Tournal of Engineering and Applied Sciences 13 (15): 6281-6292, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Malware Analysis and Detection Approaches: Drive to Deep Learning

"Togeer Ali, >*Salman Jan, *Shahrul Niza Musa and "Atiqur Rahman
Tslamic University of Madinah, Medina, Saudi Arabia
%3Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Malaysia
*University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan

Abstract: The growing number of malware attacks poses serious threats to private data and to the expensive
computing resources. To detect malware and their associated families, anti-malware companies rely on
signatures which indeed include regular expressions and strings. The recent malware attacks in the last few
years including the resurgence of ransomware have proven that signature-based methods are error-prone and
can be easily evaded by mtelligent malware programs. This study reviews traditional and state-of-the-art models
developed for malware analysis and detection. According to our observation the classification of malware and
their behavior facilitates in provision of basic insights for the researchers working in the domain of malware
analysis. At the end we present the conception of using Deep Convolutional Generated Adversarial Networls
(DCGAN) in the area of malware detection as the DCGANs are the latest approach in deep learmng that

effectively deals adversarial examples.

Key words: Trusted computing, neural networks, RNN, ESN, CNN, GAN, DCGAN, GPU

INTRODUCTION

Computing infrastructure has transformed into web
of interconnected and mutually, dependent hardware
and software (Alam et al., 2008, 2012). A wide range of
services are provided on the mntemet and as a result
individuals, organizations, businesses and the
governmental agencies handle their computations online
(Cusumano, 2010). The service providers in different areas
of mterest, provide services online. However, they require
strong security mechanisms against the newly build
growing attacks on the software (Willems et al., 2007
Hasselbring and Reussner, 2006; Moein ef al., 2014). It
has also been observed the growth of metamorphic
and polymorphic malware which frequently change
appearances to avoid being detected (You and Yim, 2010;
Cesare et al., 2013; Bodke, 2013, Santamarta, 2006). There
1s a continuous exponential growth observed in malware
in the last two decades as shown in Fig. 1.

As per report of symantec, more than 430 million new
malware are reported in the year 2015, 1.e., an increase of
36% as compared to the prior year. Furthermore, as
available on statistics page of virus total, there are over
millions of newly retrieved samples that had to be
analyzed (Anonymous, 2017).

The conception of ransomware which 1s presented
back in 1980°s have aroused and affected computations all
over the world (Cohen et al., 2017, Liao et al., 2008). The

malware typically locks the desktop of target system and
makes it mnaccessible by overwriting, encryption or by
deletion of system’s files. The most astounding number
of zero-day vulnerabilities was uncovered in 2015.
Figure 1 and 2 represents year wise increase in percentage
of malware attacks.

The prevention of sensitive data, information and
other important contents from malicious softwares
runming on client computers has now remained top
priority of service providers. To ensure protection of data
agamst miscreants, there are many software-based
solutions available, e.g., anti-viruses, Intrusion Detection
Systems (IDS), etc. (Ismail et al., 2014). However, current
literature reveals that the existing signature-based
anti-viruses and IDS are itself vulnerable to attack. In
order to device an effective defensive measure, the
antimalware developers rely on a system that
automatically analyze a novel variant of an existing
malware. Signature-based strategies or heuristic-based
detection cannot stay up to date with the security
difficulties of the increasing growing malware whuch are
polymorphic in nature. In addition, writing malicious
programs has become easier than ever as a result of
advances in the development of malware. Malicious
programing make use of metamorphic or polymorphic
algorithms which produces a completely different
variant of a malware sample. These adversarial malware
sample causes being avoided in detection through

Corresponding Author: Togeer Ali, Islamic University of Madinah, Medina, Saudi Arabia
6281

J. Eng. Applied Sci.,

13(13): 6281-6292, 2018

60

Percentage of malware growth

Fig. 1: Malware growth over the years 2006-2015, annual total

Malware
detection
I
Signature-based \ Anomaly-based
‘ Dynamic Hybrid l Static Dynamic Hybrid

| Static

Fig. 2: Malware detection classification techniques (Tdika

signature-based approaches or during correctly
classifying them. There i1s unammous agreement among
experts in the fields of security that Commercial of the
Shelf AntiVirus (COTS AV) are not capable to deal with
zero day malware (Kolosmaji ef al., 2016; Kolter and
Maloof, 2006, Mehdi et ai., 2010).

The intrusion detection systems have been used to
ensure platforms and application’s trustworthiness
(Rowett and Sikdar, 2005; Scheidell, 2009; Day, 2007,
Liao et al, 2013) but it 1s reported that IDS require

and Mathur, 2007)

extensive traming as these generate unacceptable false
alarms. In the following subsection, we elaborate various
malware analysis techniques including static, dynamic
and hybrid before we review machine learning approaches

(Fig. 3).

Literature review: A number of Machine Learning (ML)
algorithms and approaches are suggested in the past
which includes decision tree, association rule, Support
Vector Machine (SVM), Naive Bayes, clustering and

6282

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

Execution trace

Dynamic analysis aug .ented W.lth
taint information
of the sample
and network

analysis results

Extraction of the

Fig. 3: Overview of the framework (Bayer et al., 2009)

random forest, neural networks, Recurrent Neural Network
(RNN) and Long Short Term Memory (LSTM) for
analyzing malware based on specific criteria and features.
The followmg literature review presents a number of
techniques and models used for the purpose of analyzing
malware used along with clustering, classification and
anomaly based systems. For detection of malware, the
very first concept of using data mimng approach was
provided by Schultz et al. (2001). They presented a data
mining framework that trains classifiers on benign and
malicious dataset to learn underlying patterns in both
benign and malicious binaries. The researcher claim that
the existing anti-virus approaches are based on heuristics
which are generated by hand and unless a signature is
created for a malicious code, the anti-viruses are not able
to detect the same malicious code. These heuristics based
approach 1s not reliable at times when applied on unseen
malicious executables. For the purpose of malware
classification, the researcher used static features, ie.,
Portable Executable (PE), byte sequences and strings
data. Inside the portable executables files, there are DLLs
information from which various features are extracted. The
information includes list of DLL function calls, DLLs list
utilized by binary and various system calls in a DLL. “n”
bytes are extracted as per byte sequence approach from
executables and similarly text strings from the executables
are extracted. A data set of 4266 files was used having
1001 bemign and 3265 malicious programs. They further
applied rule mduction algorithm to find patterns in the
DLL data. A learning algorithm Naive Bayes (NB) was
used to find patterns in the string data and byte
sequences of n-grams was utilized as mput data to the
algorithm. As per thewr report, the algorithm produced
97.11% classification accuracy.

