unlike the developments that have
been made where the phonemes are used as input,
the mput to the neural network i1s a 2 sec long audio
containing the word to recognize this to test the
performance of a CNN trained with full words. The words
are divided mto 12 different categories which are ‘blue’,
“car’, ‘cat’, ‘chicken’, ‘dog’, ‘duck’, ‘greer’, ‘house’, ‘red’,
‘sun’, ‘table’ and ‘yellow’, recorded at a sampling rate of
16 kHz.

For the extraction of features, the audio was
processed with frames of 20 msec for a total of 100 vectors
which are generated with 161 coefficients that represent
how much energy there is in each frame at a sample rate of
320 Hz per frame. These coefficients are a representation
of the Power Spectral Density (PSD) estimation by means
of the Welch’s method which allows to reduce the noise
of the signal used (Gupta and Mehra, 2013) and two maps
of additional features which are its first and second
derivatives (delta/delta-delta). An example of the feature
maps described above is shown in Fig. 1.

Architecture implemented: For this work, 2 arclitectures
were umplemented to test ther performance in speech
recognition. In general, both architectures use linear filters
in time and frequency but only maxpooling in frequency.
The configurations of the architectures are described.
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Fig. la-c): The PSD of the word ‘Table’ using the
non-parametric Welch’s method (top) with its
respective first and second derivatives

Table 1: Architecture 1

Layer Kernel Filters
Input 161x100 -
Convolution 16x1 5=1 32
Convolution 15x1 83=1 32
Max pooling 2x1 8 =2x1 -
Convolution 10x1 83=1 &1
Convolution 10x1 5=1 64
Max pooling 2x1 5=2x1 -
Convolution 7x1 5=1 256
Max pooling 2x1 8 =2x1 -
Fully-connected 1 236
Fulty-connected 1 -
Softmax 12 -
Architecture 1: Tts configuration consists of 2

convolution-convolution-maxpooling  sets and a
convolution-maxpooling set which use linear frequency
filters (Fig. 2a) without padding with frequency
downsampling and finally two fully-connected layers. The
complete architecture 1s shown m Table 1 where S 1s the
stride used.

Architecture 2: This is composed of 3
convolution-convolution-maxpooling sets where the first
convolution uses linear frequency filters (Fig. 2a) and in
the second, linear time filters (Fig. 2b). Each convolution
has padding on the axis of time or frequency, depending
on the filter to be used and only downsampling in
frequency and fnally, 2 fully-comnected layers. Its
configuration is shown in Table 2 where S is the Stride
used and P the Padding applied.

4 @
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4 ()

Freq

Energy
sample |
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Fig. 2: a) Linear frequency filters and b) Linear time filter

Table 2: Architecture 2

Layer Kernel Filters
Input 161x100. -
Convolution 16x1 S=1/P=2x0 32
Convolution 1=9 S=1P=0x2 32
Max pooling 2x1 §=2x1 -
Convolution 8x1 5=1P=1x0 64
Convolution 1x7 S=1/P=0x1 64
Max pooling 2x1 §=2x1 -
Convolution 4x1 5=1/P=0 128
Corvolution 1=7 3=1/P=0 128
Max pooling 3x1 8=3x1 -
Fully-connected 1 512
Fully-connected 1 -
Softmax 12

The idea of using linear filters is to obtain the

characteristics in each axis (frequency and time)
separately which allows a better characterization of the
word. However, a problem that can be had when analyzing
a complete segment of 2 sec lies in the computational
cost, since, no downsampling is performed in the time axis
1ts size varies from 86-100 parameters in the output volume
of the last convolution as in the case of architecture 1
which an input of approximately 230,000 parameters can
be obtained for the fully-connected 1, causing the
computational cost for the training to grow depending on

the number of neurons that are to be used n said layer.

Architecture training: FEach of the implemented
architectures was trained with the input dataset that was
set. To analyze the training behavior of each architecture
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Fig. 4: Training results of the architecture 2

1t 15 observed the learning speed and the reduction of cost
per mistake or training loss. Figure 3 and 4 illustrate the
resulting training behaviors of architecture 1 and 2,
respectively where 1t can be seen that architecture 1 had
a faster learning curve than architecture 2 due to the fact
that as architecture 1 only visualizes the characteristics in
terms of the frequency it did not require also to learn how
the signal behaved in the time while architecture 2 had a
very low leamning for more than 100 epochs whule
recognizing patterns of feature maps, even this can be
evidenced in its training loss that despite the accuracy did
netrise, the cost per mistake did descend, i.e., the networlk
was learming. However, the 2 architectures achieved a
100% traimng accuracy with very low training loss for
which in practice is what is expected to ensure that the
network will achieve an efficient performance in the task
to which 1t will be destined.

