Tournal of Engineering and Applied Sciences 13 (16): 6616-6621, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Towards Removing Cross-Site Scripting Vulnerabilities from
Mobile Web Applications

Isatou Hydara, Abu Bakar Md Sultan, Hazura Zulzalil and Novia Admodisastro
Department of Software Engineering and Information System,
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM),
43400 Serdang, Selangor, Malaysia

Abstract: Cross-site scripting vulnerabilities are among the most common of security vulnerabilities found in
web applications and more recently i mobile versions of web applications. They have caused many successful
attacks on web applications on a daily basis including loss of financial and health information, exposure to
malware and viruses and denial of service attacks. Cross-site scripting vulnerabilities are easy to exploit but
difficult to mitigate. Most of the existing solutions to cross-site scripting vulnerabilities focus only on the
desktop version of web application and there is hardly any focus on the mobile versions. Also, most solutions
provided only focus on preventing attacks or detecting the vulnerabilities. Very few research works have
addressed elimiating these vulnerabilities from the web applications source codes. In this study, we present
our research in progress on the removal of detected cross-site scripting vulnerabilities in mobile versions of
web applications. We have proposed an approach in a previous research to detect and remove cross-site
scripting vulnerabilities in desktop web applications. We have enhanced that approach and are currently
testing 1t for the removal of cross-site scripting vulnerabilities in mobile versions of web applications. Initial
evaluations have indicated promising results. We believe this approach can help web application developers
to eliminate cross-site scripting vulnerabilities in not only their desktop web applications but also in the mobile
version ones.

Key words: Cross-site scripting, cross-site scripting vulnerability, software security, vulnerability removal,

web application, application developers

INTRODUCTION

Recently, technology has become an important part
of our lives and as it grows, we rely on it more and more
to accomplish our daily transactions be it business,
personal or otherwise (Hydara et al., 201 5a). Businesses
and organizations also, use web applications to provide
many of their services, not only on desktop versions but
also on mobile versions as more people use their mobile
phones to access some of those services. However, as
web applications become very important to the success of
businesses and organizations their securities have
increasingly become more complex (Fogie et al., 2007).
Hence, more security issues have emerged due to the
mcreasing number of security threats affecting web
applications (Fogie et al., 2007).

Testing web applications for security has therefore,
become a crucial issue to the software security industry
as well as governments, businesses and organizations.
Study of the major security threats in web applications

has shown that XSS vulnerabilities are among the top ten
vulnerabilities, as reported by the Open Web Application
Security Project (OWASP) (Anonymous, 2016a).

Cross-Site Scripting (X88) vulnerabilities
{(Anonymous, 2017, 201 6a) are found in web applications
source code and they can be exploited through XSS
attacks when such vulnerable applications are deployed
and running online. Tnjecting malicious scripts where
these applications accept user mputs can result to serious
security breaches such as cookie theft, account ljacking,
mamipulation of web content and theft of private
information (Hydara et al., 2014).

X388 vulnerabilities were discovered in the 1990s in
the early days of the world wide web. They are a type of
iyjection problems that enable malicious code to be
iyjected into trusted web applications (Anonymous,
2016a). This 13 a result of a failure during software
development to validate inputs from the web application
users. This lack of proper verification of the user inputs
enables hackers to attack an application.

Corresponding Author: Isatou Hydara, Department of Software Enginzering and Information System,
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM),

43400 Serdang, Selangor, Malaysia

6616

J. Eng. Applied Sci., 13 (16): 6616-6621, 2018

Milweak server

slide controls

M2 insecure
data storage

M6 broken
cryptography

M7 client side
injection

Mobile top 10 2014

M3 insufficient transport
layer protection

M4 unintended
data leakage

M5 poor authorization

M8 security decisions via.]

OWASP untrusted inputs

M9 improper
handling

M10 lack of

and authertication J

Fig. 1: Mobile top 10, adopted from (Anonymous, 2014)

Many research activities have been conducted to
address problems related to XSS vulnerabilities since,
their discovery. According to this systematic review
(Hydara et al., 2015a), most of the existing approaches
focused on preventing XSS attacks (Sharma et al,
2012; Sun and He, 2012; Gundy and Chen, 2012;
Scholte et al., 2012) and detecting XSS vulnerabilities
(Agosta et al., 2012; Huyam and El-Qawasmeh, 2012,
Acker et al, 2012; Duchene et al., 2012) in web
applications. Few research activities have addressed the
removal of XSS vulnerabilities (Bathia et al, 2011,
Shar and Tan, 2012) (Fig. 1).

