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Abstract: Quality engineering practiioners have great interest for using response surface method in a real
situation. Recently, robust design has been widely used extensively for multiple responses in terms of the
process location and process scale based on sample mean and sample variance, respectively. One of the
methods that can be used to simultaneously, optimize multiple responses 15 by using the Augmented Approach
to the Harrington’s Desirability Function (AADF) techmique by assigning weight to the location and scale
order to see the reflection the relative importance for both effects. In this technique, the AADF approach uses
a dimensionality reduction approach that converts multiple predicted responses into a single response problem.
Furthermore , for the regression fitting second-order polynomials model, the Ordinary Least Squares (OLS)
method 1s usually used to acquire the sufficient response functions for the process location and scale based
on mean and variance. Nevertheless, these existing procedures are easily influenced by outliers. As an
alternative, we propose the uses of higher-order estimation techniques for robust MM-location, MM-scale
estimator and MM regression estimator to overcome the weakness and shortcomings. The numerical results
signify that the proposed approach 1s more efficient than the existing methods.
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INTRODUCTION

Quality engineers are always searching for new idea
to enhance productivity and decrease the cost of
operation but at the same time maintaining the products
quality. However, it can be more challenging if the

products/processes  have more than one quality
characteristics. Most of the multi-response optimization
method integrates with the Response Surface

Methodology (RSM) concept to achieve the quality of
product. RSM first introduced by Box and Wilson (1951)
is an important tool to find the relationship between the
several input variable with a response, then the optimal
factor settings of design pomt are obtained which is can
be classified into three types of quality characteristics of
the response: smaller-the-better, larger-the-better and
nomimnal-the-best . These terms are refer to for example, the
larger-the-better and the smaller-the-better where the
problem either to maximize or minimize the response,
respectively while for nominal-the-best problem, the
objectives that wish to achieve a value of desired target
as possible.

In the 1980s, Taguchi (1986) was first proposed
Robust Design (RD) methods to solve multi-response
problems in order to improve product quality. The
concept of robust design is to determine the best overall
combination of optimal factor settings by mimmizing
signal-to-noise ratios and identifying adjustment factors
which are used to tune a mean to desired target. However,
several reseachers noted a few drawbacks embodied into
Taguchi’s approach m robust design (Easterling,1985;
Vining and Myers, 1990; Myers et al., 1992). As a result,
many research efforts have been made to rectify these
weaknesses.

Myers and Carter (1973) fust introduced dual
response surface approach and then were extended
by Vining and Myers (1990) whereby the response
functions are separately model and simultaneously
optimize the process mean and variance toachieve
the desired target while keepmg the variance small.
A quadratic (second order) polynomial model is
widely incorporated to model the process location and
process scale of the response variable. Along with the
models parameters are usually estimated using the
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Ordinary Least Squares (OLS) method. The second-order
model response function which is usually used 1s as
follows:

i, (%)= By B+ 2 By, L)

Yy, @)

LMW

where + (%) and * .(x) are the predicted response surface
model for the sample location and scale at each design
point, respectively. have
developed extensions of these methods, contributing to
the breadth of knowledge in the field (Castillo and
Montgomery, 1993; Lin and Tu, 1995; Copeland and
Nelson, 1996; Baba et al., 2015). Later, Goethals and Cho
(2012)

functions by combining the methodology of robust

Numerous researchers

introduced  higher-order model response
design for considering process variability. A higher-order
model contains linear effect, cross product factor,
second-order quadratic terms and all possible interaction
between linear effect and second-order quadratic terms.
Thern, the best subset of terms for modeling 1s determined
by using several number of evaluation criteria to find best
model estimation.

Within the last decade, various new methods and
techmques have been mtroduced through literature to
solve multi-response problems that take into account
the location and scale effect Chiao and Hamada
(2001) proposed an
simultaneously optimize correlated multiple responses
that met respective specifications. Peterson (2004)
developed optimization method by incorporated the
structure data with the model
parameter uncertamty based on Bayesian reliability
technique. Tee and Kim (2007) suggested took the
average of the existing desirability values on the basis of
the probability distribution of the predicted response

optimization scheme to

variance-cov arlance

using  expected deswability function approach.
Nevertheless, most of the existing methods have its own
shortcoming. Recently, Chen et al. (2013) proposed a
natural extension of desirability function to optimize the
multiple responses by imposing relative weights on
process location and scale to reflects the relative
importance for both effects. The performance of this
method was reported to be more effective, compared to
the traditional approach.

