Tournal of Engineering and Applied Sciences 13 (15): 6211-6219, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Insecure Instantiations of Random Oracles in
Password-Based Key Exchange Protocols

Juryon Paik
Department of Digital Information and Statistics, Pyeongtaek University,
3825 Seodong-daero, Pyeongtaek, 17869 Gyeonggido, South Korea

Abstract: Protocols for Password-based Authenticated Key Exchange (PAKE) allow users to generate a shared
secret key from their easy-to-remember passwords but at the same time have to protect the user’s passwords
from the notorious dictionary attacks. PAKE protocols often use a hash function that maps user passwords
mto elements of the underlying cyclic group G generated by an arbitrary fixed element geG. Such a hash
function 1s usually modelled as a random oracle G in proofs of security of protocols. One obvious way of
instantiating the random oracle G 1s to use a random oracle H: {0, 1}*~Z, and then define G(.) = g"". However,
we argue that this obvious instantiation of G is likely to result in a critical vulnerability for most of PAKE
protocols. In the present research, we provide a strong evidence in support of this argument by showing that
two popular protocols-Bresson two-party PAKE protocol and Abdalla and Pointcheval’s three-party PAKE
protacel-become susceptible to an offline dictionary attack as soon as G is instantiated as G () = g™, Our result
suggests that designers of PAKE protocols should clearly specify how G can be securely instantiated for their
protocols in order to prevent protocol implementers from employing an insecure instantiation of G.

Key words: Authenticated key exchange, password, random oracle, dictionary attack, prevent protocol

implementers, PAKE protocols, pointcheval’s

INTRODUCTION

Passwords have shown incredible persistence as an
almost universal means of authentication over the
Internet. Despite countless attempts to dislodge them,
passwords are more widely used and firmly entrenched
than ever, protecting thousands of millions of internet
accounts everyday. The popularity of passwords
has promoted extensive research on the design of
cryptographic protocols for Password-based
Authenticated Key Exchange (PAKE) (Bellovin and
Mermnitt, 1992; Bellare and Rogaway, 1993, Bresson et al.,
2004, Abdalla and Pointcheval, 2005, 2015, Nam et al.,
2009, 2013; Katz et al, 2009, Goyal et al, 2010,
Canetti et al, 2012; Xiong et al., 2013, Katz and
Vaikuntanathan, 2013; Y1 et al, 2013). In the setting
where passwords are the only long-term secrets
pre-established between users (Bellovin and Merritt, 1992)
proposed the first PAKE protocols known as encrypted
key exchange which illustrated that:

Arbitrary two users who share only a weak (e.g.,
short) password can agree on a
cryptographically strong secret key (called a
session key) over an insecure public network
which might be controlled by an adversary

Since, the publication of encrypted key exchange
{(with only heuristic security arguments), many practical
and provably secure PAKE protocols have been
proposed over the last two decades (Bellare and
Rogaway, 1993; Bresson et al., 2004, Canetti et al., 2012,
Katz and Vaikuntanathan, 2013).

Key exchange protocols (including PAKE protocols)
are often designed using cryptographic hash functions
both for efficiency and for security reasons. Such
protocols are usually proven secure m the random oracle
model (Bellare and Rogaway, 1993) where in hash
functions are modeled as random functions. A proof of
security in the random oracle model definitely provides a
compelling argument in support of the security of a
protocol but does not guarantee that the protocol 1s
indeed secure in the real world. A protocol proven
secure in the random oracle model can only be
claimed to the extent that it is resistant to generic attacks
that do not exploit a specific instantiation of the random
oracle.

