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Abstract: This study proposes an enhancement for the performance of the neural voltage-tracking controller
based on different types of on-line optimization algorithms for nonlinear Proton Exchange Membrane Fuel Cell
(PEMFC) system. The goal of this research is to employ the NARMA-L2 neural model in order to identify and
control the nonlinear system. The task of the proposed nonlinear adaptive neural inverse voltage-tracking
controller 1s to find precisely and quickly the optimal hydrogen partial pressure action which 1s used to control
the (PEMFC) stack terminal voltage. Three intelligent optimization algorithms are used to learn and tune the
weights of the neural model, the first one is the FireFly Algorithm (FFA), the second one is the Chaotic Particle
Swarm Optimization (CPSQ) algorithm and the third one is the Hybrid Firefly-Chaotic Particle Swarm
Optimization (HFF-CPSO) algorithm. The numerical simulation results show that the NARMA-L2 controller with
(HFF-CPSO) algorithm 1s more accurate than CPSO and FFA in terms of quickly obtaining the neural controller’s
parameters with high reduction for the number of function evolutions and moreover in its capability of
generating smooth partial pressure control response for the nonlinear (PEMFC) system without voltage
oscillation m the output through investigating under random load-current variations.
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INTRODUCTION

In general, the fuel cell operation looks like a battery
operation where both of them convert the chemical energy
produced from the chemical reaction into electricity. On
the other hand, the DC electricity will be produced
continuously 1n the fuel cell as long as the fuel (such as
hydrogen) and an oxidant (such as oxygen) are supplied
(plus water and heat) and this is the mam difference
between the fuel cell and the battery (Kumar ef af., 2017).
In fact, the fuel cell has several advantages such as the
quiet operation and the zero emission, thus, it is cleaned
by products water when operated on pure hydrogen and
it also does not have any moving parts, even when it
works with extra fuel processing and supply equipment.
Furthermore, the fuel cell 15 better than the traditional
combustion engine/generator sets, it has a ligh power
density, lugh efficiency and the waste heat from a fuel cell
can be used for heating purposes (Swain and JTena, 2015).
This study deals with PEMFC Model only which is
low temperature operating fuel cell designed or
mass-production fuel cell velicles and it 1s very preferable
to be used in power automobiles, aircraft, homes and small
offices as well as in portable electronics systems
(Kandi et af., 2016). In the last decade, many control

techniques and intelligent algorithms have been proposed
to keep the fuel cell system working with the maximum
power conversion such as traditional linear control
techniques which convert the nonlinearity of the fuel cell
system to the linear controller designs which are not
effective when there is a large parameter variations and
load disturbances (Manikandan and Ramalingam, 2016).
Therefore, unconventional techniques with intelligent
algorithms such as fuzzy-PID controller, predictive
controller (Sedighizadeh ef al, 2011), adaptive
back-stepping controller (Zuniga-Ventura et al., 2015) and
sliding mode controller (Derbeli et al., 2017, Tao, 2013)
were adopted also, many types of mtelligent evolutionary
algorithms have been used to build the modelling of
PEMFC and controlling it such as genetic algorithm
(Kumar et al., 2017, Rajasekar et al., 201 5), artificial bees
colony optimization (Safavi, 2013), particle swarm
optimization algorithm and firefly optimization algorithm
(Nazarian and Hadidian-Moghddam, 201 5). In this study,
the Nonlinear Auto-Regressive Moving Average
(NARMA) neural network control algorithm has been
designed based on the identification techmque for the
nonlinear mathematical model of the PEMFC system. This
control algorithm is proposed to improve the dynamic
behavior of the output voltage of the fuel cell through
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generating an optimal hydrogen partial pressure control
action. The fuel cell’s dynamic response is of significant
importance, particularly in mobile applications. Therefore,
the main motivations of this work are to address the issue
of PEMFC slow transient response to load cuwrrent
changes which is very important, since, the dynamic
behavior of a fuel cell is integral to the overall stability
and performance of the power system formed by the fuel
cell stack. Furthermore, the modeling and controlling for
the nonlinear PEMFC system are still challenging. The
contribution of this research is the design of an adaptive
inverse newal voltage-tracking controller based on
NARMA-L2 with a new hybrid FireFly-Chaotic Particle
Swarm Optimization (FFCPSO) m order to improve the
dynamic performance of modeling and controlling of the
nonlinear PEMFC system as well as it is more accurate
compared to another neural control algorithm in terms of:
fast learning, no oscillation in the output and minimum
number of fitness evaluation.

