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Abstract: This study introduces the Shifting Traveling Salesman Problem (ShTSP) which 1s a new variant of
the transportation problems that combines the well-known traveling salesman problem and the shifing problem.
The ShTSP arises naturally in the transportation of large, heavy, hazardous or fragile products in a single
vehicle with a single stack where all products are stowed in a predefined order according to their weight,
fragility and stability. The stack has a single access pomt for the unloading of freight wlich means, the
unloading of each product 1s performed according to the “Last In First Out” (LIFO) policy such that a number
of products must be removed in order to reach products below them. In other words, shifting products within
the vehicle becomes necessary if the target product is located below other ones. Our goal is to seek an optimal
tour that takes account of the shifting cost which represents the temporary removal of frights m the velicle
caused by the unloading and reloading operations at each client of the tour. We propose a mathematical model
as a mixed nonlinear program and then we solve it by proposing two methods: the first one consists on
adapting the ant colony metaheuristic and the second one introduces a new parallel-ant colony adaptation, the
two algorithms are tested on a number of problem mstences of varying problem characteristics from the TSPLIB
benchmark sets. Computational results show the efficiency of the improved version of the algorithm which 1s
based on the parallel concept, for small and large sized instances.

Key words: Traveling salesman problem, unloading, reloading, shiftings, mathematical programming,
optimization, metaheuristic, parallel-ant colony algorithm

INTRODUCTION

Because of their wide applicability in practical
settings, routing problems have been intensively studied
in the literature and known as the classical combinatorial
optimization problems that have become a key component
of distributtion and logistics management. However,
nowadays, service and transportation comparies compete
not only on their logistics costs but also on service
differentiation that may be influenced by the shifting
constraimnts which are practical aspects that have seldom
been addressed in the modeling approaches of the
literature.

Avoiding load rearrangements and temporary
removal of freights i1s very mnportant in the case of
transporting large, heavy, fragile items or hazardous
materials. In fact, we can face real-world applications
problem where, both the shifting and the traveling
salesman problems These
problems are encountered in several transportation
companies which deliver large items such as furniture and

are combined together.

appliances. Thus, the aim of this study is to study a new
variant of the routing problems which is the Shifting
Traveling Salesman Problem (ShTSP). This problem arises
naturally n the routing of a single vehicle or truck that
has a single access point for the unloading of freight. The
vehicle can also, be represented as a container ship or a
barge (Yaagoubi et al., 2016) where each stack of the
ship/barge can be resolved as the ShTSP. The following
subsections explain both problems: the Shifting Problem
(ShP) and the Traveling Salesman Problem (TSP).

Overview of the shifting problem: The ShP is
encountered in most freight transport problems and
especially in the maritime transport problem, so, to
introduce this problem we will start first by recalling the
concept of containerization which 15 a system that
involves the transportation of freight using intermodal
introduction of this system has
contributed a sigmficant reduction in the cost of freight
transportation. Ever since, the contamner has become a
pillar of commerce throughout the world. Thus, the

containers. The
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container development has risen regularly and
continuously and developed stunningly these recent
decades. As a result of this extremely large growth,
terminal operators have started to think more about
efficiency and costs reductions. Thereby, a lot of multiple
studies are prepared to search ways to ameliorate
efficiency and save costs.

Containerization concerns the intermodal freight
transportation  in containers using several modes of
transportation such as ships, trucks, trains and barges
without any manipulation of the freight itself when
changing modes (Crainic and Kim, 2007). That 1, the main
reason for its highly importance is that it facilitates
smooth movement of goods through multiple
transportation modes without any direct goods handling
all along the trajectory. The contamerization also plays a
major role in reducing freight handling and thus improving
security, decreasing damages and losses and allows
freight to be transported faster (Agerschou, 2004).

Containers are large metal boxes of multiple standard
dimensions (20 ft Equivalent Unit (1 TET), 40 ft (2 TEU),
45 ft (high-cube)), allowing several units of cargo to be
manipulated simultaneously and efficiently and they are
constructed, so that, they can be stored efficiently and
directly on top of each other in stacks. Containers are
almost always stored in this way, both in stationary
storage areas such as depots, warehouses and port
terminal vards and moving storage areas such as bays
and stacks of container ships or vessels.

Within this context, the position of containers is the
most influencing factor on the cost needed to achieve
certam retrieval. Sometimes because of this predefined
order of the containers in the stack, the container that is
due to be lifted out of the stack earlier may be buried
beneath other containers that would be lifted at a later
time. In order to retrieve a certain container x, all
containers on its top have to be removed first. These extra
movements are called shiftings and sometimes multiple
shifts may be necessary to reach a certain container.
Accordingly and because containerships are highly
capitalized and their handling costs are significant, the
shifting cost should be minimized due to the fact that
it increases the labor costs and impair the client
satisfaction.