Chen et al. described the primitive for verification of
software known as oblivious hashing. The technique
verifies static shape of code and allows the hash
computation of the actual execution of a program. The
approach is applicable in providing tamper resistance
feature m a local protected software code as well as
remote code authentication. The program code which 1s

behavioral Clustering
profile
essentially abstract machine instructions of a set
I={i, 1, .., 14}, basically performs various read/write

operations on memeory locations M = {m,, m,, ..., my}. The
principal 1dea is to extract function or program’s execution
trace and to calculate a hash value for that execution flow.
The approach utilizes the hash value to determine the
integrity of executables which can be cracked by
miscreants to falsify the classification.

For detection and classification of malware
executables based on n-grams (Kolter and Maloof, 2006;
Kolter and Maloof, 2004) used data mining technique.
They obtained 255 million unique n-grams after gathering
and encoding 1651 mtruded executables and 1971 number
of benign executables using n-grams of byte codes as
features and training examples. The most relevant n-grams
were opted for prediction 4 and the evaluation of
framework was carried out using naive bayes, decision
trees and support vector machines. Among them, boosted
decision generated better results during correctly
classification of malware than all and provided AUROC
curve of 0.99,

Ye et al. (2007) proposed IMDS (Intelligent Malware
Detection System). The approach utilizes windows API
execution sequences generated by portable executables.
The IMDS modules mclude portable executable parser,
object oriented association rule generator and a classifier
based on rules for the classification of executables. They
compared the efficiency of their malware detection
techmque with VirusScan, MecAfee and mming
techniques including Support Vector Machine (SVM),
Decision Tree (J4.8) and Naive Bayes wherein their
approach, IMDS outperformed the rest in terms of TP, TN
detection rate 97.19% and accuracy 93.07%.

Bayer et al. (2009) gave a scalable approach for
clustering and identification of samples that exhibit similar
behavior. They performed dynamic analysis, using
ANUBIS (Anonymous, 2010) to obtain the execution
traces of malware programs in a controlled environment
which are further generalized into behavioral profiles. Data
tainting approach 1s utilized to track dependences
between system calls and to subsequently obtain profiles.

6283

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

The profiles basically characterize the overall activity
performed by programs in an abstract manner, i.e., The
system calls their existing dependences over each other,
and network activities are generalized in such a manner
that consist various operating system objects and the
different operations performed over them. These are
provided as feed to clustering algorithm, Locality
Sensitive Hashing (LSH) which learn various underline
pattern within profiles. An overview of their approach is
represented through Fig. 3 overiew. According to their
results, these algorithm cen actually cluster similarly
behavior to report behavior as either benign or malicious
based on distances with samples. However, their aproach
achieves low accuracy rate.

The researcher claim that their framework per form
better in terms of precision than the existing approaches
which are slow as well as not scalable. Moreover, the
presented approach can cluster 75000 samples in span of
3 h approximately. Their technmique 1s trace-dependent, 1.e.,
a malware behavior 1s triggered once specific condition
is met. They have evaluated their framework through
state-of-the-art clustering methods (Shafiq ez al., 2009)
proposes method to detect previously unknown malware
that automatically extracts distinguishing features from
Portable Executables (PE) of windows operating system.
The PE is a file format which is standardized by the
microsoft windows operating systems for executables,
Dynamically Linked Libraries (DLL) and object files. The
researcher used a threefold research methodology in
which the structural features are selected, reduced by
preprocessing and finally data-mining techniques were
applied for classification. Their framework comprises of
three feature
selection/preprocessing module and detection module.
The researcher also made a comparison with other
detection schemes and found their method better than
others. They called the framework as PE-miner which 1s
evaluated to have an accuracy of 99% with less than 0.5
false alarm. The framework is built on windows but it can
be scaled around different operating systems. They
employed different classifier algorithms (Instance Based
Learner (IBk), J48, Inductive Rule Learner (RTPPER) and
SVM) and carried out evaluation in which T48
outperformed the rest in terms of detection accuracy.

Tian et al (2009) presented malware classification
technique based on printable string information inside
executable. Tn their study, they extracted strings from
1367 samples of clean and mtruded 5 files and used
various classification algorithms including nearest
neighbour algorithm, tree based classifiers, statistical
algorithms and AdaBoost. Their experiment provided
97% classification accuracy. Since, they have applied

modules extrachon module feature

Malware binary

Binary to 8 bit vector to
T
10100001 vector image

Fig. 4: Malware representation through an
(Nataray et af., 2011)

image

static technique, these information extracted from these
malware in form of printable strings can be manipulated to
generate wrong results. In an subsequent study by the
same researcher (Tian ef al., 2010) mvestigated behavioral
features through Application Programming Interface
(APTs) calls for detection of malicious files. These features
are extracted from executables using trace tool namely
HookMe. The framework executes files m virtual
environment and collect their logs. They performed and
carried out experimental results on malware of size
1368 and cleanware of size 456 files wherein RFk presents
the best performance of 97% m terms of accuracy n
identifying malware from cleanware. While TB1 is slightly
lower in performance. The wvirtual environment not
necessarily obtains all of the APT calls as certamn newly
created malware unpacks themselves and are executed on
specific event basis.