Nonlinear model of PEM fuel cell: In 1960°s General
Electric in the United States developed the PEMFC which
is also known aspolymerfuel cell to be used by NASA on
their first manned space vehicles (Damour ef al., 2014).
Figure 1 shows the reaction diagram of PEMFC. Mostly
this kind of cell depends on a special polymer membrane
coated with highly dispersed catalyst particles. The
hydrogen is fed to the membrane’s anode side where the
catalyst causes the hydrogen atoms to release their
electrons and become H" ions (protons) (El-Sharkh et al.,
2004; Seyezhai, 201 5):

2H, — AH' +de’ @

Only H' ions pass through the Proton Exchange
Membrane (PEM) while the electrons are travelled to an
external circuit to generate the electrical output, before
reaching the cathode side. The electtons and the
hydrogen 10ons combine with the supplied oxygen from air
to form water, this reaction releases energy in heat form
(Mammar and Chaker, 2009):

4e +4H'+0, — 2H,0 (2)

The produced water must be expelled to prevent cell
from flooding and rendering inoperative. The reaction in
a single fuel cell produces an output voltage of
around 0.7 V for general applications, a fuel cell stack is
used which represents several individual cells connected
in series to produce the desired voltage additively. The
required operating temperature for PEMFCs is only
50-100°C which enables fast start-up of operation
(Correa et al., 2003). In general, the polarization curve is
used to express the fuel cell performance and this
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Fig. 1: The schematic diagram of PEMFC reaction

curve shows highly nonlinear characteristics between
Voltage-load current (V-I) (El-Sharkh et af., 2004,
Sevezhai, 2015). Therefore, the modeling of the V-I
characteristics of fuel cells s very important. For PEM fuel
cells the steady-state V-1 characteristics of a fuel cell
can be determined by El-Sharkh et @l (2004) and
Seyezhai (2015):

chll (t) - Vsteady_cumpunem -Vtransmnt_cumpunﬂnt (3)
Vstsady_cnmpnnmt = EN_Vuhmn: (4)
Vtranmmt_[:nmpnnmt - Va[:mvamnn +V[:Dncmtramnn (5)
Where:
Vo = The fuel cell output voltage
E, = The fuel cell reversible voltage
V ot = The ohmic voltage drops resulting from the
resistance of the conduction of protons
through the solid electrolyte and of the
electrons through its path
Vagwaiom = Lhe drop voltage due to the activation of
the anode and cathode
Vinosmmmion — Lhe drop voltage resulting from the

reduction in concentration of the reactant’s
gases or from the transport of mass of
oxygen and hydrogen
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Table 1: The parameters of the fuel cell

Parameters Values Units
Neell 32 -

T 333 Kelvin degree (K)
A 64 om?

1 178 cm

P, 1-5 atm

Paz 0.2095 Atm

Rq 0.0003 G

B 0.016 v

o 0,948 -

o 0.00312

o3 7.6%10°

e -1.93x104 -

J 7 mA/cr?
To 0.469 Alen??
o 20 -

Each term in Eq. 3-5 can be calculated by using the
parameters listed in Table 1 (Correa et al., 2003) and its
own law as follows:

The reversible cell potential (E,) is the cell
electrochemical thermodynamics potential and it
represents the 1deal output voltage and can be calculated
as follows (Correa et al., 2003):

E, = 1.229-0.85.107%(T-298)+4.3085.107x 6)
(T.(n{Py; )+0.5In(F,, ))

The activation over voltage is the voltage drop due
to the activation of the anode and the cathode and can be
expressed as follows (El-Sharkh et af, 2004; Seyezhai,
2015):

V piation = O 108 THo, TIn{C,, Y +ar, T.In(T) (7)
Where:
I = Cell loaded current
Co, = The dissolved oxygen concentration in the

cathode catalytic surface in mol/cm?