At each port, a very large number of containers can
be loaded, unloaded or repositioned. Despite the fact that
such container movement plans reduce the transportation
cost per contamner, it presents a difficult operational
problem known as the Container Stowage Problem (CSP)
(Avriel et al., 1998). Avriel et al. (2000) proved that the
stowage plarming problem is NP-complete by showimng
that the stowage problem 1s linked to the circle graphs

colaring problem that is known to be NP-complete which
implies that it is very unlikely to guarantee finding an
optimal solution in a feasible processing time. Since, the
19707s, the container stowage planmng problem has been
studied by many researchers (Aslidis, 1989; Vis and
Koster, 2003; Steenken et al., 2004, Gunther and Kim,
2006, Stahlbock and VoP, 2008). A lot of researches are
mainly concentrated on the contamner loading problem
that can be modeled as a combinatorial optimization
problem (Aslidis 1989, Wilson and Roach, 1999,
Wilson et al, 2001). A stowage plan mvolves the
placement of a container at a ship slot which 13 described
by a combination of the row number, bay number and tier
number. Some of the main objectives of a good stowage
plan are reducing handling time, guaranteeing stability,
conforming ship stress limits and maximizing quay crane
utilization (Wilson and Roach, 2000). Avriel et al. (1998)
focus on stowage planning in consideration of minimizing
the number of shifts. Hagham and Kaisar suggest a mixed
integer program for modeling loading plans n order to
minimize the time that a vessel spends at port and the
container handling or manipulating cost which is strongly
influenced by the number of shiftings caused by a bad
stowage plan of containers. Dubrovsky et al. (2002) use
a genetic algorithm for solving the stowage planning
problem to minimize the number of container movements.
Delgado et al. (2009) applied Constraints Programming
(CP) to formulate the stowage planmng problem.
Moreover, a recent research about the stowage stack
minimization problem with zero rehandle constraint was
studied by Wang ef al. (2014), it aims to find a mimmum
number of stacks needed to satisfy all the containers
transportation in a multi-port voyage without facing
container movements. Also, some papers focus on
how to prevent shiftings by recommending methods to
properly locate incoming containers in a container stack
(Dekker et al., 2006, Casey and Kozan, 2012).

Simultaneously with these studies, the container
stowage problem relates to several other problems
in the literature. We refer to the berth allocation
problem. (Cordeau et al., 2005). We mention as well the
dynamic container relocation problem (Akyuz and
Lee, 2014) and the ship routing and scheduling
problem (Christiansen et af., 2004). Thus, for a more
detailed discussion of each of these fields, we mention
{(Steenken et al, 2004, Stahlbock and Vof, 2008,
Douma et al., 2009).

Overview of the traveling salesman problem: The TSP is
located at the heart of routing problems and listed as one
of the most well studied, important and popular problems
1in combinatorial optimization. Moreover, according to its
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simplicity and comprehensibility, TSP can model various
other important problems and despite its clarity, it is
extremely challenging and has motivated numerous
publications dedicated to examine it more effectively. The
classical TSP can be simply defined as finding the
shortest tour between a set of cities which covers all
cities each exactly once. The problem is NP-complete
thus by increasing the number of cities, the computation
time of optimal solution increases drastically (Garey and
Tohnson, 1979).

Since, its introduction, many different extended
versions of the TSP have been studied. More and more
constraints which make the resulting problems align better
with real-life applications are being associated with the
classical TSP. These extended versions include the pickup
and delivery TSP with LIFO loading where visiting a
delivery node is possible only if the load to be delivered
is located at the top of the stack (Carrabs et al., 2007;
Cordeau et al., 2010) with FIFO loading (Erdogan et al.,
2009) and with multiple stacks (Petersen and Madsern,
2009) have been newly introduced as well as vehicle
routing problems with loading issues (Tori and Martello,
2010).

In the classical version of the problem there 1s a fixed
cost associated with each arc for traveling on this arc or
for serving it. To our knowledge, relatively little effort has
been devoted to the study of the TSP with a non-constant
service cost. Most related works can be found n
(Tagmouti et al, 2011) where the service cost on a
required arc is a function of the time of beginning of
service. Moreover, another research was presented by
Tagmouti et al. (2007). In their research, they studied an
arc routing problem with capacity constraints and
time-dependent service costs where a subset of arcs must
be serviced at a cost that depends on the time of
begimming of service such that the cost 13 given as a
piecewise linear function of time. Also, Wiel and
Sahinidis (1996) presented an algorithm for solving the
time-dependent traveling-salesman problem in which the
cost of travel between two cities depends on the distance
between the cities and the position of the transition
in the tour. Whereas, Ichoua et al. (2003) proposed
a time-dependent model for a vehicle routing problem with
time windows, based on time-dependent travel speeds
which satisfies the first in first out assumption.