PAKE protocols sometimes make use of a hash
function G to map user passwords pw (possibly
concatenated with additional mformation such as user
identifiers) into elements of the underlying cyclic group G
which is typically defined as a subgroup of order q in 7',
where p and q are two large primes such that p = rq+1 for

6211

J. Eng. Applied Sci., 13 (13): 6211-6219, 2018

some value 1 co-prime to Bellare and Rogaway (1993),
Bresson et al. (2004) and Abdalla and Pointcheval (2005).
In those PAKE protocols, the hash value G(pw) serves as
a mask generation function and 1s typically multiplied by
a protocol message such as an ephemeral Diffie-Hellman
value. Such hash function, G: {0, 1}*~G is modelled as
a random oracle in security proofs and in practice can be
mstantiated in various ways. Let g be a generator of the
cyclic group G. Then, a straightforward instantiation of G
is to choose a hash function H: {0, 1}'~Z, and then
define G()= g™, In this instantiation, G certainly becomes
a random oracle if H is a random oracle. Let r be as
defined above. Another, less straightforward,
instantiation of G is to choose a hash function H: {0,
1}"~Z", and then define G(.) = H (). We refer the readers
to MacKenzie for other examples of mstantiation of G.

Instantiating the G-oracle as G{.) = g"™{which we will
refer to simply as “the bad G-oracle instantiation™) is likely
to result in msecure PAKE protocols. In this study, we
show this by examining the security of some published
PAKE protocols under the assumption of the bad G-oracle
instantiation. We use two popular protocols as case
studies. The two-party PAKE protocol (named OMDHKE)
of Bresson et al. (2004) and the three-party PAKE
protocol (named 3PAKE) due to Abdalla and Pointcheval
(2005). Our case studies show that when the G -oracle is
instantiated as G () = g™ both OMDHKE and 3PAKE
protocols become vulnerable to an offline dictionary
attack and due to this vulnerability both the protocols are
rendered insecure in the widely accepted security model
of Bellare et al. (2000). Based on the studies, we suggest
that designers of PAKE protocols should clearly specify
how the G-oracle can be securely instantiated for their
protecols in order to prevent protocol implementers from
employing the bad G-oracle instantiation and other
potentially insecure ones.

The OMDHKE protocol originates from AuthA which
is an efficient PAKE protocol considered for
standardization by the IEEE P1363 standard working
group (Bellare and Rogaway, 1993). The AuthA protocol
is open-ended in its use of the encryption primitive. Tt
allows the encryption primitive to be instantiated either
via a password-keyed symmetric cipher or a mask
generation function (e.g., the G-oracle) whose output 1s
multiplied by the plaintext. OMDHKE was proposed to
prove that AuthA is secure in the random oracle
model when the encryption primitive 1s realized by a
mask generation function. OMDHKE 1is two-round
two-message protocol with one message being sent in
each round. The first-round message is simply the
product of a Diffie-Hellman value and the hash value
G(pw). In our dictionary attack against OMDHKE,

the attacker forges the first-round message and
exploits the second-round message as the password
verifier.

The 3PAKE protocol 1s based on the AuthA protocol
(Bellare and Rogaway, 1993), the PAK suite (MacKenzie)
and the OMDHKE protocol (Bresson ef al., 2004) which
in turn are based on the EKE protocol of Bellovin and
Merritt (1992). The design goal of 3PAKE is to achieve
both efficiency and security in the three-party setting,
where two clients wishing to establish a session key do
not share the same password but hold their individual
password shared only with a trusted server. One of the
biggest challenges in designing a three-party PAKE
protocol is to prevent insider dictionary attacks in which
the attacker could be any malicious client who wants to
find out the password of its partner client. Although,
3PAKE was originally claimed to be provably secure in
the random oracle model, several security-related flaws in
its design have been disclosed by later studies
assummarized below.

Choo et al. (2005) showed that 3PAKE is susceptible
to an unknown key share attack in a model that allows the
adversary to corrupt the protocol participants. This
weakness was attributed to a specification error in the
protocol description, the identities of the clients were
mistakenly omitted from the input of two hash functions
{denoted as G, and G, in our description of 3PAKE. The
researcher corrected this error m a new version of
their study which is available at http:/www.di.ens fi/~-
mabdalla. Our description of 3PAKE follows the corrected
specification of the protocol.

Szydlo (2006) demonstrated that, the chosen-basis
decisional Diffie-Hellman assumption (on which the
security of 3PAKE relies) 1s not a sound basis for a
security proof. Although, Szydlo (2006)’s observation
does not translate to a direct attack on 3PAKE, 1t implies
that the existence of a proof of security for 3PAKE is an
open question.