Nataraj et al. (2011) proposed to represent malware
executables as binary strings which may be sequence of
zeros and ones to form vectors. The vectors are reshaped
to build matrix, so that to represent executables as an
images as represented in Fig. 4. They have reported and
visualized that various malware families are distint and
have different visual characteristics. Moreover, they used
texture analysis technique of computer vision to classify
families of malware. A K-nearest neighbor technique with
Euclidean distance method s
classification. Their results mdicate 98% accuracy for
classification of malware over an opted database
containing 9458 samples having 25 various malware
families. Miscreants can adopt countermeasures to
mamipulate binaries or sections can be added with
redundant data to misrepresent executables. In order to
analyze dynamic behavior of platform (Ali et al., 2010)
presents the idea of using the techniques developed for
intrusion detection. They used stochastic machine
learning technmiques to model systems calls sequences
generated by a target application on remote machine.
Measuring systems calls on a platform and securely
reporting the same to challenger for verification purpose
15 one of the hmitations of remote attestation. The
researcher have represented systems calls in hyperspace
which actually keeps record of sequence of system calls
generated by executable. After collecting the hypergrams,

used for malware

6284

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

they are measured and its hashes are extended to PCR
inside TPM and reported to challenger. Their experimental
results depict that the technique is feasible in determining
behavior. Their learming models using Naive Bayes, OR,
T48, Bayes net was 59.14, 62.19, 78.65, 85.72, respectively.
It is however, noticeable that intruders can device
mechanism to manipulate the verification procedure by
reporting a known good hypergram to the challenger
which can lead to higher rate of false positive and compel
to restrict the use of the system.

Santos et al. (2013) developed a hybrid model to
detect malware called OPEM which operates appearance
of opcodes. Researcher presented method to extract
opcodes that are most relevant and then evaluated
frequency of opcode sequences. A labeled data set of
17000 malicious programs with 585 malware families are
downloaded from VxHeavens and are feeded to Eset
antivirus to confirm the labeling. While 1000 legitimate
executables are collected from computers. The optcode
equences are extracted for each file i the datasets.
Researcher provided empirical validation that the method
detects newly created malware too. Used instance
selection for resampling new 6 ones and feature selection
to decrease number of features which ultimately improves
machine learning accuracy. They used several
classification algorithms to wvalidate the approach
mcluding random forest, J48, K-Nearest Neighbour
(KINN), Bayesian Networks (BN), Naive Bayes, Support
Vector Machines (SVM). K2 is found to be the fastest
Bayesian classifier, requiring 8.93 and 0.10 msec for
traming and testing, respectively. TAN founded the
slowest traming time at 488.69 msec requiring 0.15 msec
for testing. random forest was better and fast than J48
with 2.68 msec of traimng time. The SVM yielded 92.92%
accuracy for an opcode sequence of length one while
95.90% accuracy 1s observed for opcode sequence of
length two.

Islam et al. (2013) carried out a similar study and
provided a hybrid malware classification method which
mtegrates features mnto a smgle test, ie., the static
features (printable string information, function length
frequency) and the dynamic features (i.e., APT function
names and parameters) are extracted from dataset of 2939
programs which contains 541 benign files. SVM, DT and
RF learning models were used as classifiers and found
that random forest outperformed the rest.

Kong and Yang (2013) provided an automated
framework that extracts structural features from malware
programs to create their associate function call graphs.
These graphs essentially provides information about the
various system calls made 1n each function to perform L/O
read/write operations. The extracted mformation are

encoded as attributes of the function node in the graph.
Moreover, they utilized discriminant distance metric
learming and pairwise graph matching in order to compare
malware programs that actually compares their features
and if they are similar they place it in relevant cluster while
keeping other clusters at marginal distance. They trained
classifier which based on pair-wise malware distances,
places new malware n appropriate clusters automatically.
However, their framework again seems like to act as
signature-based approach as it may not classify correctly
those newly bom malware which are not defined in the
malware clusters/families. The FCG-driven [feature
extraction and pairwise graph matching, could be used for
malware clustering as well.

Asmitha and Vinod (2014) have proposed a
classification model for determmning intruded executable
linkable files based on machine learning for the growing
attacks on unix based machines. Their approach extracts
system calls dynamically through a system call tracer
utility strace. A classification model 13 bult through
benign and intruded malware sample system calls
sequences and the trained model is test which reported
malware classification accuracy of 97%. The researcher
have compared their approach accuracy with those of
existing ones.

Avdiienko et al. (201 5) studied malicious and benign
applications treatment with the sensitive data and based
on the differences of dealing with sensitive data or the
data flow pattern in terms of benign and malicious, the
applications are classified into benign or malicious. They
called their prototype as mudflow an approach for mining,
comparing and classifying the data flow of android
applications. They trained classifier with data flows from
bemgn applications only and use the same for detection
of novel malware. To test prototype, they processed
10.552 malicious applications which were lealing sensitive
data, through mudflow and found that 0% of them are
malicious with a positive rate of 18.7%. If the prototype is
trained through malaware applications, it could learn and
generate more acceptable classification results. Their
method is prone to obfuscation as the dataflow pattern of
malicious applications were compared to benign, intruders
may change the data flow patterns accordingly to mislead
the system.

Agrawal and Agrawal (2015) reviewed data mining
approaches to detect various aftacks. They presented a
basic model as shown m Fig. 5 to indicate basic processes
outlined in malware analysis. The researches have
recommended that although, specific algorithms are
developed for dealing malware behaviors but it would be
more appropriate to use a hybrid version to design a
better framework as everyday we come across 7 newly

6285

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

Monitored
environment
AN
Parameterization Training

Model

Fig. 5. Reproduced figure of anomaly detection (Agrawal and Agrawal, 2015)

Syscalls for malicious app

Gy il | sys_open ”SySJXCCVC||sys_chroct|| sys_ioctl ” sys_writel
Sys_exceve
sys_chroct - — - -
sys_loctl Capture |5)’5JXC€V€||sys_chmct|| sys_ioctl " sys_write ” sys_open |
sys_write - - 1 all syscall| [syscalll
sys_open |sys_chroct|| sys_ioctl ” sys_write " Sys_open ” Sysﬁlsockl sysgal sys]; yy)’Z
sys_Isock =
v 1 0 0 0
. 0 1 0 1
Syscalls for benign app Conversion 0 0 0 0
0 0
S)’SJ’EE" | sys_open ”sysﬁchown" sys_selgit || sys_ioctl ” sysﬁsplicel 0 0 ? 8
sys_chown
_chov 0 0 0 1
Sysflse|%llt Capture |sysﬁchown" sys_selgit ” sys_ioctl ||sysﬁsplice” sys_tee | = =
sys_loc
sys_splice |sys selgit" sys_ioctl ”sys splice” sys_tee || sys closel
sys_tee — — — —
sys_close
v