There is a very large set of works in the literature on
the TSP, we refer the interested reader to the surveys
provided by Bektas (2006). Bigras et al. (2008), Lori and
Martello (2010). To our knowledge, the ShTSP has not yet
been studied in literature but several of other variants
that mnclude both pickups and deliveries have been
mvestigated such as the traveling salesman problem with

pickups, deliveries and handling costs (Battarra et al.,
2010; Erdogan et al., 2012) which is a new variant of the
one-to-many-to-one single vehicle pickup and delivery
problems that incorporates the handling cost ncurred
when rearranging the load at the customer locations
where each customer requires a pickup service, a delivery
service or both, 1e., two types of items are considered
those transported from the depot to customers and those
transported from customers to the depot. This implies that
the vehicle leaves the depot carrying all the deliveries,
visits each customer once and returns to the depot
carrying all pickups while respecting the capacity
constraints. Other variants are the pickup and delivery
problem with time windows and last in, first out loading
{Cherkesly et al., 2014). The LIFO policy means that when
a pickup point 1s visited, the collected item 1s positioned
on top of a stack and can only be delivered if it is in that
position. This rule ensures that no handling is required
prior to unloading an item from a vehicle, the pickup and
delivery problem with time windows and multiple stacks
(Cherkesly et «f., 2016) which prohibits additional
handling operations as well, the pickup and delivery
traveling salesman problem with handling costs
(Veenstra ef al, 2017a) where a single vehicle has to
transport loads from many origing to destinations.
Loading and unloading of the vehicle is operated in a
LIFO policy and a penalty cost 1s associated with each
additional handling operation and the pickup and delivery
problem with time windows and handling operations
(Veenstra et al., 2017b) where two different rehandling
policies were defined. The first one only allows
compulsory rehandling and the second one allows
compulsory rehandling and preventive rehandling, i.e., all
items can be rehandled at once.

MATERIALS AND METHODS

Problem statement and definition: This study addresses
a new variant of the TSP that is combined with the ShP.
Given one vehicle to deliver products stowed n one stack
with a predefined order according to their fragility, weight
and stability such that a number of products must be
removed m order to reach products below them.
Moreover, each product has a single client and each client
has a single product.

From a graph theory point of view, the ShTSP can be
formally defined on a complete graph as: let G = (V, A) be
a complete graph where V = {c;, ¢, ..., ¢} 1s the vertex set
such that all nodes are connected by arcs. Vertex ¢,
represents the depot where the vehicle is initially located.
The products are already stowed m it according to a
predefined order. The remamng vertices {c,, .., cy}
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Fig. 1: A tour example of the vehicle

represent clients that must be served, each client ¢ has a
single product 1. A non-negative value d; is assigned for
each arc (i, j) to represents the distance cost and a
non-negative value s; represents the shifting cost
between each clients ¢, and ¢. We note that d, = d;
ands; = s,

For the encoding of the ShTSP’s solutions, we have
used the path representation shown in Fig. 1. In this way,
each solution 1s encoded as a permutation of clients ¢ vie
{1, ..., N}; A sequence of the clients to be served starting
and finishing at the depot ¢,. Figure 1 shows a solution
(Cgs Cys €y Cp» Cyy Cs, Cy) With 5 clients.

Our aim 15 to seek an optimal tour that takes account
of unloading and reloading of the products placed m the
vehicle according to a predefined order. Owr problem
naturally arises when storage unit has only a single
access located at the top and works like a stack; it 1is
especially applicable when the shifting cost (ie,
unloading and reloading the blocked products) is
comparable to that of the extra traveling distance caused
by the LIFO policy of the stack.

To explain our problem, we consider a velicle which
has a vertical stack consisting of a finite setT = {1, ..., N}
of N placement levels (Fig. 2), each level i€l represents a
product 1 to be delivered identified by its umque
destination ¢. The wehicle loading plan 1s known
beforehand and is given according to the fragility, weight
and stability of each product. The vehicle can only be
accessed from above so the unloading of each product 1s
performed according to the LIFO policy.

As mentioned before, we assume that the product
Iel is intended for the single client ¢, therefore, at each
subsequent clients requiring a delivery to serve the client
¢, we first have to unload all remaining products j (not yet
served) such as j<i (i, j€1) which means discharge all
products that are obstructing the unloading of the
concerned product I. Then, after delivering the concerned
product, the unloaded obstructing products must be

Level N-1

Level N

Fig. 2: Tllustration of the stack

Reloading  Uploading

I~ r>

U oa%&A Leve
m S Leve

Reloading 1
2
Level 3
Level 1 ©\ Level 4
Level 2 Level 5
Level 3
Level 4
Level 5 The state of the

vehicle stack when

The initial state of arrived at client 3

the vehicle stack

Fig. 3: Example of a feasible tour of the ShTSP

reloaded again mto the vehicle to continue the tour
(Fig. 3). Each of these additional movements is called a
shifting. More specifically a shifting i1s defined as the
temporary removal of products which are arranged above
the concerned product and their placement once again m
the vehicle.