Wang and Hu (2006) pointed out that, 3PAKE suffers
from an undetectable online dictionary attack m which
each guess on the password is checked undetectably via.
an online transaction with the server. This weakness of
3PAKE remnforces the fact that no three-party PAKE
protocol can resist an undetectable online dictionary
attack unless the protocol provides client-to-server
authentication.

Recently, Nam ef af. (2013) have revealed that 3PAKE
15 also susceptible to an offline dictionary attack in the
presence of a malicious client who can set up a normal
protocol session with other clients.

But no previous research has discussed security
1ssues related to the instantiation of the G-oracle in

6212

J. Eng. Applied Sci., 13 (13): 6211-6219, 2018

Client A Server S
v o
xeZ,X-¢
PW,=G (pw,)
X=XPW,
A, X)
4
PW,=G{pwy)
X=X"PW,
zeZ, Z=g,K=X"
Auth,, = F, (AlIS[PZIPW,|IK)
(S, Z Auth,)
<4
K=7"
Verify Auth,,
sk = F,(A|IS|X'1Z|[PW,|[K) sk = F,(A||S|[X'|Z|PW,|K)

Fig. 1. OMDHKE, Bresson et ad. (2004) PAKE protocol

3PAKE. Under the assumption of the bad G-oracle
instantiation our dictionary attack on 3PAKE can be
mounted by any malicious client against any other clients
and does not even require the participation of the victim.

Case study; OMDHEKE: By Bresson er af. (2004)
OMDHKE protocol the client encrypts its ephemeral
Diffie-Hellman value using the G-oracle as a mask
generation function. In this study, we show that the
OMDHKE protocol is not secure against an offline
dictionary attack if the G-oracle is instantiated as
G()y=g"

Protocol description: The OMDHKE protocol proceeds
as in Fig. 1. The arithmetic 1s in a fimte cyclic group G of
prime order ¢. Let, g be a generator of G. OMDHKE uses
three hash functions:

s G:{0,1V-G

¢ Fp: {0,130, 1}* where K is the bit-length of the
authenticator Authy, (see the protocol description
below)

+ T, {0,1}"-10, 1} where | is the bit-length of session
keys

The client A and the server S are assumed to have
pre-established a shared password pw,. The protocol
starts when A chooses a random x£Zq, computes X = g,
PW, = G(pw,) and X' = X.PW, and sends {A, X'} to S.
Upon receiving the message (A, X'} from A, S computes
PW, = G(pw,) and X = X'/PW,, chooses a random z£Zq
and computes 7 = g% K = X and Authy,, = F,
(A||S|I3|1Z|[PW|JK). Then S sends ¢S, Z, Auth..} to A and
computes the session key, sk = F, (A|S|[X|Z|[PW.|K). A
computes K = 7% verifies Authg, in the straightforward
way and computes the session key sk = F,
(A|IS|X || Z|PW JIK) if the verification succeeds. OMDHKE
provides server-to-client authentication via. the
authenticator Authg, sent in the second round.

Dictionary attack: The OMDHKE protocol described
above was proven secure under the assumption that the
hash functions G, F, and F, are random oracles. Assume

6213

J. Eng. Applied Sci., 13 (13): 6211-6219, 2018

a hash function H: {0, 1}"~Zq and consider the case that
G is instantiated as G() = g™, Then, it is clear that G is a
random oracle if H 1s a random oracle. This instantiation
makes OMDHKE vulnerable to an offline dictionary attack
as described.

Step 1: As a prelimmary research, the attacker B chooses
a random yeZq and computes Y = g7

Step 2: B intercepts the first protocol message (A, X'
from A to S and sends, instead, the forged message (A, Y)
to S as if it is from A. Since, X" was replaced by Y, the
server 3 will compute X and K as:

X = X*PW,

y-Hipwa)

)
K=Xz

__ __z{y-H{pwa))
-]

Step 3: B then intercepts the message {3, 7, Auth,,) from
Sto A

Step 4: Now, B makes a guess pw,” on the password pw,
and computes:

PW,' = gH(pwA"),

K' = Zy-H(pwA")

= gz(y-HpwA")),

Auth'SA = F1(A||S||Y||Z] PWA'[K")

Step 5: B checks the correctness of pw,' by comparing
Authy, against Auth,,. Note that, Auth,, is equal to
Authg, (with an overwhelming probability) if and only if
pw,, and pw, are equal.