Fig. 6 Capturing system calls from malicious and benign applications and encoding them under one hot encoding
scheme (Nawuman et af., 2016; Christopher Olah, 2015)

Generator

3

4 7 g 16 - B
Project and reShap;\i &9'}‘&} CCONV 2 CON\./. 3
CONV 4

Discriminator
m#. e = | csmssnessceecy
P(2)
Y -TalNIRNIIN L~ dfaY

G(2)

Fig. 7: Layers of generator and discriminator in deep convolutional generated adversarial network (Lipton, 2017)

created malware and usmng hybrid version we can
overcome the deficiency in one algorithm by researcher,
e.g., ID3 and C4.5 which are modified form of SVM and
decision tree. Fusion is recommended to obtain more
accuracy. A lot of research 13 done on hybrid frameworks
(Fanid et al., 2010, Farid et al., 2014, Fu et al., 2012).
Mohaisen et al. (2015) presents Automated Malware
Analysis and Labeling (AMAL) system that is claimed to
be more efficient as compared to the existing malware
analysis systems. Their framework has two components
namely autoMal and mall.abel. The autoMal takes into
considering the collection of behavioral aspects of
malware that require access to memory, registry, network
or the file system. These behavioral information are

collected i a virtual environment. While Mall.abel utilizes
those behavioral details to build classifier to classify
samples into families that share common characteristics.
Their approach achieves 99.5% precision and 99.6% recall
for classification of specific families (Fig. 6-9)

Pascanu et al. (2015) presented a more better
approach for analyzing malware which actually learns
the language of malware programs when these are
under execution based on time domam features. These
features are extracted through the machme learning
models recurrent neural networks and echo state
networks to learn malware language these techniques are
effective 1n sequence recognition. The wnrolled version
RINN 15 presented inFig. 9. To test the model, a dataset

6286

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

Portable executable file

:

Malware zoo

Malware Cuckoo
collection sandbox
A 4
IPreprocessing
A

A
Neural
network

A\ 4
Family 2 | |

| Family 1 | | Family n

Fig. 8: Malware classification using neural networks
(Kolosnjaji et al., 2016)

Fig. 9. Unpacked recurrent neural networks (Christopher
Olah, 2015)

containing 500000 of malware and benign applications
was divided into 29750 for training, 52500 for validating
and 150000 for testing. The RNN and ESN with logistic
regression and maxpooling provided a classification
accuracy of 98%. However, the RNN have an mdefimte
period of hidden states which are multiplied with weights
to produce some other hidden states. On the last hidden
state when the gradient iy computed and back propagated
cause vamishing gradient 1ssue which effects learning as
weights (parameters to compute minimum cost of models)
are not updated which we need for determining the
minimum cost. To overcome these leaming issues, Long
Short Term Memory (LSTM) 1s used.

Joshua er al (2015) utilized deep neural
networks for malware analysis keeping in view that the
earlier machine leammg based malware detection
methods produce low false positive rates. The approach
is scalable to real world examples and research even with
commodity hardware. Their evaluation results depict
95% accuracy m detecting malware with false
positive rate of 0.1% over a dataset contaimng 400000
software binaries. Neural networks have incremental
learning embedded feature which allows it to train the
learning meodel in batches and upon receiving tramng
examples, the model can be retrained. The network

may not perform very well upon receiving perturbed
data which is
network.
Kolosmaji et al. (2016) attempted to model the
malware system call sequences for the purpose of malware
classification as elaborated in Fig. 8. In order to collect

one of the flaws of the neural

best features for malware classification, they formed a
neural network based on CNN and RNN. The mostly
advanced paradigm neural networks are used to classify
malware samples into families into predefined malware.

they model system calls using
convolutional networks for counting the presence of
system calls in a behavicral trace while the recurrent

Moreover,

neural networks are utilized as state-full model for learning
or memorizing the appearances of system call with relation
to previous system calls. Both, the networks are used in
a hierarchical fashion for obtaining enhanced detection
capabilities. As per evaluation results presented in the
paper, model achieves an average accuracy, recall and
precision above 90% for malware classification.

Tn a later study of Kolosnjaji et al. (2017) implemented
convolutional with feedforward NN that encompasses
sttucture or hidden layers for extracton of useful
information. The headers of portable executable files are
used as means for extraction of information. Their hybrid
neural network is combination of layers of convolution
and feedforward, utilizes metadata of PE, imported
functions and series of opcodes. These are provided as
input to hybrid NN which learn the underline patterns
within these executables and after training, applying
back-propagation algorithms. They are able to separate
malicious programs from those of bemgn and classify
malware into 13 predefined classes. Their approach has
yet to determine technique which can further extract most
important features for malware classification into their
respective families. Moreover, their architecture feeds the
convolutional layers with one-hot encoding assembly
instructions they reported 93% recall and precision.

MATERIALS AND METHODS

Static, dynamic and hybrid malware analysis: The
malware analysis 1s roughly classified as static, dynamic
and hybrid malware analysis (Shanf er al, 2008,
Moser et al., 2007 Schmidt et af., 2009; Kim et ai., 2017,
Tslam et al., 2013). The static analysis does not execute
the software for analysis purpose. One of the static
analysis tools include PEInfo (Anonymous, 2017) which
can extract information or properties from malware code,
e.g., histogram, entropy, sectionlength, these information
can be used to characterize malware samples. Among the
static malware analysis approaches, filters are developed

6287

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

in order to extract malicious characteristics for unix
operating system. Miscreants can manipulate or
obfuscate the malicious code from which such mformation
extraction becomes difficult (Linn and Debray, 2003,
Moser et al., 2007). On the other hand, we have behavior
analysis mechanisms which considers to record traces of
an activity during execution of malware sample m a
controlled virtual environment. It 1s not guaranteed that a
malware will execute unexpected in controlled
environment as certain malware require a particular
condition to occur or become unpack itself. A dynamic
approach 1s complement to that of static technique as it 1s
less prone to obfuscation (Moser ef al., 2007). Both types
of analysis help us understand risks and intension of the
attacker. The approach that utilizes the strengths of both
static and dynamic approaches 1s referred to as a hybnd.
The malware detection classification techniques are
summarized in Fig. 2.