For illustration, we consider a small example where
the vehicle needs to serve five clients. Figure 3 shows a
tour solutton which starts with the client ¢, must
therefore, discharge products at level 1-4 then serve the
client ¢, and subsequently reload the products 1-4 in the
same order as before to continue the tour and so on until
the end of the tour (Fig. 4).

To simplify, we define all costs in terms of time unit
(minutes). We assume that each arc is valued by the travel
time between the two corresponding clients as shown in
Fig. 5 and each of the unloading (u) and reloading (1)
costs of product i, ¥ic {1, ..., N} is equal to 3 min. The total
shifting cost of the tour will be equal to 51 min as
calculated m Fig. 4 where each case represents the state
of the vehicle when arrived at each client following the
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[ ¢
L C
G
C4
= C
State 1 State 2
Sh = Su+4r =27 min Sh=u =3 min
CI
* C,
State 3 State 4

Sh =2u+r =9 min Sh =2u+r =9 min

State 5

Sh =u =3 min

Fig. 4 Tlustration of each state of the stack throughout
the tour

same order of the tour presented in Fig. 3. In this example,
we can see that there are several shiftings to be made
when unloading the desired product at each client.

Note that mimmizing both the total distance traveled
and the number of shiftings made do not vary generally in
the same way. Indeed, minimizing the distance cost of the
tour could increase its total shifting cost and vice versa.
InFig. 5, we have two possible solutions a and b that vary
in a different way. Compared with the tour b, the tour a
represents a very good solution in terms of travel time
(the minimal distance) where Tarvel, , = 3+7+5+6+2+4 =
27 min and Tarvel,,, , = 13+17+7+6+10+3 = 56 min. Onthe
other hand, it represents a less good solution in terms of
shifting costs compared with the tour b which describes,
this time, the best solution in terms of shifting time where
Shifting .y = 53 = 15 min and Shufting,,., = 51 min
(Fig. 4).

In most times, service costs are either ignored or
assumed to be constant. However, m practice, it can
easily be observed that service costs vary according to

—» Vehicle route which minimize the distance cost
—J» Vehicle route which minimize the shifting cost

Fig. 5: The two objectives (mimmizing the distance and
shifings costs) do not vary in the same way

several factors which naturally depend on the order of the
customers visited in each node. In our problem, the
service cost required at each client 1s not fixed a priorn but
depends on the position of this client in the tour. Note
that sometimes, the shifting cost is larger than the
distance cost because it takes more time and effort to
service an arc than to simply travel along the arc. Thus,
the primary contribution of this resarch is to introduce a
new variant of the traditional TSP applied in the ShP that
addresses the challenge of determining the vehicle’s
optimal tour takes account of these additional movements
of the products by unloading and reloading them at each
client. Therefore, our goal is to minimize the total tour
costs of a single vehicle with a single stack including the
total travel distance and the total service cost which 1s
represented by the total number of shiftings in this tour
caused by the unloading and reloading of all the blocked
products in the stack. To the best of the resarchers
knowledge, the ShTSP represents a new variant of the
TSP and it has not been handled previously in the
literature as the same way as introduced in this research.

Problem formulation: In this study, we present a mixed
nonlinear programming formulation to solve the
ShTSP. Before that we introduce some assumptions and
terminology which will be used in formulation later.

The basic assumptions used 1n this resarch are listed
below: the vehicle loading plan is known before hand and
is given according to the stability and weight of each
product. The vehicle has exactly one vertical stack
consisting of a number of placement levels. The
unloading order of the products in the vehicle must be
done either from the top or from the side. In this study,
the vehicle can only be accessed through the top, so that,
it will follow a last-in-first-out unloading policy. Each
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client asks for the delivery of one product. Tn other words,
the number of clients to be served 1s the same as that of
products stowed i the vehicle. Only one product may be
stowed in each level of the stack and must be retrieved to
its corresponding client. The following notations are used
throughout the study to formulate the model:

¢+ N the number of clients to be visited (equals to the
number of products to deliver)

* M apositive constant sufficiently large

* o asmall positive constant

¢ d; the distance between clients ¢, and ¢,

* u, the unloading cost of product 1

* 1 the reloading cost of product 1

] 1

With these notations in hand, a mixed nonlinear
programming formulation of the ShTSP may be

ifi>

otherwise

constructed with the mtroduction of the variables, for 1,
1640, ..., N} we define:

1 if the product is delivered immediately
Xy = after the product i
0 otherwise

1 if the product is delivered
Vi = before the product j

0 otherwise

Note that y, if the product 1 is delivered not
necessary “Immediately” before the product j:

3;=The shifting cost of product j knowing that
the vehicle has just served client ¢
Where:

j 1

SDJ :2 Wty

1=1 1=1

vje {1,..,N} (1)

§, =0 vie {1,...,N} (2)

