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Abstract: The detection of multicollinearity is very crucial, so that, proper remedial measures can be taken up
in their presence. The widely used diagnostic method to detect multicollinearity in multiple linear regressions
1s by using Classical Vanance Inflation Factor (CVIF). It 1s now evident that the CVIF failed to correctly detect
multicollinearity when high leverage points are present in a set of data. Robust Variance Inflation Factor (RVIF)
has been introduced to remedy this problem. Nonetheless, the computation of RVIF takes longer time because
1t 18 based onrobust GM (DRGP) estimator which depends on Minimum Volume Ellipsoid (MVE) estimator that
involves a lot of computer times. In this study, we propose a fast RVIF (FRVIF) which take less computing time.
The results of the simulation study and numerical examples indicate that our proposed FRVIF successfully
detect multicollinearity problem with faster rate compared to other methods.
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INTRODUCTION

One of the assumptions of the general linear
regression model 1s that there is no correlation (or no
multicollinearity) between the explenatory variables.
When this assumption is not met, the ordinary least
squares estimates may have wrong sign problem have
large variances and this would lead to erroneous
mterpretation. It arises when there 1s a near-liner
dependency among explanatory variables (x-direction) in
multiple linear regression models. It may also result due
to the data collection method employed, constrains on
the model, model specification and over determined
model.

CVTIF is the commonly used diagnostic method for
detecting multicollineanty in linear regression. It measures
how much the variances of the estimated regression
coefficients are inflated as compared to when the
predictors are not correlated (Belsley, 1991; Belsley et al.,
1980; Stine, 1995). It has done well in a clean data set but
its performance becomes poor in the presence of high
leverage points (Midi et al., 2010, Bagheri and Midi,
2009; Bagheri, 2011) has shown that the CVIF cannot
detect multicollinearity when high leverage points are
present in a data set. They have developed two

robust VIFs namely the VIF which 1s based on MM
and the VIF which 1s based on GM (DRGP) which they
called them RVIF(MM) and RVIF (GM(DRGP)),
respectively.

The RVIF (MM) which 1s based on MM estimator
moderately identifies multicollinearity but failed to detect
multicollinearity when high leverage points are present.
The RVTF (GM (DRGP)) method which is based on DRGP
able to detect multicollinearity mn the absence and
presence of high leverage pomts. However, the RVIF
(GM (DRGP)) takes longer computational time as it 1s
based on Minimum Volume Ellipsoid (MVE) which has
slow convergent rate in the computation of robust
Mahalanobis distance (Rousseeuw and Leroy, 2005).
Their research has motivated us to propose an improvised
RVIF which 1s relatively faster than the RVIF (GM
(DRGP)).

Moulticollinearity diagnostic measures: A simple
techmque for revealing multicollinearity issue 15 by
checking the simple correlations between predictors. A
high value of cormrelation coefficient indicates the
existence of serious problem of collimearity.

When there are more than two independent variables,
the sumple comrelation may mislead conclusion, even
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if they are all very low, they could hide the serious
multicollinearity problems. This happen if there is no clear
overlapping among predictors but they have a cumulative
effect (Montgomery et al, 2001; Kutner et al, 2004;
Freund et al., 2006).

Classical variance inflation factor: Marquardt (1970)
developed a diagnostics method which 13 known as
Variance Inflation Factor (CVIF) to detect multicollinearity
i a data. The CVIF 1s the most popular method to identify
multicollinearity and it is given by:

VIF = j=1,2,.... )]
e P
Where:
R’ = The coefficient of multiple determination when
e = Regressed on other

Xy = Variables in the medel, using the Ordinary Least
Squares (O 3) method

In general, if VIF,_+(5,10) mdicates that there is
moderate multicollinearity among all of predictors and
when VIF _+10 mdicates that there is
multicollinearity (Belsley, 1991).

a SeVere

RVIF (MM): The OLS estimates which is used in the
computation of CVIF is known to be easily affected by
outliers. As such, Bagher (2011) proposed RVIF (MM)
based on the robust MM estimator (Rousseeuw and
Leroy, 2005) which 1s defined as:

RVIF, (MM) = i=L2 ...p (2)

——— ]
1-RR {(MM)
Where:

RR% = The coefficient of multiple determination when

X = Regressed on other

X = Variables in the model using MM estimator

RVIF (GM (DRGP)): Since, the MM estimator has no
bounded influence property (Bagheri et al., 2012)
developed another RVIF which 1s based on generalized M
estimator which is robust on both outliers in x and Y
directions. They called the developed diagnostic method
as RVIF (GM (DRGP)) as it is based on Diagnostic
Robust Generalized Potential (DRGP) of Habshah er al.
(2009), the RVIF (GM (DRGP)) 15 given by:

1

T J =12, .., P (3)
1-RR? (GM (DRGP))

RVIF, (GM(DRGP)) =

where, RR? is the coefficient of multiple determination
when x; is regressed on other x;, , variables in the model
using GM (DRGP) estimator. RR%(GM(DRGP)) is defined
as follows:

n
2
2w
1=1

[ERE— @
w(s.-)

RR*(GM(DRGP))=1-

where, w, and rare the robust weights and residuals
obtained from GM (DRGP), respectively. The§is the
weighted average of v, given as:

2wy,

y =l 3

n

2w

“1

Prior to obtaining the RR%(GM(DRGP)), the GM
(DRGP) needs to be established. The GM (DRGP) is
summarized in the following steps:

Step 1: For ‘k’ is a number of iteration, begin by
setting k = 0 and compute the coefficients (*, j =01, ..., p)
and residuals (r1,1=1, 2, ..., n) for S-estimator.

Step 2: Fori=1, 2, ..., ncompute initial weight function
depend on DRGP as:

median(p, H3Mad(p,)
| P.

7, = min[l

1

]

where P, 1s DRGP (MVE) of Habshah et ai (2009).
Step 3: Scale residuals by ¢ which 1s defined as :

T=1 .4826(1-5-5(n-p))median|1'1 ‘
Step 4: Define the initial weights as:

w, = Ty X Wi T ) (6)
Ly Ty X

fori=1, 2, ..., n where a Huber’s * -function 1s applied.

Step 5: Use these weights to obtain a weighted least
squares estimates.

Step 6: Repeat steps 3-5 until convergence. That is, iterate
until the change in the estimated parameters is small.
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FAST RVIF (GM(DRGP)): The RVIF (GM(DRGP)) is
known to be able to detect multicollinearity problem
i the presence of high leverage pomts. The weakness of
this method is that the computation of the DRGP in the
second step of GM (DRGP) takes longer computational
times as it is based on the Minimum Volume Ellipsoid
(MVE). In this situation, Lim and Midi (2016 hmprovised
the DRGP by using Index Set Inequality (ISE) instead of
using the MVE in the first step of the computation of
DRGP. With this modification, it has been shown that the
DRGP has taken less computational time. In order to
propose fast RVIF (GM (DRGP)) , we adapt the improvised
DRGP by Lim and Midi (2016) to compute
RRY(GM(DRGP)). The DRGP (ISE) method can be
summarized as follows:

Step 1. Compute the Robust Mahalanobis Distance
(RMD),) for each ith point, using Index Set Tnequality (ISE)
by Salleh (2013).

Step 2: Any observation in which its RMD; exceeds the
cut-off value, 1.e, RMD;>Median (RMD,HMad (RMD),),
they are considered as suspected HL.Ps and be included
n the deletion D group, the remaimng cases are mecluded
in the R group.

Step 3. Compute the P, based on the above D and R sets
as follows:

he™ forieD

P. =7 h{¥ _ (7)
—h® forieR
Where:
hiP = XXX )% i=12,.,1 &)

Step 4: For all the set D with py>Median (p)+3Q,(p;) are
declared as HLPs, else, the case with least P; will be put
back into set R and repeat step 3 and 4 until all p;>Median
(P 3Qupy).

Qp = ofx); <9} 15 a pairwise order statistic of all
distanice proposed by Rousseeuw and Leroy (2005) where
k="2C"C,andh = [n/2]+1. The used of ¢ = 2.2219 as
this value will provide Q, a consistent estimator for
Gaussian data.