Step 6: B repeats steps 4 and 5 until the correct password
1s found.

Having not received the server’s message, the client
A will abort the protocol after a certain amount of time.
This offline dictionary attack can have devastating
implications for all clients registered with the server, since,
the victim could be any of the clients and the attacker
need not be a registered client. Given the security threat,
we recommend that implementers of OMDHKE should not
instantiate the hash function G as G(.) = g™

Case study; 3PAKE: We use the 3PAKE protocol,
Abdalla and Pomtcheval (2005)s three-party PAKE

protocol as another case study of insecure instantiations
of hash functions. Owr result, here is that the security of
3PAKE against an offline dictionary attack also depends
on the instantiation of a hash function.

Protocol description: The 3PAKE protocol runs among
the three participants, a trusted server S and two clients
A and B. The server S assists the clients A and B in
establishing a session key by providing them with a
central authentication service. Each client holds thewr
individual password shared only with the authentication
server S via. a secure chammel. Let pw, and pw; be the
passwords of A and B, respectively. The public system
parameters defined for 3PAKE are:

s+ A large cyclic group G with prime order ¢ and an
arbitrary fixed generator g of the group G

» Two hash functions G, and G, which outputs the
elements of the cyclic group G. G, and G, are both
modeled as random oracles m the security proof of
3PAKE
A hash fimetion F which outputs | bit strings. Here,
lis a security parameter representing the bit-length of
session keys. F 1s also modeled as a random oracle

3PAKE works as follows: Client A chooses a random
xeZq and computes X = g, PW,, = G(A, B, pwy)
and X" =X.PW, . Then A sends (X'} to the server S.

Meanwhile, client B chooses a random yeZg,
computes Y = g”, PW,, = G, (A, B, pwy) and Y = Y.PW,,
and sends {Y'} to S.

After receiving {X'} and {Y"), S first recovers X and Y
by computing X = X'/3, (A, B, pw and Y = Y/G, (A, B,
pwg). Next, S selects a random element zeZq and a random
string Re {0, 1}* where K is a security parameter which
determines the bit-length of R. S then computes:

and sends (R, T*, XF, ?*) and (R, X*, X%, ?*) to A and B,
respectively. Upon receiving (r, v+, X¥, ¥*) from 3, A
computes:

6214

J. Eng. Applied Sci., 13 (13): 6211-6219, 2018

A then defines the transcript T = R|[X'||Y"|X'||Y" and
computes the session key sk = F(A[B||S||T|K). Upon
<R, X+, XF, ?*} recelving from S, B computes:

PW,, = G(A, B, R, poB, Y*)

Ko |
P\NB2

K=X°

B then defines the transcript T = RJ||X||Y"|[X||Y" and
computes the session key sk = F(A|B|S||TIK). The
correctness 3PAKE can be easily verified from the
equations:

and:

As depicted in Fig. 2, the 3PAKE protocol takes two
rounds of communications.

Dictionary attack: Assume that G, 1s mstantiated as
3,() = g™ Then, the 3PAKE protocol described above is
vulnerable to the following dictionary attack where by a
malicious client B is able to verify all guesses on the
password of client A in an offline manner.

Phase 1: The attacker B runs the protocol with the server
S while playing dual roles of B itself and the victim A.

Step 1: B selects two random numbers x, ycZq and
computes X and Y as:

[(XPW,,) X =g,
PV\J’B_2 Y = gy-PWB,1
— gxyz =gy.gH1(A. B, pwE)
A S B
x Z,X-¢g ¥y Z,Y=¢
PW,, = G, (A,B,pw,) PW,, =G, (A, B, pwy)
X =XPW,, Y =YW,
o0 ()
b 4
FWA-I = Gl (Al B: pw.l}
PW,, =G, (A, B, pwy)
X=XPW,,
Y=Y/PW,,
zeZ, Ref0, 1}*
X=xY=Y
PwA,z =G, (A, B, R, pw,, X‘)
PW, .= G, (A, B, R, pw,, X.)
X =XPW,,
Y=YpPW,,
®Y,X,Y) ®RY.X,7)
< >
PW,,=G,(A,B,R,pw,, X) PW,,=G(A,B,R,pw,, Y)
Y=Y./PW,, X=-XPVW,,
K=Y K=X
T=RIX|YXIT T=RIXY XY
sk FARIBITIO sk =F (ABISITIK)

Fig. 2: 3PAKE; Abdalla and Pointcheval (2005) s three-party PAKE protocol

6215

J. Eng. Applied Sci., 13 (13): 6211-6219, 2018

Then, B sends X' to as if it is from A while sending Y
(to S) as its own message.