Equation 1 defines the shifting cost at the beginmuing
of the tour which is defined as the unloading and
reloading costs of all products stowed on top of product
1. However, the second formula mdicates that at the end
of the tour there 1s no shifting cost 1e. there 1s no

unloading or reloading operation. Andfori # Oandj = 0
the shifting cost s; can be found as follow:

8= (l—bu) i SuXy-u tu,

k=0
ki
k#j

+ i (“k“k)(l'ykj)}

k=1+1

+bi1 {{Sm_ 121 (ukJrrk )}Xui 3

k=1+1

+

-

(Sm

Lt
Ot

v=jt1

S (uv+rv)(1'yvi))xki'ul'“}

vi,je{l,...,N} withi=j+1,j=i+landi=|

ol
S = 8, X, AU T vi,jell, LN
i ;g: WM J { } (4)
k=i,
such asi=j+1
N
S = 8, X, AL -1 ¥vi,jeql, .. N
1 E Sk g .] { } (5)

o

Elod
1o

such as j =i+1

Equation 3-35 are given in a recursively form they
indicate the shifting cost of product j knowing that the
vehicle has just visited client ¢, which means, the traveler
has just delivered product i in a way to take account of
the history of all clients visited before ¢; according to the
order found until the current moment. Tn other words, they
give the force of eliminating all the products that are
already delivered before the product j. Where of, we
proposed a new way of modeling shifting costs required
to deliver every product 1 to its corresponding client c,
which are not fixed a priori yet depend on the order of
clients that were visited before c. The key idea of tlus
recursively form is the specification of knowing in every
moment the history of every non-complete tour:

ax; <s; <Mx, vie{o,...,N},
viell. N}, i#]

(6a)

To explain constraints Eq. 6a, we suppose that the
vehicle visits client ¢, immediately after client ¢, in this
case x; = 1, so, the shifting cost of unloading the product
] 18 greater than a positive constant ¢, otherwise the
shifting cost is equal to zero. Furthermore, considering the
stack levels presentation showed m Fig. 2 these positive
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constants ¢ and M can be defined, more precisely as the
best case scenario and the worst case scenario of the
shifting solutions, respectively such as ¢ =min, ;, ;
{3t which means the minimal cost of unloading the
upper-most product of the stack in other words « =
min, g g {4 whereas M = ¢ =max ., {S;} which
means the cost of unloading the lower-most product of
the stack such that all the products above it are still
not served yet in simple terms M = s, Hence, Eq. 6a
can be replaced by the following Eq. 6b:

i 1<s. <
X Imin U, (=8. =X.8
1) kel N}{ k] 1) 1™ ol (6b)

vie{0,...,N},  We{l..N},  izj
vi,jef{0...N}, i<j (7

Constraints Eq. 7 indicate that if product j is delivered
immediately after product i then we must have x; which
elimmates the opposite case:

vty =1 vi,je{o,..,N}, icj (8

Constraints Fq. 8 capture the fact that for each pair of
clients ¢; and ¢, the vehicle will serve cne of these clients
before the other. In other words, if client ¢, precedes client
¢, on a tour then ¢; cannot precedes ¢; on that same tour:

v, 2%, =1 ¥i,je 0, N}, i#j @

Constraints Eq. 9 define the commection between the
decision variables by ensuring the fact that if client ¢

precedes directly client ¢; on a tour then ¢; cannot precede
¢, on that sametour:

Vi 2 Ve ty-l o Vijke{0,.. N},
1#], j¥kk#1

(10}

Constraints Eq. 10 enforce that client ¢; must precede
client ¢; if client ¢, precedes client ¢, and client ¢, precedes
client ¢, on the tour of the vehicle. They ensure the order
of unloading the products of clients ¢;, ¢; and ¢,

is N

M
yx,=1 vje{0,...N} (11)
i
i
Yx, =1 vjelo,..,N} (12)
1=0

J#1

Constraints Eq. 11 and 12 are the degree constraints
they ensure that each client 15 visited exactly once by the
vehicle:

ZEXu‘ = ‘Q| -1

12QjeQ

YQsubset of {1,...,N} (13)

Constraints Eq. 13 are for breaking subtour problems:

x,.y,£{0.1} vi,jel0,...,N] (14)

vi,je{0,. . N} (15)

And finally, constraints Eq. 14 and 15 specify the
variable definitions. Note that constraints Eq. 15 can also
indicate that partial service at every client of the tour 1s
not allowed. Thus, the objective function of the
mathematical model may be stated as:

N M
i 16
Min qu diJ’ZSlJ (16)
1,1=0 g,_]_:D
1#] 1#]

This objective function Eq. 16 aims to minimize the
total tour cost of the vehicle which consists of minimizing
two functions, the total distance traveled and the total
shifting cost that is defined by the unloading and
reloading costs of each product in every client of the tour.