The traditional approach gives good parameter
estimates and accurate optimal settings when the

responses are normally, distributed and no outliers in the
data sets. Often, however in real situations many
distributions of response variable are (considerably)
not normal which is due to the presence of outliers. If this
assumption is violated in serious manner, the optimum
response 1s not reliable as it i1s based on traditional
approach which 1s not resistant to outliers. Thus, a new
approach needs to be proposed.

The aim of this study is to propose using robust
location and scale estimator namely MM-estimator
introduced by Yohai (1987) which s more resistant to
departures of outliers compared to classical mean and
variance. Smcee, the OLS 1s not resistant to outliers, we
suggest using alternative robust MM-estimator with
higher order model which has a very lugh efficiency to
estimate the parameters of the process location and
scale.

MATERIALS AND METHODS

Robust location and scale: Let Y, represents the jth
responise at the jth design pomnt where1=1, 2, ... n
and =1, 2, ..., m. Suppose that replicates are taken at each
of the design points. The most popular estimators of the
location and scale parameters are mean and variance,
respectively. At the design point, we have the sample
mean and sample variance as follows:

1 m

1S : ! TV 3
2 Y and § = — — (YY) (3)

m] -1 i=1

These estimators are known to be easily affected by
outliers. In other words, replacing one out observations
with large value can negatively affect the value of the
sample mean and variance.

Tukey (1960) pointed out that this estimator can be
heavily influenced by any single outlier for example, if Y,
then Y goes to &e.
optimum responses are inefficiently determined by the
sample variance and mean in this study proposes the use

goes to £, Since, the resulting

of another outlier-resistant estimator for estimating the
location and scale of the response value. This estimator
was proposed by Yohai (1987) and was called as the
MM-estimator. It 1s not only highly efficient and robust
but it also has high breakdown property. In addition, the
MM-estimator refers to the fact that more than one
M-estimation procedures are used to calculate the final
estimates. Consider that the following location-scale
model: let x,, x,, ..., X, be observation on the real line

satisfying:
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X, = H1og, 4

This 1s the model where +, 1 = 1, 2, .., n 1s
mndependent and known as identically distributed (1.1.d)
observation with variance = 1. The interest of the model
is in estimating p and the scale «.

In this research, Yohai (1987) MM-estimator was
adapted to estimate the MM-location and MM-scale. The
procedures for finding MM-estimator are summarized as
follows:

Step 1: The mmtial consistent estimator of the location p,
and scale ¢ was computed with 50% possibility of high
breakdown point which 1s S-estimate introduced by
Yohai (1987).

Step 2: An M-estimation of the scale of the residuals from
the mmitial S-estimates was computed.

Step 3: An M-estimation of the location and scale as in
Eq. 5 was computed where ¢ functioned as a very small
(often zero) weight to sufficiently large residuals:

gl S | 5
Eq{sjo 5)

0

Modeling robust location and scale effects: The
second-order model polynomial models are not always
sufficed for estimation due to considering variance
response for multiple response surface design. Then, the
estimation parameters for higher-order model response
swface designs have been proposed by Goethals and
Cho (2012). For each response surface design, the
combinations of terms which are sigmficant to the
regression are remained for further analysis. Several
evaluation criteria will be used 1n order to identify which
subset of terms is the best combination. Three usual
criteria will be applied to analyze the model with
parameters which are the coefficient of determination
R?, the adjusted coefficient of determination R, and the
Mean Square Error MSE.. The best model will be selected
based on highest value R’ and R %, with the smallest
MBSE..

In practice, the fitted responses for higher-order
models mentioned above are often estimated by the OLS
method. Data analysis based on the least squares
estimator is less efficient and not reliable when
outliers are present in the data (Riazoshams et af., 2010).
To remedy this problem, robust regression technique
has been considered to dampen the effects of the
outliers. In this study, the MM-regression estumnator was
used to estimate the parameters of the model location and
scale instead of the OLS method.