Step 2: S will send (R, v, X, ?*) and <R, X*, XF, ?*),
respectively to A and B in response to X and Y. B
intercepts the message (R, Y+, X* ?*>. Notice here that, X'
is set equal to g&™>r¥= PW_, because S compules it
as:

X =XPW,,
=X PW,,

X
= o | PWe:
PW,, '

_ g
= [g“l 5)] PW,,

— g(x'j{l (4, B, POJA))Z_ PWB ,

But Y is set equal to g” PW,
protocol execution.

, as in the usual

Phase 2: Using X* and Y* obtained in phase 1, B now
guesses possible passwords and checks
correctness.

them for

Step 1: B computes PW,, =

(o= H, (4, B, ped))® PW, T

g (z-H) (4, B, pwA)) vz

G(A, B, R, pw, :Y*):

Step 2: B makes a guess pw’, on the password pw, and
computes PW’, , = Gy(A, B, R, pw’,, X'

(zH) (A, Bpw'y))
Y
A2

K=
PW'
J(XHI(A:B‘FWIAD

_ {g”.w\@__2

FW, ,

Step 3: B verifies the correctness of pw’, by checking that
K is equal to K. Note that if pw’, and pw, are equal, then
the equation K = K" ought to be satisfied.

Step 4: B repeats steps 2 and 3 of phase 2 until the correct
password is found.

The offline dictionary attack described above can be
mounted by any client against any other clients and does
not even require the participation of the victm. The
existence of the attack demonstrates that similar to the
OMDHKE protocol, the 3PAKE protocel cannot
guarantee the security of client’s passwords when the
hash function G, is instantiated as G,(.) = g™

RESULTS AND DISCUSSION

Formal analysis: In this study, we show that our
dictionary attacks mounted agamnst OMDHKE and 3PAKE
are well captured by Bellare et al (2000)
indistinguishability-based security model for analysis of
PAKE protocols. We first provide an overview of
Bellare et af (2000) security model and then interpret
the above-described dictionary attacks in the context of
the model.

Security model

Participants: Let, C be the set of all clients registered with
a trusted server S. Any registered client CeC may run a
PAKE protocol P with the server S at any point in time to
establish a session key. Let, U =Cu {3}. A user UcU may
have several mstances mvolved mn distinct, possibly
concurrent, executions of protocol P. We use [[to
denote the ith instance of user U. A user instance [['; is
said to accept when it successfully computes its session
key sk', in a protocol execution.

Long-term keys: Each client CeC chooses a password
pwe from a fixed dictionary DIC and shares it with the
server S via. a secure channel. Accordingly, S holds all
the passwords {pw |CeC}. Each password pw 1s used as
the long-term secret key of C and S.

Partnership: The notion of partnership 1s a key element
in defiming the security of the protocol. Two mstances are
partners 1if both participate in a protocol execution and
establish a (shared) session key. We define the
partnership relations between instances using the notions
of session identifiers and partner identifiers. A session
identifier (sid) is a unique identifier of a protocol session
and is defined as a function of the messages transmitted
in the protocol session. We use sid', to denote the sid of
instance [['y. A partner identifier (pid) is the set of
participants of a specific protocol session Instances
should receive as mput a pid before they can run the
protocol. By pid',, we denote the pid given to instance
[Ty We say that any two instances [[, and [[,. are
partners if both [, and] [, have accepted, sidy, = sidy,
and pid, = pid,..

6216

J. Eng. Applied Sci., 13 (13): 6211-6219, 2018

model, the Probabilistic
Polynomial-Time (PPT) adversary. A, controls all the

Adversary: In the

communications that take place between users via. a
pre-defined set of oracle queries. For example, the
adversary can ask participants to reveal session keys and
passwords using reveal and corrupt queries as described
below.