RESULTS AND DISCUSSION

In this study, we adapt the Ant Colony metaheuristic
(ACO) in two different ways to solve the ShTSP. We are
exploiting a colony of ants in order to vary the order in
which products are delivered to their corresponding
destinations such that both the distance traveled and the
placement’s level of each product influence the quality of
each solution obtained First, we present a general
adaptation of the ACO Algorithm adjusted to the ShTSP
and then we solve our problem with a direct method which
explores all the solutions exhaustively, on randomly
generated test problems, to prove the efficiency of our
ACO adaptation. Also, we focused on how to speed up
the solution obtained by the sequential algorithm by
proposing a parallel-ant colony algorithm adapted to our
problem. Finally, numerical results applied to new
instances generated from TSPLIB are shown for each

algorithm.

Ant colony metaheuristic’s principle: The ant colony
algorithm 1s a stochastic process building a solution by
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adding components to partial solutions. This process
takes into account two factors, the first is a heuristic on
the mstance of the problem and the second 1s pheromone
tracks that change dynamically to repeat the experience
acquired by the agents. Ants thus, build solutions while
moving ona graph G =(V , E) where V is the set of nodes
and E connects the components of V. The problem
constramnts are implemented directly in the ants movement
rules. Thereby, the general concept of this metaheuristic
is based on the simulation of the behavior of several
agents working together m search of a better solution
using a natural way of communication that 1s the deposit
pheromone.

Adaptation of ant colony metaheuristic: To solve the
ShTSP, we adapt the metaheuristic of ant colony
according to the following steps. First, each ant k will start
from the depot ¢, and goes randomly to a client ¢;, then we
calculate the heuristic information (1,) .., i according
to what was chosen before as a client (1.e., the client ¢)
using the following formula:

Wie Lk
(i) = | 8;+d, 1€ L (17

0 otherwise

Where L* indicates the list of candidates (clients that
are not yet visited) of the ant k at nede 1 and s; is
calculated according to the Eq. 4-6 shown in the
formulation problem section.

This heuristic information 1s used to guide the choice
of ants to near clients (in term of distance) of which
indexes are as small as possible, 1.e., the cost of unloading
their corresponding product 1s small. We prefer client that
has both the smallest traveling distance and the smallest
shifting cost which means its corresponding product is
placed in the highest levels. After that we calculate the
probability of choosing the next client from the set of
candidates of the chosen client ¢, (in the previous step),
according to the following Eq. 18:

Py = ZleLlf (Tﬂ)m'(nll )B

0 otherwise

i k
lf_]E L1 (18)

The 2 parameters « and P define the relative
importance between the value of the pheromone T, and
the heuristic information ),

The deposit of pheromones can greatly change the
convergence mode of the algorithm. From a purely Naive

point of view, we can completely deposit the same amount
of pheromone on each path. The ants engaged in long
paths will file fewer pheromones since they are able to try
fewer paths. On the contrary, ants engaged on the
shortest paths will rapidly try other paths. Naturally, the
shortest paths will find more pheromones than others.
However, we can use two methods for updating the
pheromone value: we choose the best solution of all ants,
and then we do an update of the (1), ; associated to the
best solution. After that we perform a global update
of the pheromone for all arcs of the graph following the
Eq. 19

T, =(1p)g, + Y b AT (19)
Where:
p = A coefficient of evaporation chosen between [0,
1]
m = The number of ants in the colony

At is calculated according to the next equation:

ATL-; e if(1,j) is part of the solution of ant k
0 otherwise
Where:
Lk = The total cost of the solution

kandq = A fixed parameter of the algorithm

Algorithm 1  gives the skeleton of the
adaptation of ant colony metaheuristic to solve the
ShTSP.

Algorithm 1: ACO algorithm for the ShTSP:
Input

m-number of ants

iterNumber ~-number of iterations

Tp~the initial amount of pheromone which is a positive

real number
iter~1
for each arc (i, j) do
Ty = To

end for
while (iter<iter™Number) do
for k=1 untilm do
while (ant k has not completed the solution yet) do
Construct the solution Sol*% according to
formula 17 and 18
Calculate the cost of Solt@
end while
end for
if a better solution was found then
Update the best solution found
end if’
for all arc (i, j) do
Update the amount of pheromone 7 according to formula 19
end for
iter—iter+1
end while
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Fig. 6: The parallel-ACO algorithm

Direct algorithm: To evaluate our adaptation of ACO
algorithm, we performed some tests and compared them
by solving random mstances with a direct algorithm which
1s an exact method based on combinatoricslib that
consists on a very simple java library to generate
permutations, combinations and other combinatorial
sequences (Algorithm 2).

Algorithm 2; Direct algorithm for the ShTSP:
Search for all possible permutations of all clients, starting by the depot 0,
using the combinatoricslib
for each permutation p do

Calculate the cost of p

it a better solution was found then

Update the best solution found: p*

end if

end for

The main disadvantage of tlus exact method
15 that 1t reaches its limit with only a shghtly larger
nmumber of clients, even if a more powerful machine was
used.