By using the Henry law Co, derived from partial
pressure of the oxygen and temperature of the cell by
El-Sharkh et al. (2004) and Seyezhai (2015):

P

[OF]

CDZ =

498 ®

5.08x10° exp| ——
T

The Ohmic polarization loss 1s calculated by Eq. 9
(Swain and Tena, 2015):

Vuhmm - I(RE+Rm) (9)
Where:
R.. = The electron flow equivalent resistance
R, = A constant value to represent the proton
resistance

R = Pul (10)

m

where, p,, 1s the membrane (£ cm) specific resistance and
can be formulated as following (Derbeli et al., 2016):

2 25
18161003 - [0.062) - |-
A 33) LA ) gy

[p-0. 634—3[;}@[4 18(T-303)/T] :|

m

where, ¢ 1s an adjustable parameter of the humidity
condition. During the reaction, there is a reactant
concentration drop (oxygen and hydrogen) which is
called the concentration loss and it can be calculated by
the chemical reaction loss of Eq. 12 (El-Sharkh et al., 2004;
Seyezhai, 2015):

V:on:entfanon - _Bln{l'%} (1 2)

Where:

B = Cell typed dependence parameter

I = The density of the current which passes through
the cell (A/em®)

Tz = The maximum cuwrrent density that passes through
the cell (A/em®)

It can be calculated by using Eq. 13:

;-] (13)

A
mag A

So, the output voltage of the fuel-cell stack 1s
calculated by the following Eq. 14 (El-Sharkh et al., 2004,
Seyezhai, 2015):

(14)

Voo = Ny 'V,

cell Vel
where, N, is the fuel cell mumber in stack. The total power
density provided by the fuel cell to the load can be
determined by Eq. 15:

Power,, = LV, (15)

MATERIALS AND METHODS

Neural inverse controller design: The main task of the
proposed adaptive neural inverse controller 1s to generate
precisely and quickly the optimal hydrogen partial
pressure action in order to control the voltage of the stack
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Fig. 2: The proposed neural controller structure
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Fig. 3: The NARMA-L2 Model structure with serial-
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terminal in PEMFC Model. The general structure of the
proposed neural inverse voltage tracking controller is
shown in Fig. 2. There are two steps towards desigming
the proposed adaptive neural inverse controller:

First step: In this step, the identification technique is
used to build the FEMFS Model based on NARMA-L2
neural network. The structure of the Nonliear Auto
Regressive Moving Average-Linear 2 (NARMA-L2)
model based on MultiLayer Perceptron (MLP) neural
networks with serial-parallel configuration is shown in Fig.
3 (Fourati et al., 2015; Kananai and Chancharoen, 2012).
The proposed equation of the NARMA-L.2 Model based
on the fuel-cell stack output voltage V. and the
temperature variable T of the fuel cell system the load
current variation I and the hydrogen partial pressure Py,
controlled effort can be formulated as follows:

Vic (k) Vie (k1) T (k) ...
Ve (ktd) = f| T(k-n+1),1{k},..,I{k-n+1),P,, |+
(k-1),..., B, (k-n+1) 16
Ve (k),oo Vie (k0 1), T (k). TV (k-n+1), )
(k). IV (k-n+1), Py, (k-1),.... By, Vi (km+)
Py, (k)

g

where, f[-] and g[-] are the functions of the past values of
input-output of the fuel cell system. The mean square
error function 1s used as the objective cost function in
learning algorithm in order to minimize the error
between the actual output of the fuel cell and the
output of the neural network as in Eq. 17 by using Eq. 18
(Zurada, 1992):

e({k+1) = Voo (kH1)-V, (k+1) (17

Ly ey (2]

np np (18)
o " i 2
= Vi (k1)-v (k1)
Where:
np = Thenumber of population
e = The error of each iteration
V're = The actual output voltage of the fuel cell of each
iteration

V', = The model output voltage of the neural network of
each iteration

After applying the traimng mechamism of the neural
network as shown in Fig. 2 by using intelligent
optimization algorithms in order to reduce the error
between the actual output voltage Vi(letl) and
neural network model output voltage V_(k+1) and 1s
equal to zero approximately then the model will
complete the same actual output response. When
identification of the plant 15 complete, then g[-] can be
approximated by &[] and f[-] by {[] and the
NARMA-LZ Model of the stack fuel cell can be
described in Eq. 19:

Vo (K)o Vi (ken ) 41, T (K.
V, (k+1) = f| T{k-n+1),1{k),...1{k-n+1),B,, |+
(k-1),....B,, (k-n+1) (19)

A Ve (K)o Vi (k-n 1), Tk ), T{k-nt1),

g XPHz(k)
I{k},....I{k-n-1), P, (k-1)....., Py, (kn+1)
Therefore, the control law of the adaptive

verse newral voltage tracking controller can be
obtained from the TJacobian that can be defined as
the &[-]1 neural network and it has the sign definite in the
fuel cell operation region in order to guarantee the
uniqueness of the fuel cell mverse at that operating
region:
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Fig. 4: The structure of both #[-] and &[] neural network
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(20)
where, V,,(k+1) denotes the desired output voltage value
of the fuel cell. The neural network structure f[-] and &[]
are the Multi-Layer Perceptron (MLP) Model and each
one consists of three layers: the input or buffer layer, the
hidden or activation layer and the output layer (Zurada,
1992; Nells, 2001) as shown mn Fig. 4. So, the network
weights of the f[-] and &[-] can be illustrated as follows:

Vi, = The weight matrix of the i[-] hidden layer
Wi, = The weight matrix of the f[-] output layer
Vg, = The weight matrix of the &[] hidden layer
Wg,, = The weight matrix of the 3[-] output layer

To describe the calculations of neuron mn the lidden
layer, firstly, we will sum the net of the weights Vf, and
Vg, by using Egs. 21 and 22 (Zurada, 1992, Nells, 2001 ):

nh _

netf, = 2 VI _xZ_ (21
a=1
nh .

netg = 2 Vg, *Z, (22)
a=1

where, nh is the hidden nodes number. Secondly, the
neuron outputs of both hf, and hg, are calculated as a
continuous unipolar sigmoSid activation function of the
netf, and netg, as in Eq. 23 and 24, respectively (Zurada,
1992; Nells, 2001 ):

1

Hnetf, ) = et (23)
1

H(netga) - 1+e-nsbaa (24)

Thirdly, to calculate the weighted sum netf, and netg,
of the output layers, Eq. 25 and 26 are used, respectively:

nh .

netfo, = E Wi, >hf, (25)
a=1
nh —

netgo, :Engatha (26)

a=1

The one linear newron passes the sum of both
(netfo,) and (netgo,) through a linear function of slope 1
as in Eq. 27 and 28:

Of, = L(netfo, ) (27)
Og, = L{netgo, ) (28)

Second step: This step describes the use of different
types of the mtelligent algorithms in order to find and
tune the best weights neural controller and show the
effectiveness of them in terms of number of iterations for
evaluating the fitness function and the minimum value
obtained for the cost function.

The firefly algorithm: One of the meta-heuristic
algorithms 1s the firefly algorithm and the principle of
operation of this algorithm is based on the fireflies
flashing behavior (Abdelaziz et al., 2015). In general, the
firefly algorithm formulation is based on three ideal rules:
the 1st one 1s that all fireflies are unisex, the 2nd rule 1s
that the firefly attractiveness (P) is proportional to the
brightness (I) and if the brightness of both fireflies
decreases that means the distance (r) between them is
increased. The 3rd rule 1s that in the firefly movement, the
less bright one will move towards the brighter one and if
there is no brighter one than a particular firefly that means
the firefly will move randomly. The brightness have to be
associated with the objective function. The relationship
between the attractiveness of each firefly described by
monotonically decreasing function of the distance
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between any two fireflies can be formulated as
follows (Nazarian and Hadidian-Moghddam, 2015;
Abdelaziz er al., 2015):

B=B,exp™ (29

where, P, is equal to 1 and it represents the maximum
attractiveness (atr = 0). ¥ 1s a factor with the range from
0.1-10 and it represents the Light absorption. m 1 more
than 1.

The distance between any two fireflies (i) and (§) at
positions x, and X, 1s estimated using the distance formula
as follows (Nazarian and Hadidian-Moghddam, 2015,
Abdelaziz et al., 2015):

I = Ei:1(xi-k_xhk)2 (30)

where, d denotes the number of dimensions. X, is the kth
spatial coordinate element kth of ith firefly.