Machine learning based malware analysis: Machine
learning approaches are previously proven effective for
discovering various under lying features that are hidden

in large scale datasets. A number of domains including
natural language processing, computer vision are utilizing
machine learning tools like the neural networks which
offer superior accuracy in classifying various pattems
through its multiple layers which makes it possible to
learn deeply. In the subsequent study, we present the
growing concept of malware analysis using machine
learning techmques.

RESULTS AND DISCUSSION

For thus research, various employed techniques are
throughly reviewed and presented in preceding study
while a summary of machine learning based techniques
are elaborated in beneath Table 1. The basic i1dea of
malware analysis and the available malware detection
approaches are archived in JCR, TEEE, scopus, github and
google scholar. The strings including remote attestation,
trusted computing, malware analysis, machimne leaming
based malware analysis, neural networks and its variants
in pattern recognition, DCGAN implementation were used
to explore the indexes.

Table 1: Details of experimental results of various employed malware detection approaches

Remarks

Utilized 3 static features for malware classification, i.e., firstly,
Portable Executable (PE), the second, byte sequences and third
strings data. A data set having 1001 benign and 3265 malicious
is fed in to NB and obtained classification accuracy of 97.11%.
Encodes 1,971 benign and 1,651 malicious executable using
n-grams of bytecodes as features and training examples. The
Boosted decision trees outperformed other methods with an
area under the ROC curve of 0.996

Tested IMDS on 12214 benign and 17366 malicious samples
and obtained the following results: TP:1590, TN:10356, FP:
151, FN: 46, detection rate:97.19%0, accuracy: 93.07%

References Detection method Employed technique

Schultz et . (2001) Static Applied rile induction
algorithm Ripper, NB

Kolter and Maloof (2004, Dynamic DT, NB, boosting

2006) and SVM

Ye et ad. (2007) Static IMDS, SVM,
NB, J4.8

BRayer et al. (2009) Dynamic Clustering algorithm,
Locality Sensitive Hashing (LSH)

Shafiq et af. (2009) Static Tnstance Based Leamer (TBk), J48,
inductive rule leamer (RIPPER) and
SVM

Tian et of. (2009) Static TR1, RF, boosting technique
Adaboost

Farid et al. (2010, 2014), Hybrid ID3 and C4.5 as modified form

Fuet al. (2012), Agrawal of SVM and decision tree

and Agrawal (2015)

Tian et . (2010) Dynamic SMO, IB1, DT, RF

Nataraj ef al. (2011) Static K-nearest neighbor technique with

Euclidean distance method

Clusters similarly behavior to report behavior based on distances
with sarmples. The presented approach is able to cluster 75000
sarmples in span of three hours approximately

Malware datasets form VX Heavens, Malfease and virology
lab are used. Their PEMinor framework is able to achieve 9920
detection rate with less than 0.5 false alarm in a smaller
cormputation overhead. JA8 outperforms the rest in detection
accuracy

Presented a malware classification technique based on printable
strings contained within executable. Achieved classification
accuracy of 97% using IB1 and RF

Fusion is recommended to deliver acceptable performance and
toyield accurate results in classification. Modified version of
existing approaches includes TD3, C4.5, GA, SWVM.

Executes files in wirtual environment and collect logs.
Experimental results, on malware of size 1368 and cleanware
of size 456 files, RF presents the best performance of 97%
accuracy in detection of malware from benign. While TB1 is
slightty lower in performance

Malware executable are represented as binary strings which may
be sequence of zeros and ones to form vectors. The vectors are
reshaped to build matrix, so that, to represent executable as
images. Results indicate 98%6 accuracy for classification of
malware over a database with 9458 samples having 25 various
malware families

6288

Table 1: Continue

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

References

Detection method

Employed technique

Remarks

Alietd. (2011) Dynarmnic BayesNet, OR, J48

Islam et al. (2013) Hybrid RF, DT, SVM, IBI

Santos ef al. (2013) Hybrid RF and J48, K-Nearest
Neighbour (KINN), BN,
NB, 8VM

Kong and Yan (2013) Static kNN, 8VM, malware distance
metric learning method, function
call graph

Asmitha and Vinod (2014) Dynarmnic NB, AdaboostM1(J48), IBK-5, RF

Avdiienko et al. (2015) Static V-SVM

Mohaisen et al. (2015) Static SVM, LR, nearest neighbor,
decision trees

Kolosnjaji et af. (2016) Static Convolutional neural network,
Recurrent neural network

Kolosnjaji et af. (2017) Static Convolutional, feed forward with

unit PRelu and max pooling
dropout as sublayers, Softmax

The approach allows the modeling of an application’s behavior
through stochastic models of machine learning. System calls
generated by applications are represented in a hyperspace which
possesses complete history of system calls generated. Thusly
benign and malicious hypergrams are compared to classify
behaviors with AUC of 85.72 with BayesNet.

Used static and dynamic features it is explored that test results
depend on malware age. Random forest outp erformed the rest
in classifying old family of malware with accuracy of 99.821,
while on New Family, RF provided 94.407 accuracy
Presented a model based on the frequency of the appearance
of opcode sequences. Used instance selection for resampling
new ones and feature selection to decrease number of features
which ultimately improves machine learning accuracy.