Adaptation of parallel-ant colony algorithm: While it 1s
important to achieve good solutions, computational time
is a valuable indicator that must be considered in
real-world applications. In this study, we propose a new
adaptation of the ACO algorithm by using the concept of
parallelism as shown in Fig. 6.

The parallelism in our context aims to divide the
computation time of each colony by launching a process
for each ant, it serves to optimize the use of computational
resources in order to optimize the efficiency of the
algorithm.

Algorithm 3; Parallel-ACO algorithm for the ShTSP:
Input

m-number of ants

iterNumber ~number of iterations

Tp~the initial amount of pheromone

iter-1

for all arc (i,j) do
T;=Tg

end for
for iter =1 until iter Number do

Parallel Construct solutions Sol (iter) [p] for a set of p

ant

Until the last ant

if a better solution was found then

Update the best solution found: Sol*

end if’

for all arc (i, j) do

Update the amount of pheromone

end for

end for

Computational results: In this study, we report the
numerical results of our problem solved with a direct
method, ACO algorithm and parallel-ACO algorithm. The
resolution approaches have been mmplemented with Java
using NetBeans 8.0. All experiments were conducted on
Intel® Core™ i5-4570 CPU (@ 3.20 GHz.

Because there i1s no suitable set of benchmark
problems in the literature which combines the ShP with
the TSP, we consider generating some instances with
different properties. The ShTSP makes sense in contexts
where distance costs and total shiftings costs are mn the
same average. We have therefore, tested our algorithms
on instances exhibiting this characteristic. We have
generated new benchmarlks, based on the TSPLIB in
which the shifting costs are comparable to the routing
costs. Each set of problems 15 generated with different
unloading/reloading costs which are setat 3,7, 10, 12, 15,
20, 25 and 30 time units per product. Note that one unit of
time 1s equivalent to one umt of Euclidean distance.

TSPLIB 15 available athttp://comopt.ifi.um-heidelberg.
de/software/TSPLIB95/. The specific information: the
problem names (Inst TSPLIB) along with the number of
clients (|V|), the problem type (Type), the unloading and
reloading costs (UxR) and the new problem names
(Inst_Sh) about each instance used in this study is given
in two tables (Table 1 and 2).

Table 1 explains the small/medium sized mstances.
The first column indicates the name of instances in the
TSPLIB that were used to create new instances, Inst_Sh,
adapted to our problem by adding the Unloading (17) and
Reloading (R) costs which are stated mn minutes and
shown in the fourth colummn.

Table 2 explains the big sized instances, adapted to
the present problem, following the same structure as
Table 1. New additional mstances were randomly

generated to investigate the performance of our
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adaptation of ACO algorithm and to compare its efficiency
by using the direct method. These instances are divided
mto three classes, generated randomly and distinguished
by the unloading and reloading cost of a single product
in the vehicle:

Table 1: Explain instance information with small | V]

Inst TSPLIB [V] Type UxR Inst Sh
erl? 17 Matrix 15=15 erl7 shls
25%25 2rl7_sh2s
3030 erl7 sh30
ar2l 21 Matrix 15x15 er2l_shls
25x25 ar21 sh2s
3030 2121 _sh30
er24 24 Matrix T=T er24 sh7
1010 er24 shl0
12x12 ar24 shl12
fri2z6 26 Matrix TxT fri26_sh7
10x10 fri26 shl0
swiss42 42 Matrix 3x3 swiss42_sh3
TxT swissd2 sh7
dantzig42 42 Matrix 3x3 dantzigd42_sh3
TxT dantzigd2 sh7
hk48 48 Matrix 15%15 hk48 shls
25%25 hk48 sh23
30%30 hk48 sh30
erd8 48 Matrix 10=10 erd8 shl0
12312 2r48_sh12
15x13 er48 shls
25%25 2r48_sh2s
eil51 51 EUD 2D 3x3 eils1_sh3
TxT eil51_sh7
berlin32 52 EUD 2D 15%15 berlin32 shl3
25%25 berlin52_sh25
30%30 berlins2 sh30

Table 2: Explain instance information with big | V]

Inst TSPLIB  |V] Type UxR Inst Sh

$t70 70 EUD 2D 3x3 st70_sh3

eil 78 76 EUD 2D 3x3 €il76_sh3

rat99 29 EUD 2D 3x3 rat9e sh3

kroA 100 100 EUD 2D 3x3 kroA100_sh3
T*7 kroA100_sh7
10=10 kroA100_shl0
12x12 kroA100_sh12
1515 kroA100_shl5
20%20 kroA100 sh20

kroR100 100 EUD 2D 3x3 kroB10O sh3
TxT kroB10G sh7
10x10 kroB100_sh10
12x12 kroB100_sh12
15x15 kroB100 shls

¢ ¢ the unloading and reloading costs of a single
product U7=R = 5 min

* ¢, the unloading and reloading costs of a single
product U =R =10 min

¢ ¢, the unloading and reloading costs of a single
product =R =15 min

Each class comsists of three groups that are
distinguished by the number of clients to be served
(IV|= 5, V] =7 and |V] = 10).