There 1s lack of secunty m most web applications that
are in used today including mobile web applications.
According to this study (Javed and Schwenk, 2014), 81%
of all the mobile applications they surveyed were
vulnerable to XSS attacks. HTMLS5 1s used by many
mobile application developers and it is reported to contain
XSS vulnerabilities (Chen et af., 2015). Moreover, XSS has
been added to the Top 10 List of vulnerabilities in mobile
applications (Anonymous, 2014) as shown in Fig. 1 as
well ag in HTML3 (Shah, 2012).

Figure 2 gives a high level view of XSS attack.
Successful XSS attacks can result in serious security
violations for both the web application and the user. An
attacker can inject malicious codes into a web
application’s user input and if the input is not validated,
the code can steal cookies, transfer private information,
hijack a user’s account, manipulate the web content,
cause denial of service and many other malicious
activities.

XSS attacks are of three types namely reflected,
stored and DOM (Document Object Model) based

binary protections

(Hacker](Victim) (Website](VAVAV]
O

O O C

Infects with

seript _
Visits the site

—
Injects script

Malicious
activity
O O O O

Fig. 2: High Level View of X3S, adopted from (Vonnegut,
2015)

(Anonymous, 2017, 2016a; Vonnegut, 2015). Reflected
X85 is executed by the victim’s browser and occurs when
the wvictim provides input to the web site such as
username and password. Stored XSS attacks store
malicious scripts i databases, message forums,
comiments fields, etc. of the attacked server. The malicious
script is executed by visiting users thereby passing their
privileges to the attacker. Both reflected and stored XSS
vulnerabilities can be found on either client side or server
side codes. On the other hand, DOM-based XSS
vulnerabilities are found on the client side. Attackers are
able to collect sensitive or important information from the
user’s computer.

In this study, we propose an approach for the
removal of X3S vulnerabilities in mobile web applications.
This reseach 13 in progress and 18 built on a previous
approach (Shar and Tan, 2012) and extends 1t by including

6617

J. Eng. Applied Sci., 13 (16): 6616-6621, 2018

all the three types of XSS as well as following all the 7
rules stated in the OWASP’s XS5 prevention rules
(Anonymous, 2017, 2016¢).

Literature review: Research works related to XSS in
mobile versions of web application are not many as the
focus to it has only started recently. A recent study
(Javed and Schwenk 2014) has found that XSS
vulnerabilities are present in 81% of the mobile versions
of web applications they surveyed. This is alarming and
shows the need for more research on XSS in mobile
versions of web applications. They have also,
developed an XSS filter which proved successful
against well-known XSS vectors and has been added
as support n WordPress and Drupal platforms. Their XS5
detection rules have been added to the OWASP
ModSecurity Core rule set (Anonymous, 2016¢). Their
approach, however, only focused on Reflected XSS.

HTML5 18 used 1 the development of many mobile
applications and has been found to contain XSS
vulnerabilities. Hence, Chen et al. (2015) developed a tool
called DroidCIA for the detection of injection attacks,
mcluding XSS in HTML based mobile applications. The
tool registered a 99.21% accuracy rate with some false
positives when evaluated with their dataset. Some
limitations in their research included problems related to
mput string and dead code in the dataset and the research
did not include removing XSS vulnerabilities.

Another research work on HTML 5 was conducted by
(Dong et al, 2014). They constructed a new vector
repository for XSS by collecting and adding a set of XSS
attack vectors related to HTMLS5 to the previously
existing XSS vectors. They also, developed a dynamic
tool for XSS vulnerability detection. Their proposed
solution was tested on webmail systems and found to be
effecive mn detecting XSS vulnerabilities related to
HTMLS5. Tt was only focused on webmail services. A
study by Mutchler et ol (2015) was also, conducted to
detect vulnerabilites m Android-based mobile web
applications. XSS vulnerabiliies were among those
discovered in the tested applications. Again, vulnerability
removal was not part of these works.

Shar and Tan (2012) have proposed an approach
for removing XSS vulnerabilities from web applications.
Their approach is in two phases. The first uses static
analysis to identify potential 35S vulnerabilities in the
source code of tested applications. The second phase
uses pattern matching techniques to provide an escaping
mechanism to prevent any input values causing script
execution, thereby eliminating XSS vulnerabilities. This
approach, however, only focused on reflected and stored
XSS and was only evaluated on desktop applications.