Execute (pid): This query models passive eavesdropping
of a protocol execution. It prompts an honest execution of
the protocol between unused instances of the users
specified by pid. The transcript of the protocol execution
1s returned as the output of the query.

Send ([[';, m): This query models active attacks against
the protocol. Tt sends message m to instance []', and
returns the message that [[, sends out in response to m.
A query of the form send ([', start: pid) prompts [T, to
mitiate the protocol with pid', = pid.

Reveal ([]'): This query returns the session key sk',. This
query captures the notion of known key security. Any
instance, [, upon receiving such a query and if it has
accepted and holds some session key will send thus
session key back to A. However, the adversary is not
allowed to ask this query if it has already made a test
query to the instance [[}; or its partner mstance (see
below for explanation of the test oracle).

Corrupt (U): This query captures not only the notion of
forward secrecy but also attacks by malicious clients. The
query provides the adversary with s password
pwy. Notice that a corrupt query does not result in
the release of the session keys, since, the adversary
already has the ability to obtain session keys through
reveal queries. If U = 3 (1.e., the server is corrupted), all
passwords stored by the

client’s server will be

returned.

Test ([[',): This query is the only oracle query that does
not correspond to any of the adversary’s abilities. If [,
has accepted with some session key and is being asked a
test (') query, then depending on a randomly chosen
bit b, the adversary 1s given either the actual session key
(when b = 1) or a session key drawn randomly from the
session key distribution (when b = 0). A test query can be
only asked against a fresh instance.

Freshness: Intuitively, a fresh instance is one that holds
a session key which should not be known to the

adversary and an unfresh instance is the one whose
session key (or some information about the key) can be
known by trivial means. Formally, we say that an mstance
[Ty is fresh if none of the following is true.

The adversary queried reveal (J[) or reveal ([['y)
where []', . is the partner of []',. The adversary queried
corrupt (V) for some Vepid,, before [[or its partner [[y
accepts.

Definition of AKF security: The security of protocol P
against A is defined in terms of the probability that A can
correctly guess the hidden bit b chosen by the test oracle
in the following two-stage experiment.

Stage 1: A makes any allowed oracle queries at will as
many times as it wishes.

Stage 2: Once A decides that stage 1 is over, it outputs a
bit b” as a guess on the hidden bit b chosen by the test
oracle. A 1s said to succeed if b= b’

Let, Succ be the event that A succeeds in this
experiment. Then we define the advantage of A in
attacking protocol P as Advy(A) = 2.Pr[Succ]-1. We say
that, a three-party PAKE protocol P 15 AKE-secure if for
all PPT adversaries A making at most (.4 send queries,
Advy(A) is only negligibly larger than c.¢,,/|DIC| where
¢ 1s a constant.

Breaking AKE security: The AKE secunity of 3PAKE can
be easily broken under the assumption of the bad
instantiation G,(.) = g™. We show this by constructing an
adversary A who can distinguish with probability 1,
random keys from real session keys established by
3PAKE by Bellare et al. (2000) Model. The adversary A
can be constructed as in Table 1. Since, the dictionary
attack against 3PAKE 1s mounted by a malicious client B,
the adversary a begins by asking the corrupt (B) query
and thereby, obtaining the password pws of client B. With
pwe in hand, a can perfectly simulate the dictionary attack
(mounted by B against A) by asking send queries
appropriately. After obtaimng the password pw, of client
A, A can easily break the AKE security of 3PAKE
by performing the Impersonation and test steps of
Table 1.