RESULTS AND DISCUSSION

Experimental results: In order to determme the

performance of each architecture there were evaluated
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Fig. 5: PSD of the word “House” in a: a) Semi-controlled
and b) Non-controlled environment

people from both belonging to the recording group and
not belonging to it therefore, the validation of the network
is performed with audios in real time, ie., not
pre-recorded.

For the tests, repetitions are made with the users,
obtaining an error rate of the networlk applied in real time.
Although, the traiming dataset was performed in a
controlled environment (with very low external noise and
some loud noises but of short duration such as a hit on a
table), the audios of the tests are taken in two.

Scenarios: One having a semi-controlled environment
(low external noise) shown m Fig. 5a and the other in an
non-controlled environment (varied background noise
such as people speaking, varied sounds, etc.) shown in
Fig. 5b. This 18 done m order to observe which
architecture behaves best even though it 13 not in the
training environment.

Each test is performed with 5 repetitions per word per
subject, resulting in the general Error Rate (ER) of the
number of times there was a misrecogmzed word.

Semi-controlled environment: Within the tests in a
semi-controlled environment whose results are shown in
Table 3, archutecture 1 which only has frequency filters,
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Table 3: Controlled environment results
Error rate (%o)

Subject group Architecture 1 Architecture 2
Belonging to the dataset 41.67 16.67
Not belonging to the dataset 45.00 35.00
Table 4: Non-environment results
Error rate (%o)

Subject group Architecture 1 Architecture 2
BRelonging to the dataset 58.33 40,00
Not belonging to the dataset 70.00 66.67

presented a recognition error of more than 40% for both
the subjects belonging to the training group and the ones
who was not part of it making this type of architecture not
suitable for voice recognition because not taking into
account characteristics of words over time is susceptible
to confuse words with similar tones. On the other hand,
architecture 2 presented an ER of 16.67%, mainly due to
confusions between similar words such as “Car”-“Cat”
and “Duck”“Dog”, since as subjects are not native
English speakers their pronunciations tend to be similar
between some words. In addition, in spite of the fact that
the number of pronunciations was reduced to 4 persons
in the training in terms of subjects not belonging to the
dataset its error, although higher, recognized better than
i architecture 1, even though presenting more serious
problems with the two pairs of words mentioned above
where it did present high confusions.

Non-controlled environment: In the tests in a
non-controlled environment, ER increased in each
shown in Table 4. Although, the
recognition of words became more difficult for people
talking in the background and a permanent noise,
architecture 2 maintained a performance superior to that
of architecture 1 within the persons belonging to the
dataset but a very similar error within the non-belonging.
It should be noted that although, the training audios were
performed in an environment where noise was not
significant, the recognition of words in architecture 2 can
be promising, even mcreasing the database to have more
different tones and varied pronunciations.

architecture as

CONCLUSION

The two types of novel architectures were tested to
shown their functionality in speech recognition
applications thus, extending the variety of convolutional
neural network configurations that can be used for these
cases. In addition, the use of feature maps different from
the Mel-Frequency Cepter Coefficients (MFCC) which are
normally used allow a varied range of inputs that can be

evaluated and compared in the architectures that are
implemented for speech recognition in future works. For
the case of tlus research, the power specter density by
means of the non-parametric Welch’s method was used as
input to the network in a satisfactory way.

The use of convolution layers with frequency and
time configuration presented better performance m speech
recognition systems, obtaining an ER difference of 25% in
a semicontrolled environment and 18.33% in a non-
with respect to a
architecture that does not use them which 1s a very wide
gap. These results allow to determine that the analysis of
only frequency does not acquire the evolution of the
word in temporary terms, necessary for its recognition.

Because the audios obtained contamn long dead
times, 1.e. where the word 1s not generated it 1s convenient
to eliminate those times possibly by means of a main
speech recognition algorithm in order to only analyze the
said word and not the entire length of the obtained audio.

Given the tests performed, convolutional neural
network architectures for whole-word recognition can be
used in a variety of applications where determinate
amounts of words are used, since, the implementation of
a database of certain words 1s more feasible than creating
one with phonemes for example in control of robotic
agents for reaching objects where there are a number of
specific words or in mobile agents to control their
movements.

controlled one convolutional
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