(" Program analysis N
Source Taint analysis Control flow

- '=> graph

\ J

(XSS detection

~N
- : Genetic / Vulnerable ;
XSS algorithm [paths
database
\ J

(XSS removal

N
Vulnerable . OWASP , Modified
/ program / IM program
\. J

Fig. 3: Our X3S detection and removal approach

MATERIALS AND METHODS

Proposed approach: The solution being implemented in
this research uses a Genetic Algorithm (GA) based
approach in the
vulnerabilities in mobile versions of web applications. The
approach, as shown in Fig. 3 is in three components. The
first component involves converting the source codes of
the applications to be tested to Control Flow Graphs
(CFGs) using static analysis techmques where each node
will represent a statement and each edge will represent the
flow of data from node to node.

The second component focuses on detecting the
vulnerabilities in the source codes using GA approach

detection and removal of XSS

whiles the third component concentrates on their removal
using the OWASP HSAPI security guidelines. In this
research m progress, we only focus on the third
component of the approach which is to remove detected
vulnerabilities resulting from the application of the first
two components. The details of the approach can be
found in our previous research (Hydara et al., 2014).

The third component of our approach has been
successfully, implemented on desktop web applications
(Hydara et al., 2015b). It can be used to secure web
applications containing XSS vulnerabilities. After XSS
vulnerabilities are detected in the source code of
applications, the removal process can be carried out. The
OWASP’s Enterprise Security API (ESAPI) security
mechamsms (Anonymous, 2016b) are followed as a
guideline to remove the detected XSS vulnerabilities. The
lines of code where the XSS vulnerabilities are located are
identified. Then, we determine which of the ESAPI
escaping rules can be applied to replace those lines of
code without compromising their functionality. Finally, we
generate the secure codes of the escaping statements and

6618

J. Eng. Applied Sci., 13 (16): 6616-6621, 2018

put them in place of the vulnerable statements, using the
OWASP XSS prevention rules discussed in the next
subsection.

RESULTS AND DISCUSSION

The OWASP’s XSS prevention rules: X383 attacks occur
when special characters such as “*, “s¢ 7, ‘<" are
injected into user inputs. Typically when a web program
references user inputs in its HTML outputs it expects that
client-side browsers treat those mputs as only data.
However, the malicious injected characters cause these
browsers to interpret them as code. Therefore, an XSS
exploit occurs by illegally changing the data context
to code context. Anonymous (2016d, 2017)has established
XSS prevention rules (Table 1) to follow to ensure that
any user input referenced in an HTML output is only
treated as data.

The rules ensure that the appropriate escaping
mechanisms are used on data inputs based on the HTML
context the vulnerable code is referenced. They help to
ensure injected especial characters are not executed
thereby disabling XSS vulnerabilities. In addition, using
these rules poses no negative effects on the referenced
data even if the HTML output is not vulnerable to XSS.
The XSS prevention rules for reflected and stored XSS are
summarized in Table 1 while those for DOM-Based XSS
are summarized in Table 2. For more details on these rules
please refer to Anonymous (2016d, 217).

There is a fundamental difference between reflected
and stored XSS when compared to DOM based XSS.
reflected and stored XSS are server side execution 1ssues
while DOM based XSS 1s a client (browser) side execution
1ssue. However, all of this code originates from the server,
therefore, it is the application developer or owner’s
responsibility to make it secure from XSS, regardless of
the type of XSS flaw it 18 Anonymous (2017). There
are 5 sub rules under this rule.

The ESAPI API: OWASP has released the Enterprise
Security API (ESAPI) (Anonymous, 2016b) to the
security community which is a tool that can be used to
the XSS prevention rules discussed in the
previous section in vulnerable web applications. ESAPI
helps to enforce security in both developed and
developing web applications. Tt is available in different
programming languages such as Java, NET and PHP. In

enforce

our approach, we make use of the ESAPI mnplemented
for Java, since, our test subjects were developed mn Java.
ESAPI provides many security mechanisms including
authentication, validation, encoding, encryption, security
wrappers, filters and access control to mitigate various

Table 1: Prevention rules for reflected and stored X88
Prevention rules Descriptions

Rulefi0 Do not reference user inputs in any other cases except the
ones defined in Rule#1 -Rule#7

Rule#l Use HTML entity escaping for the untrusted data
referenced in an HTML element

Rulef2 Use HTML attribute escaping for the untrusted data
referenced as a value of a typical HTML attribute such
as name and value