An adversary A who breaks the AKE security of
OMDHKE can be similarly constructed as the adversary
A against the AKE security of 3PAKE. Due to the
similarity, we here only describe the differences between
the constructions of A’ and A. The most notable
difference is that the adversary A’ does not have to

6217

J. Eng. Applied Sci., 13 (13): 6211-6219, 2018

Table 1: Construction of an adversary A who breaks the AKE security of 3PAKE

Step Description

Corruption
Dictionary attack

A obtains B's password pws by querying comupt (B)
Let X" and Y* be defined as in the dictionary attack by B against A. A asks two send queries, send (][5, (X*))

and send ([5, {Y"}) to obtain the password verifiers X and Y from an unused server instance] [i;. A then verifies password
guesses in the exact same way as B did in its dictionary attack and as a result, finds out the password pw,, of client A

Impersonation

A initiates a new protocol session by querying send ([T, start: {A, C, 8}) where [is an unused instance of an uncorrupted

client C. A runs this session as per the protocol specification but simulating by itself all the actions of A (by using pw,). At
the end of the session, the instance][> will accept with its session key sk’

Test Clearly, the instance [T is fresh: (1) no reveal query has ever been made for any instance and (2) no corrupt query has been
asked for any of pid, = {A, C, S}. Thus, A may ask the query test (J). Since, A can compute the same session key as skia,
the probability that A guesses correctly the bit b chosen by the test oracle is 1 and so is the advantage of A in attacking the

FPAKE protocol

perform the corruption step as the attacker m our
dictionary attack agamst OMDHKE need not necessarily
be a registered client. The rest of the steps are also
different, slightly from the ones for A.

In the dictionary attack step, A’ asks the send
([F=¢A, Y}) query where Y is as computed by the attacker
B to obtain the password verifier {3, Z, Auth,,) from a
server instance [[';.

In the impersonation step, A’ queries send
(TT-, start: {A, S}) to prompt a server instance [[5 to
initiate a new protocol session with A. A’ runs this new
sesslon as per the protocol specification except for
siunulating by itself all the actions of A by using pw,.

Later, in the test step, A will ask its test query
against the server instance []% whose session key is also
known to A’.

The remaining parts of the steps proceed as in
Table 1. Consequently, A’ breaks the AKE security of
OMDHKE with advantage 1.

CONCLUSION

Using two popular protocols as case studies, this
research has shown that instantiating the hash oracle G:
0,1} (G as G() = g™ where H : {0, 1} Z, is likely to
render PAKE protocols insecure against an offline
dictionary attack. One might think that, the dictionary
attacks presented in the study can be readily prevented
by instantiating the hash oracle G as G{.) = g"™ where g’
1s a generator of G chosen independently from g. But, this
variant of the insecure instantiation also makes the two
PAKE protocols vulnerable to offline dictionary attacks
similar to the ones we presented. We leave the details of
the attack scenarios to readers.

SUGGESTIONS

However, the G-oracle mstantiations suggested for
the PAK suite; MacKenzie seem to be secure in the sense
that they do not cause at least the security vulnerabilities
discussed in this research. We suggest that designers
of PAKE protocols should clarify which instantiations
of the G-oracle can or cannot infringe the security of their

protocols. In conclusion, our study, here, highlights the
importance of designing a PAKE protocol whose security
does not rely on the G-oracle mstantiations.

ACKNOWLEDGEMENTS

This research was supported by basic science
resecarch program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Science and ICT (NRF-2017R1A2B1007015). Specially
thank to my husband Tunghyun Nam for all his supports,
discussions and constructive comments during writing of
the study.

REFERENCES

Abdalla, M. and D. Pointcheval, 2005. Simple
password-based encrypted key exchange protocols.
Proceedings of the 2005 RSA Conference on
Cryptographers” Track, February 14-18, 2005,
Springer, San Francisco, Califormia, UUSA., TSBN:
978-3-540-24399-1, pp: 151-208.

Abdalla, M. and D. Pomtcheval, 2015. Interactive
Diffie-Hellman assumptions with applications to
password-based authentication. Proceedings of the
Sth Intemational Conference on Financial
Cryptography and Data Security, February 28-March
3, 2005, Springer, Roseau, Dominica, ISBN:978-3-540-
26656-3, pp: 341-356.

Bellare, M. and P. Rogaway, 1993. Random oracles are
practical: A paradigm for designing efficient
protocols. Proceedings of the 1st ACM Conference
on Computer and Communications Security,
November 3-5, 1993, ACM, Fairfax, Virgima, USA.,
ISBN:0-89791-629-8, pp: 62-73.