The objective is to automatically classify malware instances
into their corresponding families through a framework that
learns malware distance metrics based on the structural
information of labeled malware dataset 526,179 unique
malware variants and reported 98.73 accuracy on SVIM and 89.32
on kNN, On two sets of experiments with 30 malicious programs
and 15 benign, the framework accuracy was found to be 86.67
and 93.33, respectively

The approach extracts system calls dynarically using sy stem
call tracer utility known as Strace. While the approach identities
best feature set of benign and malware specimens to build
classificationmodel. A classification accuracy of 97%is reported
to identify malicious sarmples with feature set of size 30 as the
best feature length

MUDFLOW through first verification recognizes 86.4% of
malware as such with a false positive rate of 18.7%. While
90.1%% of malware leaking sensitive with a false positive rate
of 18.7% with no training on malware data

AMAL achieves 99.5% precision and 99.6% recall for
classification of specific families. While during performing
clustering, the system achieved precision and recall of 98% for
unsupervised clustering

Modeled the malware system call sequences for malware
classification and achieved an average accuracy, recall
and precision above 90% for malware classification

They extracted 48 unique functions from portable executable
to make able the Neural Network to leamn and uniquely identify
behavior of malware and benign programs. The convolution

separate layers

is usedto capture the semantics of the instruction usage patterns.
Their model classify malware into 13 predefined classes
and achieve 93% on precision and recall

Proposed framework: We propose use of the one of the
most hottest concepts of deep learning, i.e., generative
Models specifically the deep convolutional Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014,
Lipton, 2017; Burns, 2009) that have recently gain
marvelous acceptance in comparing adversarial
examples. Tt has a pair of models, ie., genrator and
discriminator as depicted i Fig. 7. The generator
receives some sort of data, learns parts of 1imput
representations and generates specific data that is similar
to the input. The discriminator verifies whether the input
15 original or its generated. Polymorphic malware are
mostly generated version of existing malware that are
modified (Table 1).

Experimental data and results: In this study, we explain
the division of datasets mto traming and testing sets and

then how a machine learmning framework, the DCGAN make
use of them for classification. The malware data is
collected from the VX hevens virus collection and the
Malfease dataset. The system calls are generated from
malicious and benign applications in pristine environment
and the datasets are created from the same. The dataset of
behaviors (sequence of system calls) after conversion to
one-hot encoding scheme shall be classified into traming
set, and test sets with ratio of 2/3 and 1/3, respectively at
random to ensure learning and to avoid memorization and
look up Table 1, i.e., if we use whole dataset as training
set that will be like look up table and model will not
perform well when real data 1s provided to it. Machine
might have saved the results somewhere in memory. The
k-fold cross validation concept will also be applied for
providing more rigorous sampling and to overcome
anomalies within datasets.

6289

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

CONCLUSION

Security of applications and other orgamzational
resources has always remained a top priority of service
providers and consumers. A number of techniques are
implemented to protect platforms
executions. These techmques includes the traditional
Commercial-Ofthe-Shelf Anti-Viruses (COTA AV) also,
called signature based techniques, intrusion detection
systems, trusted computing and machine learning based
approaches. The approaches adopted so far are useful in
certain situations while they are not efficient enough for
the current security threats. Table 1 provides a detailed
survey of employed malware detection approaches. There
15 a drastic need for developing sophisticated, efficient
and smart malware detection and classification technique
with highaccuracy, i.e. withmaximum TP and minimum FP
and to improve right classification. Tt should be real time
deployable and nonsignature based malware detection
techmque. The current implemented machine learning
tools that classify clients behavior into malicious and
benign are not effective to implement in security
centric organizations as these approaches do report
false positives and have undesirable TP and FP.
State-of-the-art employed machine learning approaches
include the neural networks, RNN and ESN. The study
reports a review of selected good quality study covering
literature era of 2001-2017. Furthermeore, the brief 1dea 1s
presented that we shall use Deep Convolutional
Generated Adversarial Networks (DCGANs) for malware
analysis. The DCGANs have provided fine-tuned results
In pattern recognition in various domams. Indeed
DCGANS are more robust as compared to the present
machine learning techniques employed. We believe that
our approach shall improve and produce more accurate
results than previously provided machine learning
techniques.

from malicious

ACKNOWLEDGEMENT

The study is based on PhD research work at MIIT,
UniKI.. We thank all staff TniKT, for extending every
possible support.

REFERENCES

Agrawal, 3. and J. Agrawal, 2015. Survey on anomaly
detection using data mining techniques. Procedia
Comput. Sci., 60: 708-713.

Alam, M., T. Ali, S. Khan, 8. Khan and M. Ali et al., 2012.
Analysis of existing remote attestation techniques.
Secur. Commun. Netw., 5: 1062-1082.

Alam, M., X. Zhang, M. Nauman, T. Ali and T.P. Seifert,
2008. Model-based behavioral aftestation.
Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies, Iume 11-13, 2008,
ACM, Colorado, USA., ISBN:978-1-60558-129-3, pp:
175-184.

Ali, T., M. Nauman and X. Zhang, 2010. On leveraging
stochastic models for remote attestation. Proceedings
of the 2nd International Conference on Trusted
Systems (INTRUST’10), December 13-15, 2010,
Springer, Beying, China, ISBN:978-3-642-25282-2, pp:
290-301.

Anonymous, 2010. Computer immune systems. University
of New Mexico, yAlbuquerque, New Mexico.

Anonymous, 2017. File statistics. VirusTotal, Dublin,
Ireland. hitps: /www.virustotal com/en/statistics/

Anonymous, 2017. PE infor service. GitHub Inc., San
Francisco, California, USA.

Asmitha, K.A. and P. Vinod, 2014. A machine leaming
approach for linux malware detection. Proceedings of
the 2014 International Conference on Tssues and
Challenges in Intelligent Computing Techniques
(ICICT), February 7-8, 2014, IEEE, Ghaziabad, India,
[SBN:978-1-4799-2900-9, pp: 825-830.

Avdiienko, V., K. Kuznetsov, A. Gorla, A. Zeller and S.
Arzt et al., 201 5. Mining apps for abnormal usage of
sensitive data. Proceedings of the 37th International
Conference on Software Engineering Vol. 1, May 16-
24,2015, TEEE, Florence, ITtaly, ISBN:978-1-4799-1934-
5, pp: 426-436.

Bayer, U., P.M. Comparetts, C. Hlauschek, C. Kruegel and
E. Kirda, 2009. Scalable, behavior-based malware
clustering. NDSS., 9: 8-11.