Rule#3 Use java script escaping for the untrusted data referenced
as a quoted data value in a Java script block or an event
handler

Rulefid Use CSS escaping for the untrusted data referenced as a
vahie of a property ina C88 style

Rule#is Use URL escaping for the untrusted data referenced as a
HTTP GET parameter vahie in a URL

Rule#o Use a specific sanitizer for tainted data that contains

HTML encoding such data is difficult since all the tags
in the input can be broken. Therefore a library that can
parse and clean HTMI. formatted text is needed. An
example is the OWASP Java HIML Sanitizer
(Anonymous, 2015)
Rule#7 Prevent DOM-Based X88S. The only rule focusing mainly
on DOM based X88. Tt has five sub-rules under it

Table 2: Prevention rules for DOM based XSS
Prevention rules Descriptions

Rule#7-1 HTMI. escape then JavaScript escape before inserting
untrusted data into HTML subcontext within the
execution context

Rule#i7-2 JavaScript escape before inserting untrusted data into
HTML attribute subcontext within the execution context

Rulefi7-3 Careful when inserting untrusted data into the event
handler and JavaScript code subcontexts within an
execution context

Rule#7-4 JavaScript escape before inserting untrusted data into the
CSS attribute subcontext within the execution context

Rule#7-5 URL escape then JavaScript escape before inserting

untrusted data into URL attribute subcontext within the
execiution context

web security 1ssues. Hence, it 15 easier for developers to
implement any of these mechanisms in their applications
with the same APL

ESAPI needs to be installed into an application for its
security controls to be used. Details on its mstallation
and configuration procedures can be found in the
documentation downloadable from: code.google.com/
plowasp-esapi-java/. The ESAPT Tava documentation for
the escapmg or encoding APIs can be downloaded from:
owasp-esapljava.googlecode. com/svn/ trunk doc/latest/
org/owasp/esapi/Encoder.html. After it is properly
installed, ESAPI could be used to secure data that was
not validated m an application. It helps to encode the data
before it 18 referenced in an HTML output.

The XSS prevention rules to enforce and the
corresponding HTMIL which
appropriate encoding API 15 to be used. For example,

context determine

Rule #] applies when the context 138 HTML element.
Therefore, the following escaping APT is used:
<div>ESAPIL. encoder().encodeForHT ML {(untrusted-

data)</div>>(Shar and Tan 2012).

6619

J. Eng. Applied Sci., 13 (16): 6616-6621, 2018

Removing XSS vulnerabilities: This approach has two
steps. The first step is to locate the lines of code
vulnerable to XSS attacks and identify the HTML context
in which the vulnerable code 1s referenced. This step also,
identifies which escaping mechanism to use according to
the HTML context and the appropriate XSS prevention
rule. The second step is the source code replacement for
the vulnerable codes. Then, the ESAPT escaping rules are
applied to replace those vulnerable lines of code without
compromising their functionality. The details of the
algorithms used in these steps are provided by Shar and
Tan (2012). The removal of all XSS vulnerabilities
detected in the tested programs can be done using these
algorithms. Since, only the vulnerable codes are escaped
there is not much modification done in the programs that
are tested.

Evaluation: The above approach has been implemented in
a prototype and we are currently evaluating it for its
effectiveness in removing XSS vulnerabilities in mobile
versions of web applications. The development of the tool
was 1mplemented with the Eclipse IDE using the Java
programming language. The OWASP’s XSS prevention
rules and the ESAPI API are integrated into the tool.

Preliminary evaluation results on some mobile
applications are promising and show the feasibility of our
approach in removing XSS vulnerabilities in mobile
versions of web applications. We expect our tool to be
able to remove all XSS5 vulnerability types m mobile
applications as we did previously in desktop web
applications. We will continue testing the approach with
similar dataset as Javed and Schwenk (2013) and
Dong et al. (2014) and compare our results with theirs. We
expect our results to be an improvement to their solutions.
We will also, look for more dataset to increase the overage
of our evaluation

CONCLUSION

This study presented a research in progress
approach for XSS removal using the OWASP XSS
prevention rules as well as the ESAPI security APL. The
proposed approach is an enhancement based on our
previously proposed approach for desktop web
applications. The approach can remove detected XSS
vulnerabilities in web applications. Cross-site scripting 1s
a major security problem for web applications and it 1s
now affecting mobile web applications as well. It can lead
to account or web site hijacking, loss of private
information and denial of service, all of which victimize
web application users.