Bellare, M., D. Pomtcheval and P. Rogaway, 2000.
Authenticated key exchange secure against
dictionary attacks. Proceedings of the 2000
International Conference on the Theory and
Applications of Cryptographic Techniques, May
14-18,2000, Springer, Belgium, ISBN:978-3-540-67517-
4, pp: 139.

6218

J. Eng. Applied Sci., 13 (13): 6211-6219, 2018

Bellovin, S.M. and M. Merritt, 1992, Encrypted key
exchange: Password-based protocols secure agamst
dictionary attacks. Proceedings of the 1992 IEEE
Computer Society Symposium on Research in
Security and Privacy, May 4-6, 1992, TEEE, Oakland,
California, pp: 72-84.

Bresson, E., O. Chevassut and D. Pointcheval, 2004. New
security results on encrypted key exchange.
Proceedings of the 7th International Workshop on
Theory and Practice m Public Key Cryptography,
March 1-4, 2004, Springer, Singapore, ISBN:978-3-540-
21018-4, pp: 145-158.

Canetti, R, D. Dachman-Soled, V. Vaikuntanathan and
H. Wee, 2012. Efficient password authenticated key
exchange via oblivious transfer. Proceedings of the
15th International Conference on Practice and Theory
in Public Key Cryptography, May 21-23, 2012,
Springer, Darmstadt, Germany, ISBN:978-3-642-30056-
1, pp: 449-466.

Choo, KX R., C. Boyd and Y. Hitchcock, 2005. Errors in
computational complexity proofs for protocols.
Proceedings of the 11th International Conference on
Theory and Application of Cryptology and
Information Security, December 4-8, 2005, Springer,
Chennai, India, ISBN: 978-3-540-30684-9, pp: 624-643.

Goyal, V., A Jam and R. Ostrovsky, 2010.
Password-authenticated session-key generation on
the intemet 1n the plain model. Proceedings of the
30th Annual Conference on Cryptology, August
15-19, 2010, Springer, SantaBarbara, California, TUSA.,
ISBN:978-3-642-14622-0, pp: 277-294.

Katz, I. and V. Valkuntanathan, 2013. Round-optimal
password-based authenticated key exchange. I.
Cryptology, 26: 714-743.

Katz, 1., R. Ostrovsky and M. Yung, 2009. Efficient and
secure authenticated key exchange wsing weak
passwords. . ACM., 57: 3:1-3:39.

Nam, T., J. Paik, HK. Kang, UM. Kim and D. Won, 2009,
An off-line dictionary attack on a sunple three-party
key exchange protocol. TEEE. Commun. Lett., 13:
205-207,

Nam, J., KK.R. Cheo, M. Kimn, J. Paik and D. Won, 2013.

attacks against password-based
authenticated three-party key exchange protocols.
K8l Trans. Internet Tnf. Syst., 7: 3244-3260.

Szydlo, M., 2006. A note on chosen-basis decisional
Diffie-Hellman assumptions. Proceedings of the 10th

Dictionary

International Conference Financial Cryptography and
Data Security (FC’06), February 27-March 2, 2006,
Springer, Anguilla, TSBN:978-3-5340-46255-2, pp:
166-170.

Wang, W. and .. Hu, 2006. Efficient and provably secure
generic construction of three-party password-based
authenticated key exchange protocols. Proceedings
of the 7th International Conference on Cryptology in
India, December 11-13, 2006, Springer, Kolkata, India,
ISBN:978-3-540-49767-7, pp: 118-132.

Xiong, H., Y. Chen, Z. Guan and Z. Chen, 2013.
Finding and fixing vulnerabilities in several
three-party password authenticated key exchange
protocols without server public keys. Inf. Sci, 235:
320-340.

Yi, X, S. Ling and H. Wang, 2013. Efficient two-server
password-only authenticated key exchange. TEEE
Trans. Parallel Distrib. Syst., 24: 1773-1782.

6219

	6211-6219 - Copy_Page_1
	6211-6219 - Copy_Page_2
	6211-6219 - Copy_Page_3
	6211-6219 - Copy_Page_4
	6211-6219 - Copy_Page_5
	6211-6219 - Copy_Page_6
	6211-6219 - Copy_Page_7
	6211-6219 - Copy_Page_8
	6211-6219 - Copy_Page_9