In the sunulation study conducted by Lim and Midi
(2016), they have shown that the running time of the ISE
is much faster than the MVE and MCD. Hence by
mcorporating the ISE m the GM (DRGP) algorithm waill
subsequently decrease the running time of the FRVIF
method.

MATERIALS AND METHODS

Monte-Carlo simulation study: A Monte-Carlosimulation
study 18 employed in order to assess the performance of
fast RVIF. We consider the multivariate linear regression
model as:

¥i = By tBix, B, X, tB Xt )

where, * is distributed as N (0,1). The predictor variables
were generated followed the Lawrence and Arthur
procedure which is defined as:

X, =pv,H1-p")"v i=12 - n;j=12 and 3
(10)

The correlation coefficient () was chosen to be very
high at 0.98. We consider samples (n = 20, 50, 100, 200 and
300) and different level of contamination (+ = 0.05, 0.10,
0.15 and 0.20). Moreover, the magnitude of contammation
(MC) was chosen equals to 100 following the idea of
Mohammed and Midi. To add high leverage point to
data, the first 100 (+/2)% of observations for x1 and
the last 100(+/2)% of observations for x2 have been
replaced by different magnitude of contaminations
values.

We run the simulation 1000 times for consistency.
Table 1-3 exhibit the VIF wvalues for correlated data
without HLLPs and with HLPs, respectively. Tt can be
observed from Table 1 that the CVIF and FRVIF
(GM(DRGP)) can comrectly identify the problem of
multicollinearity except for the RVIF (MM).

It 15 interesting to observe the behavior of the CVIF
and RVIF (MM) in the presence of high leverage points
Table 2 and 3. In this situation, the CVIF and RVIF (MM)
camot detect multicollinearity problem in the data. On the
other hand, the RVIF (MG(DRGP)) still can correctly
revealed the multicollinearity problem, irrespective of the
percentage of high leverage points and sample size.

Table 1: VIF values for comrelated data with no HLP (* = (®0)

n CVIF RVIF-MM FRVIF- GM (DRGP)
21.79977 4.110346 30.591950
20 22.09634 4.152511 31.142910
21.31794 4.116280 30.083000
18.15998 3.994056 33.379080
50 18.31078 4.042969 32.993010
18.17335 4.030211 32.913880
17.61057 4.104120 36.706700
100 17.66150 4.114590 37.025000
17.64393 4.049040 37.410900
200 17.37899 4.122235 41.476730
17.46795 4.116485 41.735420
17.41924 4.130874 41.567910
300 17.35104 4.125675 44.364850
17.39302 4.135690 44.768620
17.26760 4.124726 4.124726
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Table 2:-VIF values for correlated data with HLP (MC=100, » = 3%, « = 1009