Preliminary evaluation results have shown promising
results. Next on this progressive work, we will fully
evaluate and validate the proposed approach. A
prototype tool has been developed to automate this

process. Preliminary evaluation indicated promising
results. We will continue to test the approach on real
world mobile web applications. We expect our approach
to help mobile application developers to be able to
detect XSS vulnerabilities in their web applications.
This will benefit the applications users by protecting
them from XSS attacks.

ACKNOWLEDGEMENT

We acknowledge that this research received support
from the Fundamental Research Grant Scheme
FRGS/1/2015/1CTO1/UPM/02/12 awarded by Malaysian
Ministry of Higher Education to the Faculty of Computer
Science and Information Technology at Universiti Putra
Malaysia.

REFERENCES

Acker, S8.V., N. Nikiforakis, L. Desmet, W. Joosen and
F. Piessens, 2012. FlashOver: Automated
discovery of cross-site scripting vulnerabilities in
rich internet applications. Proceedings of the 7th
ACM Symposium on Information, Computer
and Communications Security, May 2-4, 2012,
ACM, Seoul, Korea, ISBN:978-1-4503-1648-4, pp:
12-13.

Agosta, G., A. Barenghi, A. Parata and G. Pelosi, 2012.
Automated security analysis of dynamic web
applications through symbolic code execution.
Proceedings of the 9th International Conference on
Information Technology New Generations (ITNG™12),
April 16-18, 2012, TEEE, Las Vegas, Nevada,
ISBN:978-1-4673-0798-7, pp: 189-194.

Anonymous, 2014, Mobile top 10 2014-m7. OWASP,
Maryland, USA. https://www.owasp.org/index.
php/Mobile Top 10 2014-M7

Anonymous, 2015. OWASP JTava HTML sanitizer project.
OWASP, Maryland, USA. https://swww.owasp.
org/index. php/OWASP Java HTMI. Sanitizer Pro
ject

Anonymous, 201 6a. Category: OW ASP enterprise security
APL OWASP, Maryland, USA. https://www.owasp.
org/index. php/Category: OWASP Enterprise Secur
ity API

Anonymous, 201 6b. Cross-Site Scripting (335). OWASP,
Maryland, USA. hitps:/www.owasp.org/index.
php/Cross-site_Scripting (XSS)

Anonymous, 2016¢c. OWASP modsecurity Core Rule Set
(CRS). OWARSP, Maryland, USA. https: /modsecurity.
org/crs/

Anonymous, 2017. CWE-79: Improper neutralization of
mput durmg web page generation (Cross-site
Scripting). Continental Wrestling Entertainment,
Jalandhar district, India. http:/cwe.mitre.org/
data/definitions/79 html

6620

J. Eng. Applied Sci., 13 (16): 6616-6621, 2018

Anonymous, 2017. DOM based XSS prevention cheat
sheet. OWASP, Maryland, USA. https://’arww.owasp.
org/index. php/DOM_based XSS Prevention Chea
t Sheet

Bathia, P., BR. Beerelli and M.A. Laverdiere, 2011.
Assisting programmers resolving vulnerabilities in
Tava web applications. Proceedings of the Ist
International Conference on Computer Science and
Information Technology (CCSIT’11), January 2-4,
2011, Springer, Bangalore, India, ISBN:
978-3-642-17880-1, pp: 268-279.

Chen, YI.., HM. Lee, AB. Jeng and T.E. Wei, 2015.
Droideia: A novel detection method of code
injection attacks on html5-based mobile apps.
Proceedings of the 2015 ITEEE International
Conference on Trustcom/BigDataSE/TSPA Vol. 1,
August 20-22, 2015, IEEE, Helsinki,
Finland, ISBN: 978-1-4673-7951-9, PP
1014-1021.

Dong, G., Y. Zhang, X. Wang, P. Wang and L. Liu, 2014,
Detecting cross site scripting vulnerabilities
introduced by HTMLS5. Proceedings of the 11th
International Joint Conference on Computer Science
and Software Engineering (JCSSE), May 14-16, 2014,
TEEE, Beijing, China,ISBN:978-1-4799-5822-1, pp:
319-323.

Duchene, F., R. Groz, S. Rawat and I.L.. Richier, 2012. {SS
vulnerability detection using model inference assisted
evolutionary fuzzing. Proceedings of the 2012 TEEE
5th International Conference on Software Testing,
Verification and Validation (ICST’12), April 17-21,
2012, IEEE, Montreal, Canada,ISBN:
978-1-4577-1906-6, pp: 815-817.