Bodke, A., 2013. Systems and methods for identifying
polymorphic malware. US Patent No. TUS8479291B1,
Symantec, Califorma, USA. https:/patents.google.
com/patent/TT58479291B1 /en

Burns, J., 2009. Exploratory androidTM surgery.
Proceedings of the Black Hat Conference on
Techmical Security, July 25-30, 2009, 1SEC Partners,
Inc., San Francisco, California, USA., pp: 1-47.

Cesare, 3., Y. Xiang and W. Zhou, 2013. Malwise: An
effective and efficient classification system for
packed and polymorphic malware. IEEE Trans.
Comput., 62: 1193-1206.

Chen Y. R. Venkatesan, M. Cary, R. Pang and
3. Smha ef al., 2002. Oblivious hashing: A stealthy
software mtegrity verification primitive. Proceedings
of the 5th International Workshop on Information
Hiding (TH’02), October 7-9, 2002, Springer,
Noordwikerhout, The Netherlands, ISBN:978-3-
540-00421-9, pp: 400-414.

6290

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

Cohen, 1.G., S. Hoffman and EY. Adashi, 2017. Your
money or your patient’s life? Ransomware and
electromc health records. Ann. Internal Med., 167:
587-588.

Cusumano, M., 2010. Cloud computing and SaaS as
new computing platforms. Communi. ACM, 53:
27-29.

Day, C.W., 2007. Intrusion detection system. US Patent
No. US7260846B2, SteelCloud Inc., Virgima, USA.
https://patents.google.com/patent/US72608 46 B2/en

Farid, D.M., L. Zhang, C.M. Rahman, M.A. Hossain and
R. Strachan, 2014. Hybrid decision tree and naive
Bayes classifiers for multi-class classification tasks.
Expert Syst. Appl., 41: 1937-1946.

Fand, D.M., N. Harbi and M.Z. Rahman, 2010. Combining
naive bayes and decision tree for adaptive mtrusion
detection. Int. J. Network Secur. Appl., 2: 12-25.

Fu, S, J. Liu and H. Pannuy, 2012. A hybrid anomaly
detection framework in cloud computing using
one-class and two-class support vector machines.
Proceedings of the 8th International Conference on
International Conference on Advanced Data Miming
and Applications (ADMA’12), December 15-18, 2012,
Springer, Nanjing, China, ISBN:978-3-642-35526-4, ppr
726-738.

Goodfellow, L, J. Pouget-Abadie, M. Mirza, B. Xuand D.
Warde-Farley et al., 2014. Generative adversarial nets.
Proceedings of the 27th International Conference on
Neural Information Processing Systems, December
08-13, 2014, ACM, Montreal, Canada, pp: 2672-2680.

Hasselbring, W. and R. Reussner, 2006. Toward
trustworthy software systems. Comput., 39: 91-92.

Idika, N. and A P. Mathur, 2007. A survey of malware
detection technmiques. Purdue University, Arxan
Technologies/21 STCR&T Fund, February 2, 2007.
http://www.serc.net/system/files/SERC-TR-286.pdf.

Islam, R., R. Tian, L. M. Batten and S. Versteeg, 2013.
Classification of malware based on integrated static
and dynamic features. I. Netw. Comput. Appl., 36:
646-656.

Ismail, R., T.A. Syed and S. Musa, 2014. Design and
implementation of an efficient framework for
behaviour attestation using n-call slides. Proceedings
of the 8th International Conference on Ubiquitous
Information Management and Commumication,
January 09-11, 2014, ACM, Siem Reap, Cambodia,
ISBN:978-1-4503-2644-5, pp: 36:1-36:8,

Kim, D., A. Majlesi-Kupaei, J. Roy, K. Anand and
K. ElWazeer et al, 2017. DynODet: Detecting
dynamic obfuscation in malware. Proceedings of
the 14th International Conference on Detection of
Intrusions and Malware and Vulnerability
Assessment (DIMVA’17), Tuly 6-7, 2017, Springer,
Bonn, Germany, ISBN:978-3-319-60875-4, pp: 97-
118.

Kolosnjaji, B., A. Zarras, G. Webster and C. Eckert, 2016.
Deep learning for classification of malware system
call sequences. Proceedings of the 29th
Australasian Joint Conference on Artificial
Intelligence, December 5-8, 2016, Springer, Hobart,
Australia, ISBN:978-3-319-50126-0, pp: 137-149.

Kolosnjaji, B., G. Eraisha, G. Webster, A. Zarras and C.
Eckert, 2017. Empowering convolutional networks for
malware classification and analysis. Proceedings of
the 2017 International Jomt Conference on Neural
Networks (IJCNN’17), May 14-19, 2017, IEEE,
Anchorage, Alaska, ISBN:978-1-5090-6183-9, pp:
3838-3845.

Kolter, I.Z. and M. A. Maloof, 2004. Learnmg to detect
malicious executables in the wild. Proceedings of the
10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Miung, ACM,
Seattle, Washington, August 22-25, 2004, pp:
470-478.

Kolter, I.Z. and M.A. Maloof, 2006. Learning to detect
and classify malicious executables in the wild. T.
Mach. Leamn. Res., 7: 2712-2744.

Kong, D. and G. Yan, 2013. Discriminant malware
distance learmning on structural mformation for
automated malware classification. Proceedings of
the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August
11-14, 2013, ACM, Chicago, Illinois, USA.,
[SBN:978-1-4503-2174-7, pp: 1357-1365.

Liao, HJ, CHR. L, Y.C. Lin and KY. Tung,
2013, Intrusion detection system: A
comprehensive review. I. Network Comput. Applic.,
36: 16-24.

Linn, C. and S. Debray, 2003. Obfuscation of executable
code to improve resistance to static disassembly.
Proceedings of the 10th ACM Conference on
Computer and Communications Security, October
27-30, 2003, ACM, Washington D.C., TUSA., pp:
290-299.

Lipton, Z.C., 2017. Deep convolutional generative
adversarial networks. GitHub Inc., San Francisco,
Califorma, USA.