The firetly 1 movement can be formulated as three
terms: the first one represents firefly current location, the
other one represents the firefly’s attractiveness and the
final one denotes the random movement of the firefly
if there are no brighter fireflies (Nazarian and
Hadidian-Moghddam, 2015; Abdelaziz et al., 2015):

x, = x, B, exp™” (x,x, )+ o= (rand-0.5)  (31)

where, ¢ 1s a randomization variable between (0-1).

Particle swarm and chaotic particle swarm optimization
algorithms: In general, one of the modern stochastic
search algorithms 1s the Particle Swarm Optimization
(PSO) which is famous by its simple concept, easy
implementation and quick convergence (Rini et al., 2011).
This technique particles start at a random 1mtial particle
(population of mdividuals) each particle 13 leaded by the
internal interaction in order to get the near optimal
solution by minimizing or maximizing a given objective
function by flying through the search space. The
movement of particle 1, x;, depends on its velocity, V,
which is adjusted at each time step by using the global
best position, Gy, and the local best position, L., which
have been already found. Equation 32 represents the
particle’s velocity update and Eq. 33 represents the
particle’s position update (Rini et al., 2011):

V1 (k+l) = W.V1 (k)+clr1 [Lbest—i -Xi (k):|+

(32)
Gl [Gbest X (k)]

X, (k+1) = x (k) +v, (k+1) (33)

where ¢, and ¢, are cogmtive coefficients and r, and r, are
two uniform random numbers from (0-1). In order to solve
global optimization problems with a large number of local
minima, the chaotic technique is used because it has been
exploited in some metaheuristic methods which makes it
generally exhibits better numerical performance than
random operators in searching (Chauhan et al., 2015).

Therefore, Chaotic Particle Swarm Optimization
(CPS0) algorithm 1s proposed in this research because 1t
has ability to improve the global searches and reach to
optimal solution with mimmum number of iterations that
depend on probabilities of the chaotic techniques
(Dong et al., 2016) than stochastic techniques. The
logistic equation employed for constructing chaotic PSO
is described as Chauhan et al. (2015):

B1cH) - WB(K) 1B(K] ] (34

where, [ is equal to 4 as the control parameter therefore,
(0) ¢ {0, 0.25, 0.5, 0.75, 1}. To calculate the new weight
parameter W, Eq. 34 and 35 are used as follows:

W= (W, ) “emﬂon(k)} (35)
max.no.iteration
W = B(kT1)W (36)

To enhance the capability of PSO m the global
searching, it has to put the new inertia weighting in the
velocity update equation and it becomes as follows:

new: "1

C, [Ghm X, (k)]

v, (k+]) =W __V (k)+011] [ngsm'xi (k)]Jr (37)

The proposed hybrid optimization algorithm: The
proposed algorithm  combines two optimization
algorithms, namely the firefly and the CPSO in order
optimization in order to increase the speed of learming,
avoid filling in the local minimum and reduce the number
of fitness evaluation The hybrid FFCPSO algorithm
develops the movement of the firefly equation by
converting the equation of the distance forms as the
distance between x; and L, in the Cartesian distance as
inEq. 38 as well as the distance between x; and G, in the
Cartesian distance as in Eq. 39:
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L.~ JZE _ I(LbESt-l,J'X,,J )2 (38)

foe ~ \/Ei = 1(Gbest—i,]'X1_] )2 (39)

Also, the new inertia weighting as in Eq. 36 is added
to the movement of a firefly equation, then the final
proposed movement of a firefly can be represented as
follows:

Xi (k + 1) - Wnew-xi (k)+01 eX[){SC ( Lbest—i _Xi (k)) + (40)
c,exp = (G, %, (K))+ o< (rand-0.5)

So, the effectiveness of the proposed hybrid FFCPSO
algorithm shows in the entire population, each particle is
randomly attracted towards the G, position and the local
search m different regions 1s carried out by the modified
attractiveness step of the proposed algorithm.