Robust location and scale desirability function: The
deswability function was first introduced by Derringer
and Suich (1980) is one of the most widely used methods
in optimizing multiple responses. Recently, Chen et al.
(2013) transformed each standard deviation into an
individual desirability function and namely as Augmented
Approach to the Harrington’s Desirability Function
(AADF). In thus study, AADF has been used to transform
the higher-order fitted models to individual MM-scale
and MM-location, d; and d,, respectively. For the
MM-location effect, quality characteristics can be
classified into three types of desirability functions:
Smaller-The-Better (STB), Larger-The-Better (LTB) and
Nominal-The-Best (NTB) depends on the objective
function of the process mean whether to achieve the
specified desired target maximize or minimize,
respectively.

The individual desirability function for the NTB
type when the response is maximized is defined as
follows:

~ 1
Q)_
{&} forn =@ <t

‘min " "
T _}'Lmin
d, =1 (6)
1 ~ Ty
-6
{m} fort, =6, <p
I'Lmax-":p.

where ¢, 1s the higher-order predicted from the location
model for the response, P, Mg, and ¢, are upper and
lower limits and the target for the response * . The
weights 1,0 and r;>0 are a user-selected shape parameter.
By defimition the individual desirability lies between 0-1,
i.e.,0 (0= d;* 1), respectively. For the LTB and STB type,
the desirability function is defined as n Eq. 7 and &
respectively:

1 ford, =y,
d, = [Mj forp,, <o, <p.,. (7
: MmEX -Mmin
0 for &, > p,,
0 for &, <p,
(’;) _Mmm ' ~
dp_‘ = (HJ fOI'Mmin <0);,L <My (8)
Mmax _Mmm
1 foréd, =un .

Next, the suitable individual location desirability
function have been selected then, we combimed all
individual location desirability functions values d =
{(d,.d, ....d,,) into an overall desirability function I using
geometric mean as follows:
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Table 1: Experimental design for the chemical filtration process

Coded units Quality characteristics of interest
Tempt Pressure Humidity Filtration time (sec) Filtration volume (ml.) Filtration purity (%4)
Run X X X Y, (3 replications) Y, (3 replications) Y5 (3 replications)
1 -1 -1 -1 3.86 4.03 3.02 Q.70 9.79 9.73 93.09 92.99 93.03
2 1 -1 -1 312 3.07 3.02 9.96 9.95 9.93 93.76 93.83 93.81
3 -1 1 -1 2.82 2.79 2.87 9.94 9.96 9.97 94.33 94.35 94.30
4 1 1 -1 1.07 0.97 0.99 10.00 9.97 9.89 95.64 95.76 95.72
5 -1 -1 1 1.56 1.54 1.53 9.87 9.89 10.01 94.18 94.13 94.16
6 1 -1 1 0.54 0.52 0.58 10.10 10.04 10.03 96.31 96.23 96.27
(20.00)
7 -1 1 1 0.85 0.82 0.71 10.08 1011 10.09 95.83 96.01 96.04
8 1 1 1 0.01 0.02 0.16 10.16 10.19 10.22 96.86 96.55 97.23
9 -1.682 0 0 130 1.26 1.32 9.78 9.87 10.01 93.59 93.73 93.76
10 1.682 0 0 2.07 2.14 211 10.02 10.15 9.92 94.94 94.88 94.90
11 0 -1.682 0 0.60 0.63 0.68 9.80 10.04 998 93.41 93.28 93.59
12 0 1.682 0 2.03 2.08 2.04 10.10 9.99 10.01 95.39 95.42 95.36
13 0 0 -1.682 212 1.79 2.16 10.12 10.01 9.86 94.37 95.17 94.64
(10.0)

14 0 0 1.682 2.80 2.52 2.42 10.10 9.97 9.85 95.36 95.63 94.99
15 0 0 0 2.19 2.02 2.14 10.08 9.99 10.13 95.76 94.93 95.43
16 0 0 0 1.96 1.77 2.19 9.98 1011 9.78 94.12 94.20 95.13
Bold values when compared with proposed estimation approach
Table 2: Quality characteristics goals and specifications
Quality characteristics Goal Specifications Target or acceptable region
Filtration time (sec) Y, Minimize Y+ 7 =0
Filtration volume (mL) Y, Nominal (target) 9.5+ Y, 10.5 *,=10.0
Filtration purity (%6) Y3 Maximize T 90 =100

D= ( dgd. . d, )”m (9 The overall desirability function for location effects

where O+D+1. The higher value D indicates a more
desirable is the overall product and the high values of the
ds result in high value of D.