5%

10%

n CVIF RVIF-MM FRVIF- GM(DRGP) CVIF RVIF-MM FRVIF- GM(DRGP)
20 1.0700 3.6000 3.71740 1.06910 3.2011 1.6472
1.0963 3.6310 3.60160 1.07560 3.2224 1.6763
1.1588 3.5870 29.38830 1.13910 3.2070 29.0250
50 1.0258 3.5993 3.40027 1.02590 3.27606 2.1913
1.0288 3.59806 3.45955 1.02720 3.2681 2.2041
1.0541 3.5377 32.81100 1.04990 3.2431 32.0250
100 1.0169 3.6459 3.86407 1.01600 3.1331 2.0868
1.0155 3.6585 3.87577 1.07560 3.0931 2.0880
1.0319 3.6003 37.13580 1.04990 3.0409 35.9800
200 1.0094 3.5581 3.62317 1.00970 3.1322 2.2540
1.0099 3.5556 3.65043 1.00990 3.0952 2.2670
1.0182 3.5117 40.80650 1.01420 3.0460 39.9100
300 1.0080 3.0024 4.04590 0.79550 24630 1.8630
1.0077 3.6036 4.05050 0.79537 2.4434 1.8680
1.0148 3.5617 43.12670 0.79762 2.4058 33.3700
Table 3: VIF values for correlated data with HLP (MC =100, » =15%, *« = 20%)
15% 20%
N CVIF RVIF-MM FRVIF-GM(DRGP) CVIF RVIF-MM FRVIF- GM(DRGP)
20 1.06919 3.201100 1.647210 1.08074 2.7912 1.2471
1.07560 3.222480 1.676380 1.08424 2.7939 1.2539
1.13910 3.207190 29.025100 1.13863 2.8274 27.9840
50 1.02570 3.017690 1.740030 1.03349 2.7648 1.3706
1.02710 3.040870 1.737820 1.03538 2.7634 1.3694
1.04470 3.023320 31.390100 1.04361 2.7519 29.8190
100 1.01750 2.849630 1.728319 1.02491 2.6052 1.4504
1.01710 2.809690 1.726987 1.02377 2.5236 1.4511
1.02349 2.765900 35.228370 1.02377 2.5403 33.8590
200 1.01318 2.769357 1.774541 1.01833 2.5866 1.5281
1.01316 2.737710 1.770475 1.01839 2.5113 1.5338
1.01320 2.694498 38.765800 1.01183 2.5356 37.8780
300 1.01110 2.782220 1.864912 1.01665 2.6044 1.573%
1.01080 2.746160 1.866877 1.01683 2.4840 1.5752
1.00954 2.706560 41.314660 1.01683 2.5149 40.3860
RESULTS AND DISCUSSION Table 4: The R? and VIF values for the original body fat data set

Numerical examples: Body fat dataset 1s used to evaluate
the performance of our proposed method. This data set
contains 20 observations and has three predictors (p = 3).
Kutner et al (2004) showed that this dataset has
multicollinearity problem. In order to see the effect of
HLPs on the VIF measures, we replaced 5 and 10% of the
good observations for x1 with 100 to create high leverage
points in the data. Table 4 presents the coefficient of
determination (R*) and VIF for the original dataset. The
results of R’ and VIF for all diagnostic measures except
RVIF (MM) indicate a high correlation among the
predictor variables and showed that this dataset has
multicollinearity problem.

The results of Table 5 sigmfy that the CVIF failed to
1dentify the multicollinearity in the dataset while the RVIF
(MM) identifies that there is moderate multicollinearity.
On the other hand, the RVIF (GM{DRGP)) successfully
dentify a serious multicollinearity problem i the
dataset.

FRVIF(GM
CVIF RVIF-MM (DRGP))
Variables R? VIF R? RVIF R? RVIF
X 0.9985 708842 0.84017 06.2567 0.998687 762138
X 0.9982 564.343  0.84465  6.4373 0.998402 625.990
X 0.9904 104606 0.80516 51326  0.989449 04,7839

Table 5: R? and VIF values for modified body fat data set

FRVIF
CVIF RVIF-MM {GM(DRGP))

Variables R? VIF R? RVIF R? RVIF
X 0.05984 1.06365 0.80502 512875 0.91970 124534

(0.0705) (L.O758) (0.8437) (6.3988) (0.9563) (22.895)
X 0.02817 1.02899 0.79511 4.88079 0.9966 299.145

(0.0247) (1.0253) (0.8351) (6.0655) (0.9079) (498.44)
X 0.05171 1.05454 0.77367 441845 09923 129932

(0.0660) (1.0707)  (0.8198) (5.5500) (0.9907) (107.76)

CONCLUSION

The commonly used CVIF method 15 very successful
in detecting multicollinearity problem in a data set.
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However, it failed to diagnose multicollinearity problem in
the presence of high leverage points. The performance of
RVIF (MM) 1s not good for both situations. In this regard,
we propose fast robust RVIF method for detecting
multicollinearity in a data set. The proposed method is
formulated by incorporating fast DRGP of Lim and Midi
(2016). The results of our study show that our proposed
fast RVIF (GM(DRGP)) can detect multicollinearity
irrespective of whether high leverage points are present
in a data set. Hence, we suggest using this method to get
correct interpretation of a data, so that, proper remedial
measure can be taken up.
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