Fogie, S., I. Grossman, R. Hansen, A. Rager and P.D.
Petkov, 2007. XSS Attacks: Cross Site Scripting
Exploits and Defense. Syngress, Bostor,
Massachusetts, ISBN-13: 978-1-59749-154-9, Pages:
464.

Gundy, M.V. and H. Chen, 2012. Noncespaces: Using
randomization to defeat cross-site scripting attacks.
Comput. Secur., 31: 612-628.

Huyam, A.A. and E. El-Qawasmeh, 2012. Discovering
security vulnerabilities and leaks in ASP: NET
websites. Proceedings of the 2012 International
Conference on Cyber Security, Cyber Warfare and
Digital Forensic (CyberSec’12), June 26-28, 2012,

IEEE, Kuala Lumpur, Malaysia, ISBN:
978-1-4673-1425-1, pp: 329-333.
Hydara, T., ABM. Sultan, H Zulzalil and N.

Admodisastro, 2014. An approach for cross-site
scripting detection and removal based on genetic
algorithms. Proceedings of the 9th International
Conference on Software Engineering Advances
ICSEA, October 12-16, 2014, TARIA, Nice, France,
ISBN: 978-1-61208-367-4, pp: 227-232.

6621

Hydara, 1., ABM. Sultan, H. Zulzalil and N.
Admodisastro, 2015b. Current state of research on
cross-site scripting (XS5)-A systematic literature
review. Inform. Software Technol., 58: 170-186.

Hydara, 1., ABM. Sultan, H Zulzalil and N.
Admodisastro, 201 5a. Removing cross-site scripting
vulnerabilities from web applications using the
OWASP ESAPI security guidelines. Indian J. Seci.
Technol., & 1-5.

Javed, A. and J. Schwenk, 2013. Towards elimination of
cross-site scripting on mobile versions of web
applications. Proceedings of the 14th International
Workshop on Information Security Applications
(WISA’13), August 19-21, 2013, Springer, Jeju Island,
Korea, ISBN: 978-3-319-05148-2, pp: 103-123.

Mutchler, P., A. Doupe, J. Mitchell, C. Kruegel and G.
Vigna, 2015. A Large-scale study of mobile web app
security. Proceedings of the 2015 International
Workshop on Mobile Security Technologies
(MoST’15), May 21, 2015, Fairmont San Jose, San
Tose, California, USA., pp: 1-11.

Scholte, T., W. Robertson, D. Balzarotti and E. Kirda,
2012. Preventing input validation vulnerabilities in
web applications through automated type analysis.
Proceedinsg of the 2012 TEEE 36th Annual
International Conference on Computer Software and
Applications, Tuly 16-20, 2012, TEEE, Tzmir, Turkey,
[SBN: 978-1-4673-1990-4, pp: 233-243.

Shah, S., 2012. HTMLS5 top 10 threats-stealth attacks and
silent exploits. BlackHat, Las Vegas, Nevada, USA.
https://media.blackhat. com/bh-us-12/Briefings/Sha
h/BH US 12 Shah Silent Exploits WP.pdfShar,
LK. and HBK.Tan, 2012. Automated removal of
crosssite scripting vulnerabilities in web applications.
Inform. Software Technol., 54: 467-478.

Shar, L. K. and HB K. Tan, 2012. Automated removal of
cross site scripting vulnerabilities m web
applications. Inform. Software Technol., 54: 467-478.

Sharma, P., R. Johari and 3.8. Sarma, 2012. Integrated
approach to prevent SQL injection attack and
reflected cross site scripting attack. Intl. I. Syst.
Assur. Eng. Manage., 3: 343-351.

Sun, Y. and D. He, 201 2. Model checking for the defense
against cross-site scripting attacks. Proceedings of
the 2012 International Conference on Computer
Science and Service System (CSS5°12), August 11-13,
2012, TEEE, Nanjing, China, ISBN: 978-1-4673-0721-3,
pp: 2161-2164,

Vomnegut, S., 2015, XSS: The defimtive guide to

scripting Checkmarx,

Nuremberg, Germany https://www. checkmarx.com/

2015/04/1 4/xss-the-definitive-guide-to-cross-site-sc

ripting-prevention/

cross-site prevention.

	6616-6621 - Copy_Page_1
	6616-6621 - Copy_Page_2
	6616-6621 - Copy_Page_3
	6616-6621 - Copy_Page_4
	6616-6621 - Copy_Page_5
	6616-6621 - Copy_Page_6