The STB type i1s considered as individual scale
desirability, since, it is desirable to minimize the variation.
The desirability function is defined as follows:

1 for o, <o,
~ r
G, —® - 10
—J| Zmm o
d, = [ J fora_, <o, <6, (10)
csmax B Gmin
0 form,>o_,,

where O+ d,;» 1. Then, * . is the higher-order predicted from
the scale model for the response, * ., and ¢ ;, are upper
and lower limits and ith weights >0 1s a user-selected
shape parameter.
desirability function is obtained by combining all

After that an overall dispersion

individual scale desirability function into geometric mean
which 1s defined as follows:

S=(d,d, . d )" (11)

ol

where 0+ 3+ 1, respectively.

D and overall dispersion desirability function S are
combiming as defined as follows:

DS, =D's" =

Adr 1-h/m (1 2)
(0 d) (dydas o dy)
where Q¢ *+1 i3 a user-selected weight that reflects the

relative importance of optimizing D and where
e DS+ 1.

RESULTS AND DISCUSSION

Numerical example: This example is taken from the case
study performed by Kovach and Cho (2008). The aim of
this experiment was to analyze the effects of the filtration
time (Y,) measured i seconds, the filtration volume (Y,)
measured 1n milliliters and the filtration purity (Y5)
measured as a percentage on the chemical filtration
process based on temperature (X)), pressure (X,) and
humidity (3;). At three design points, the Central
Composite Design (CCD) consisting 16 s with three
replicates were considered as shown in Table 1. Two
contaminated data points (in bold) were observed. The
associated target values, goals and specifications for the
characteristics are shown in Table 2.

Since, unusual observations occurred in the data
series, the outlier-resistant estimator was more suitable to
be used in order to find the optimal operating conditions.
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Table 3: Mean, variance, MM-location and MM-scale calculations

Mean and variance calculations

MM-location and MM-scale calculations

¥, hE! Y ¥, Y2 hE
Run ¥, ol A g2 ¥ g2 MM MMs; MML MMs; MML MM
1 3.94 0.0074 9.74 0.0021 93.04 0.0025 3.93 0.0041 9.74 0.0010 93.04 0.0018
2 3.07 0.0025 9.95 0.0002 93.80 0.0013 3.07 0.0028 9.95 0.0001 93.80 0.0005
3 2.83 0.0016 9.96 0.0002 94.33 0.0006 2.83 0.0010 9.9 0.0001 94.33 0.0005
4 1.01 0.0028 9.95 0.0032 9s5.71 0.0037 0.99 0.0005 9.96 0.0010 9s5.71 0.0018
5 1.54 0.0002 9.92 0.0057 94.16 0.0006 1.54 0.0001 9.88 0.0005 94.16 0.0005
- - 10.06 0.0014 - - - - 10.04 0.0292 - -
6 0.55 0.0009 - - 96.27 0.0016 0.55 0.0005 - - 96.27 0.0018
- - (13.36)  (33.1000) - - - - (10.04) (0.0293) - -
7 0.79 0.0054 10.09 0.0002 95.96 0.0129 0.81 0.0010 10.09 0.0001 96.03 0.0010
8 0.06 0.0070 10.19 0.0009 96.88 0.1159 0.02 0.0001 10.19 0.0010 96.88 0.1097
9 1.29 0.0009 9.89 0.0134 93.69 0.0082 1.29 0.0005 9.88 0.0092 93.74 0.0010
10 2,11 0.0012 10.03 0.0133 94.91 0.0009 2.11 0.0010 10.03 0.0114 94.91 0.0005
11 0.64 0.0016 9.94 0.0156 93.43 0.0242 0.64 0.0010 9.95 0.0041 93.43 0.0193
12 2.05 0.0007 10.03 0.0034 95.39 0.0009 2.04 0.0001 10.01 0.0005 95.39 0.0651
13 2.02 0.0412 - - - - 1.98 0.1563 - - - -
10.00 0.0170 M.73 0.1656 - - 9.99 0.0138 M.72 0.0832
4.65) (21.5) - - - - (1.98) (1.624) - - - -
14 2.58 0.0388 9.97 0.0156 95.33 0.1032 2.56 0.0114 9.97 0.0164 95.33 0.0832
15 2.12 0.0076 10.07 0.0050 95.37 0.1746 2.12 0.0029 10.07 0.0029 95.38 0.1243
16 1.97 0.0442 9.96 0.0276 91.48 0.3152 1.97 0.0412 9.96 0.0193 M.16 0.0073
BRold values when compared with proposed estimation approach
Table 4: Summary of model selection for location model
Parameters Model v B2 (04) R[04} MSE, o)
o Traditional design (2nd order) 10 389 537 1.640
Higher-order design (3rd order) based on sample mean 14 98.9 4.7 0.057
Higher-order design (3rd order) based on MM-location 15 99.9 98.9 0.011
' 2 Traditional design (2nd order) 10 71.8 29.5 0.007
Higher-order design (3rd order) based on sample mean 8 94.3 89.3 0.001
Higher-order design (3rd order) based on MM-location 9 91.3 87.8 0.001
"3 Traditional design (2nd order) 10 82.5 56.2 0.513
Higher-order design (4th order) based on sample mean 10 96.2 Q0.5 0.111
Higher-order design (4th order) based on MM-location 9 93.2 85.4 0.175