RESULTS AND DISCUSSION

To apply the proposed inverse neural voltage-
tracking controller structure on PEMFC system as shown
in Fig. 2, the numerical simulation is done by applying
MATLAB package. The first step 1s to execute the
identification technique 1n order to construct the model of
the PEMFC based on NARMA-L2 neural network by
using three different types of the intelligent learning
algorithms that were explamed m section three. The
second step 18 to implement the mverse neural network
controller design in order to precisely and quickly obtain
the optimal hydrogen partial pressure action to control the
(PEMFC) stack terminal voltage. To show the output
voltage of cell static operation against the load current of
the fuel cell, the polarization curve is important because it
shows how the fuel cell voltage behaves when the load
current changes as shown m Fig. 5 by using Eq. from 3-15
and the data in Table 1 with hydrogen and air of
pressure 1 atm and at a temperature of 25°C with the
maximum current for this stack which is 30 A. The loss
voltage of the fuel cell can be shown in Fig. 6. Figure 7
shows the temperature effect on the polarization curve of
the full cell when it changes from 25-55°C. Figure & shows
the stack output power against the current and the
maximum power 1s clear at the current which 1s equal
to 29 A. There are 100 samples as mputs (hydrogen partial
pressure, load current and temperature) output as
(voltage) to neural PEMFC model and these inputs are
chosen as Pseudo Random Binary Sequence (PRBS)
signals with high-frequency and low-amplitude change

30 -+
28 4
€ 26
24 4
22 4
20 4
18 -
16 T T T r T 1
0 5 10 15 20 25 30
Stack current (A)

Stack voliage

Fig. 5: The polarization curve

18~
16
E 14
12 4
§' 104 — Activation loss voltage
T g4 == Ohmic loss voltage
E 64 == Concentration loss voltage
g ]
2 7 .....---—-"""'j
0 1 L] T T — T 1
0 5 10 15 20 25 30
Stack current (A)
Fig. 6: The loss voltage of the fuel cell
30
—- At temperature 25°C
28 — At temperature 35°C
8 264 9 --- At temperature 45°C
gu 24 = At temnperature 55°C
"g‘ ” P
2
3 20
18
16 T T T T T 1
5 10 15 20 25 30
Stack current (A)

Fig. 7. The polarization curve of the full cell for different
temperature operations

600 -

0 T T T T T 1
0 5 10 15 20 25 30

Stack current (A)

Fig. 8: The stack output power agamst the current

with a mean value whih is equal to zero in order to excite
all nonlinear regions of the PEMFC system m the open
loop step changes as shown in Fig. 9-a-d, respectively.
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Table 2: Parameters of different types of intelligent algorithms

Algorithm The best number
type No. of particles No. of firefly  Particle’s weights  Fireflv’s weights [, v, o, m] candcy randr of iteration
CPSO 50 220 - 1.25 Random (0,1) 85
FF s 50 . 220 [1,5,0.2, 2] 5 . 110
FECPSO 50 220 [-.-.0.2.-] 1.25 45
1@ ®
51 67
B o < 5 ]
g g 4- &2
i E:
i A
8] E 24
14 1 -
0 1 1 1 1 1 T T T T 1 0 T T T T T T T T T 1
360 © 30.0+ @
350 4 E 29.54
¥ 340 4 = izg'
330 - a8
g 28.04
g 320+ 2 275
& 310+ & 2704
300 4 26.5 -
290 T T T T T T T T 1 1 260 T T 1 T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 S0 100
Samples Samples

Fig. 9: a) The input signal hydrogen partial pressure used to excite the PEMFC system; b) The input signal load current
used to excite the PEMFC system; ¢) The input signal temperature used to excite the PEMFC system and d) The
open loop response of the PEMFC to the PRBS input signals

Based on these figures, there is an essential need for
adding a scaling function in the input layer of the neural
network model in order to avoid numerical errors in the
activation function of the hidden layer. Moreover, it 1is
umportant to add a scaling function in the output layer of
the neural netork model because the output voltage is
between 26-30 V. Based on the stack voltage equation of
the PEMFC system, we proposed the dynamic model of
the PEMFC system as Eq. 19 that has a 3rd order system
dynamic behavior as follows:

VFC(k)=VFc(k'l)=ch(k'2)=
v, (k+1) = £| T(k), T(k-1),1{k),1(k+1), |+
P (K1), Py (-2)
Vee (k). Vie (k-1), Vi (k-2), T(T), T (k-1),
I{k),I{(k+1).P, (k-1).B,, (k-2)xP,, (k)

(41)

Since, each of f[-] and &[] has nine inputs based
on Eq. 41, the nodes in the NARNA-L2 neural network
structure based on MLP are proposed as [9:11:1],
representing the number of nodes in the input layer, the
number of nodes in the hidden layer and the number of
nodes in the output layer, respectively.