Mehdi, B., F. Ahmed, S.A. Khayyam and M. Faroog, 2010.
Towards a theory of generalizing system call
representation for in-execution malware detection.
Proceedings of the 2010 IEEE Intemational
Conference on Communications (ICC’10), May
23-27, 2010, IEEE, Cape Town, South Africa,
ISBN:978-1-4244-6402-9, pp: 1-5.

Moein, 8., F. Gebali and I. Traore, 2014. Analysis of
covert hardware attacks. J. Convergence, 5: 26-30.

Mohaisen, A., O. Alraw1 and M. Mohaisen, 2015. Amal:
High-fidelity, behavior-based automated malware
analysis and classification. Comput. Secur., 52:
251-266.

6291

J. Eng. Applied Sci., 13 (13): 6281-6292, 2018

Moser, A., C. Kruegel and E. Kirda, 2007. Exploring
multiple execution paths for malware analysis.
Proceeding of the TEEE Symposium on Securit
and Privacy, May 20-23, Berkeley, CA, pp:
231-245.

Moser, A., C. Kruegel and E. Kirda, 2007. Limits of static
analysis for malware detection. Proceedings of the
23rd Annual Conference on Computer Security
Applications (ACSAC’07), December 10-14, 2007,
TEEE, Miami Beach, Florida, ISBN:978-0-7695-3060-4,
pPp: 421-430.

Nataraj, L., S. Karthikeyan, G. JTacob and B.S. Manjunath,
2011. Malware images: Visualization and automatic
classification. Proceedings of the 8th International
Symposium on Visualization for Cyber Security, July
20, 2011, ACM, Pittsburgh, Pemnsylvania, USA.,
ISBN:978-1-4503-0679-9, pp: 1-7.

Nauman, M., N. Azam and J. Yao, 2016. A three-way
decision making approach to malware analysis
using probabilistic rough sets. Inf Sci, 374
193-209.

Pascanu, R., J'W. Stokes, H. Sanossian, M. Marinescu
and A. Thomas, 2015. Malware classification with
recurrent networks. Proceedings of the 2015 TEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP'15), April 19-24, 2015,
TEEE, Brisbane, Australia, ISBN:978-1-4673-6997-8,
pp: 1916-1920.

Rowett, K. and S. Sikdar, 2005. Intrusion detection
system. US Patent No. TJS20050216770A1, Gigafin
Networks Tnc., Cupertino, California, TSA.
https://patents.google.com/patent/TIS20050216770
Al/en

Santos, 1., F. Brezo, X. Ugarte-Pedrero and P.G. Bringas,
2013. Opcode sequences as representation of
executables for data-mining-based unknown malware
detection. Inf. Seci., 231: 64-82.

Scheidell, M., 2009. Intrusion detection system. US Patent
No. US7603711B2, SECNAP Network Security, Boca
Raton, Florida, USA. https: //patents. google.
com/patent/US7603711B2/en

Schmidt, AD., R. Bye, H.G. Schmidt, J. Clausen
and O. Kiraz et al, 2009. Static analysis of
executables for collaborative malware detection on
android. Proceedings of the 2009 TEEE
International Conference on Communications
(ICC'09), Iune 14-18, 2009, IEEE, Dresder, Germany,
ISBN:978-1-4244-3435-0, pp: 1-5.

Schultz, M., E. Eskin, E. Zadok and S.J. Stolfo, 2001. Data
mining methods for detection of new malicious
executables. Proceedings of the IEEE Symposium on
Security and Privacy, May 14-16, TEEE Computer
Society Washington, DC, USA ., pp: 38-49.

Shafig, M.Z., T.5. Momina, F. Mirza and M. Farooq,
2009. PE-Miner: Miming structural information to
detect executables 1n real
Proceedings of the Recent Advances in Intrusion
Detection, September 23-25, 2009, France, Springer,
pp: 121-141.

Sharif, M., V. Yegneswaran, H. Saidi, P. Porras and
W. Lee, 2008. Eureka: A framework for enabling static
malware analysis. Proceedings of the 13th Furopean

malicious time.

Symposium on Research i Computer Security,
October 6-8, 2008,: Springer,
[SBN:978-3-540-88312-8,-pp: 481.
Tian, R., I.. Batten, R. Islam and 8. Versteeg, 2009. An
automated classification system based on the strings

Malaga, Spain,

of Trojan and virus families. Proceedings of the 4th
International Conference on Malicious and Unwanted
Software (MALWARE’(09), October 13-14, 2009, IEEE,
Montreal, Canada, ISBN:978-1-4244-5786-1, pp: 23-30.

Tian, R., R. Islam, L. Batten and 3. Versteeg, 2010.
Differentiating malware from cleanware using

of the 5th
International Conference on Malicious and Unwanted
Software (MALWARE), October 19-20, 2010, TEEE,
Nancy, France, [ISBN:978-1-4244-9353-1, pp: 23-30.

Willems, C., T. Holz and F. Freiling, 2007. Toward
automated dynamic malware analysis
cwsandbox. IEEE. Secur. Privacy, 5: 32-39.

Ye, Y.,D. Wang, T. Liand D. Ye, 2007. IMDS: Intelligent
malware detection system. Proceedings of the 13th
ACM SIGKDD Conference on
Knowledge Discovery and Data Ming,
August 12-15, 2007, ACM, San Jose, California, TJSA.,
ISBN:978-1-59593-609-7, pp: 1043-1047.

You, I. and K. Yim, 2010. Malware obfuscation
techniques: A brief swvey. Proceedings of the
2010 International on Broadband,
Wireless Computing, Communication and
Applications (BWCCA’10), November 4-6, 2010,
[EEE, Fukuoka, Japan, ISBN:978-1-4244-8448-5, pp:
297-300.

behavioural analysis. Proceedings

using

International

Conference

6292

	6281-6292_Page_01
	6281-6292_Page_02
	6281-6292_Page_03
	6281-6292_Page_04
	6281-6292_Page_05
	6281-6292_Page_06
	6281-6292_Page_07
	6281-6292_Page_08
	6281-6292_Page_09
	6281-6292_Page_10
	6281-6292_Page_11
	6281-6292_Page_12