Then, the sample mean v sample standard deviation,,
MM-location estimator (MMI) and MM-scale estimator
(Mms) were computed at design points shown in
Table 3. These estimates were computed using R
language. What is immediately clear form Table 3 is
process location and process scale based on sample mean
and sample are very
contaminated data points denoted
compared with the proposed estimation approach using
MM-location and MM-scale.

In this example, the multiple characteristics were
involved. The second-order model polynomial models
will not suffice for estimation due to considering

variance sensitive to the

in bold when

variance response for this problem (Goethals and Cho,
2012). Then, ligher-order response surface designs
are developed for sample mean, sample variance,
MM-location and MM-scale measures. Using R-software,
third and fourth order response surface are considered
and only combmations of terms which are significant to
the regression are remained for analysis. To identify the
best model for approximating the samples mean, sample

variance, MM-location and MM-scale, Rzad] and has been
used. The best model will be selected based on highest
value R?; with the smallest MSE..

For brevity, only the between
higher-order and second-order model based on location

comparisons

mean 1s shown Table 4. Based upon the results mn
Table 4, it shows that for sample location based on sample
mean and sample MM-location, the models are chosen
with 14 (Y,), 8 (Y,) and 10 (Y) parameters and 15 (Y), 9
(Y,) and 9 (Y,), respectively, since, they keeping the
highest values for R’,, and attain optimal values for the
evaluation criteria. Based upon the results, it is suggested
that higher-order model 13 more precise and efficient
compared to second-order model, since, it’s achieve the
criteria value.

After that Table 5 is constructed to determine the
factor settings which are maximize the composite
desirability. Note that for brevity, optimization scheme
for location and scale based on mean and variance
without outlier is shown in Table 5.
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Table 5: Optimization scheme for location and scale based on mean and variance without outlier

Maximize

Ds =D'8" =(d,. dy dey” (d,. d., d "

Satisfy Constraint:

The type of STB (Y,) , NTB (Y,) and LTR (Y3) for mean and MM-location response

0

dfnpl = [

@, (x)-10.5
100 10.5

0

Qi = {

&, (x)-7
0-7

0
(X)95
[ 10.0-9.5

b5 (90
90-100

if &y, (x)=7

J ifo<d, (x)<7

if &,, (x)<9.5oré,, (x}10.5

} if9.5<d,(x) <10.0

J if10.0 <&, (x) <10.3

if &, (x)>90

J if 90 <&, (x) <100

The type of 8TB for all three sample variance and MM-scale response

0

dc‘npz = [

Given

&3 (x)-90
90-100

if @5 (x) > 90

J if90 < é; (x) <100

Higher-order fitted response surface functions:

+ 1 ()= 2.0490+0, 438X, +0.4191X+0. 1665X;-0. 0863K Xy +0. 121 3%, X:+0.2413%,X,
-0.131 7X% -0.2542X%,+0.0804%-0.9704X2 X,-1.1 552X, X:-0.7950X% X, +0.1513X, X X5
+ 1 (%)= 9.9048+0, 0494, +0,0277X,-0.0308X X;-0.01 2753, +0.03800X2 X,
+0.0833X2X,+0.021 67X, X, X,

+ 1 (%)= 94.9775+0.3607X, +0.6525K,+0.1 784X,-0,2395%2,-0.201 2X2,+0. 621 2X3 X

+0.2864X% X, +0.4802X%, X,-0.2263X, X X5

* .1 (%)= 0.0255-0,0088X2, -0.0088X2,+0.00498X2-0.0099K2, X2,

- .1 ()= 0.0153-0,0036X,-0.0021X%+0.0030X?, X,-0.011 5X% X2,

.1 (%)= 0.2470-0.0895%2 -0.0871X2,-0.0440X 2,

Find

Optimnal factor settings x* = (x"}, X", x3)