During the learming cycle of the PEMEFC neural
network model based on three different types of

—- Actual output
— FF-algorithm
30.0 - == CPSO algorithm
29,5 - FFCPSO algorithm
§. 290 -
E 28.5 -
% - 28.0 -
B 2754
'g g 270
265 1
A 260
25-5 T T 1 T 1 T L T T 1
0 10 20 30 40 50 60 70 80 S0 100
Sarnples

Fig. 10: The responses of neural PEMFC Models with the
of

actual output voltage for three types

wtelligent algorithms for learning patterns

intelligent algorithms, Table 2 shows these parameters.
The responses of neural PEMFC Models with three
different types of the mntelligent algorithms are shown in
Fig. 10 where it shows the excellent response of the neural
PEMFC Model with the actual output voltage of the
PEMFC for the 100 patterns using the learning FFCPSO
algorithm due to the mimmum munber of iterations and the
minimum value of the performance index as shown in
Fig. 11.
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Fig. 13: The Jacobain of the neural PEMFC Models for
learning pattern

Figure 12 shows the responses of neural PEMFC
Model with three different types of the intelligent
algorithms for 100 patterns as a testing set, it can be
observed that all neural network models for the PEMFC
system followed the PEMFC actual output voltage
without the over learning problem occurred in the training
cycle for all learning algorithms.

Figure 13 shows the Jacobian of the neural PEMFC
model with three different types of optimization
algorithms, so, it is observed that &[-] is sign definite in all

the region of work interest which means that the models
are invertable and can implement Eq. 20 for the inverse
neural controller for the PEMFC system.

Figure 14 shows the three different step change
desired outputs voltages with three cases variable load
current (1, 2.5, 5) A as shown in Fig. 15 during 75 samples.
Three responses of the PEMFC output voltage after
applying the three neural PEMFC models as inverse
neural controllers are based on the structure of
NARMA-L2 Model with three different types of the
tuning algorithms. Fach inverse neural controller has the
ability for tracking the desired output voltage with
variable load current. However, the best performance of
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Fig. 16: The performance index for three different types of
optimization algorithms during tuning weights
parameters of the controller
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Fig. 17: The hydrogen partial pressure control signal
based on three different types of the intelligent
algorithms

the controllers 1s for the neural PEMFC Model that was
learned by FFCPSO algorithm. Tt is observed that, the
actual output voltage of the PEMFC is excellently tracking
the desired output voltage and it has small overshoot
without oscillation in the output. This controller 15 more
accurate and the steady state error is equal to zero
approximation with a mimmum value of the on-line
performance index as shown in Fig. 16, compared with the
mverse neural controller based FF algorithm and CPSO
algorithm. Figure 17 shows the hydrogen partial pressure
control action of the inverse neural controller which has
a small spike action of the partial pressure to track the
desired output voltage and it approximately mimnimizes the
steady state error to the zero value.

CONCLUSION

The numerical simulation results of the proposed
Hybrid Firefly-Chaotic Particle Swarm Optimization
(HFF-CPS0) algorithm with neural network NARMA-L.2
Model are presented in this study for modelling and
controlling the nonlinear PEMFC system. The proposed
learning algorithm has many abilities when compared with
firefly algorithm and chactic particle swarm optimization
algorithm m terms of, strong learning algorithm to build

neural network model without over-learning problem,
minimum fitness evaluation needed to find the optimal
weight parameters of the neural model, fast and smooth
learning algorithm which leads to no oscillation m the
output neural model, robust mverse neural controller
tuning parameters that generate the hydrogen partial
action to track the desired output voltage of the PEMFC
system during the load current variation
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