Table 6: Comparison of solutions for data without outliers

Methods X = A= "

Traditional approach  (0.518, -0.982, 1.618) (0.944, 10.033, 95.946)
with location mean (0.865, 0,933, 0.595)
and scale variance

Higher-order design
with location mean
and scale variance
Higher-order design
with location MM

(0.618, 1.318, -1.082)

(-1.282, -0.082, 0.918)

(0.676, 9.997, 95.995)
(0.903, 0.995, 0.599)

(0.015, 10.003, 95.109)
(0.998, 0.995, 0.510)

and scale MMs

< (=LY - D 8 DS
{0.016, 0.007, 0.002) 0.9 0.783 0.015 0.796
{0.838, 0.931, 0.982)

{0.007, 0.0009, 0.009) 0.9 0.814 0.042 0.806
{0,934, 0.991, 0.902)

{0.001, 0.006, 0.003) 0.9 0.798 0.067 0.813

(0.986, 0.944, 0.971)

Two contaminated ata points (in bold)

The comparison based on second-order model
polynomial models, the technique used by Gothels and
Cho (2012) and the proposed desirability function
approach is emploved and presented in Table 6. Note
that the optimization method for the location and
scale m Table 6 1s using the AADF proposed by
Chen et al. The result in Table & shows that using
OLS along with location and scale based on mean and

variance produced (x, x5, x5) = (0.618, 1.318, -1.082)
with overall DS = 0.813. This solution 1s different
what is cbtained using MM-estimation where (x',, X,
x5 =(-1.282, 0.082, 0.918) with overall DS = 0.813. Based
on the result of the overall value DS, the MM-estimation
with higher-order model clearly produced better result
compared to the OLS based on mean and variance
with higher-order model.
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Table 7: Comparison of solutions for data with outliers

Method X s de )

Traditional approach ~ (-1.282, -0.382, -1.182)  (4.872, 9.829, 93.403)
with location mean (0.513, 0.659, 0.340)
and scale variance
Higher-order design
with location mean
and scale variance
Higher-order design
with location MM
and scale MMs

(-0.182, 1.618, -0.082) (2.398, 11.202, 95.351)

(0.760, 0.966, 0.535)
(-1.182, -0.082, 1.018) (0.125, 10.006, 95.278)
(0.982, 0.987, 0.528)

T TS, . D s DS
(34.308, 0.0853, 0.045) 0.9 0.487 0.386 0.4757
(0.714, 0.147, 0.549)

{1164, 7.910, 0.031) 0.9 0.732 0.524 0.708
{0.990, 0.209, 0.694)

(0.052, 0,010, 0.004) 0.9 0.800 0.748 0.801

(0.850, 0.898, 0.961)

Two contaminated ata points (in bold)

To see the effect of outliers on the performance of
the proposed desirability function approach, two
contaminated ata pomts (in bold) are purposely
introduced and presented in Table 1. Tt can be observed
in Table 7 that in the presence of cutliers in the data set,
the traditional method failed to determine the correct
optimal solution. Tn the case that the optimal solution is
obtained, the result 13 misleading. However, using the
MM-estimation with higher-order model, the results are
closed to the results as m the clean dataset. It is clearly
show that the proposed method will give more accurate
results in the presence of outliers.

CONCLUSION

Robust design has been widely used extensively for
multiple responses in terms of the process location and
process scale based on sample mean and sample variance
respectively. Then for the regression fitting, the Ordinary
Least Square (OLS) method 1s usually used to acquire the
sufficient response functions for the process location and
scale based on mean and variance. Nevertheless, these
existing procedures are easily influenced by outliers. Our
proposed approach uses higher-order estimation
techniques MM-location, MM-scale
estimator and MM regression estimator to overcome the
weakness and shortcomings. The AADF method uses to
simultaneously optimize the process location and scale
based on MM-location and MM-scale. The numerical
results have shown sthat the proposed approach works
better than the traditional approach in terms of having

for  robust

highest overall desrability fimetion value. Moreover, the
proposed approach also, performs well when the outliers
exist in the data series.
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