The results of the c,-c; instances are presented
together with a description of the 3 classes in Table 3. The
first three columns specify the attributes of groups of
instances: the class (class), the number of clients per
wstance (|V]) end the wmform distribution interval [min,
max ] which gives the distance values of the graph of each
group. Each row represents the results obtained for
instances that constitute a group in a class. The direct
method gives the solutions presented i the diect
method’s column. We give the explicit tour path in the
fourth column (DTourPath) (note that in the present
research, we were limited on a path which will be
presented as a tour without considering the retum to the
depot), the shifting cost in the fifth column (DSh_C, the
traveling cost in the sixth column (DTrav_C) and the total
tour cost of the solution in the seventh column
(DTotal C). While the results of the adaptation of the
ACO algorithm on the same generated instances are
summarized in the our method (ACO)’s column, we give
the explicit tour path (AtouwrPath), the total tour cost of
the solution (ATotal C) and the CPU time corresponding
to the execution of the algorithm in milliseconds (ACPU).
Finally, we show the deviation of our adaptation ACO
from the exact method i the last column (Gap).

Referring to Table 3, we can assume that the ACO
algorithm gives very good results for instances of small
sizes. Therefore, we can be sure that our algorithm will
give very satisfying solutions for instances of larger
sizes.

While it is important to achieve good solutions,
computational time 1s a valuable indicator that must be

Table 3: Numerical results of ¢, ¢; and ¢ instances found by ACO’s adaptation and compared with the direct method

Direct method Our method (ACO)
Class |V| [min, max] Dtourpath Dsh ¢ Dtrav C Dtotal € Atourpath ATotal C ACPU (msec) Gap
cl 5 [3.50] [0,1,2,3, 4] 20 80 109 [0,1,2,3 4] 109 46 0.00
7 [5.70] [0,1,6,2.4,3, 5] 80 97 177 [0,1,2,4,3,5,6] 185 54 9.00
10 [7,100] [0,2,6,1,9,3,8, 4,5, 7] 175 180 355 [0,2,4,1,6,3,89,5 7 387 04 32.00
c2 5 [9,90] [0,1,3,2, 4 60 131 191 [0,1,3,2, 4 191 39 0.00
7 [10,140]  [0,4.6,1,3, 2, 3] 20 222 442 [0,4,6,1,3,2, 5] 442 54 0.00
10 [15,200] [0,1,6,2,3,5,4,7,8,9] 190 457 647 [0,1,6,2,3,5,4,7,8,9] 647 102 0.00
¢35 [10,140] [0,1,2.4,3 90 234 324 [0,1,2,4,3 324 31 0.00
7 [20200] [0,2,1,4,3, 5,6] 150 312 462 [0,2,1,4,3,5, 6] 462 54 0.00
10 [30,280]  [0,1,2,3,7.4.58.6 9] 255 700 955 [0,1,2,3,7,4,5,8,69] 955 101 0.00

Rold values are significant values
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Table 4: Numerical results of the adaptation of ACO and parallel ACO on instances of Table 1

ACO Parallel-ACO
50 ants 100 ants 50 ants 100 ants

Instance TCost CPU (msec)  TCost CPU (msec) TCost CPU (msec) TCost CPU (msec)
grl7 shls 3374 203 3374 391 3374 15 3374 30
erl7 sh25 3878 203 3878 281 3878 15 3878 28
erl7 sh30 4231 141 4231 297 4231 15 4231 28
er2l shls 4927 219 4927 422 4927 22 4927 44
gr2l_sh2s 5531 203 5531 422 5531 22 5531 44
gr2l_sh30 5858 218 5858 422 5858 21 5858 43
gr24_sh7 2431 266 2431 532 2431 30 2431 59
er2d shlo 2847 281 2847 531 2847 30 2847 59
er2d shl2 3084 266 3084 515 3084 29 3084 59
fri26 sh7 1134 207 1134 593 1134 33 1134 63
fri26_shl0 1209 297 1209 594 1209 33 1209 63
swissd2 sh3 2630 828 2630 1641 2630 96 2630 190
swigsd2 sh7 3019 843 3019 1625 3019 95 3019 187
dantzigd2 sh3 839 812 839 1641 839 94 839 187
dantzigd2 sh7 966 813 966 1640 966 94 966 187
hk48 shi1s 23737 1047 23060 2109 23144 131 23060 263
hk48 sh2s 26063 1062 26063 2079 26063 132 26063 262
hk48 sh30 27942 1047 27942 2078 27942 132 27942 261
grd8 shlo 11488 1094 11488 2157 11488 127 11488 253
grd8_shi2 11680 1109 12050 2187 11680 127 11680 253
erd8 shls 12245 1078 12245 2157 12245 126 12245 252
grd8_sh2s 15173 1078 15173 2187 15334 126 15173 251
eil51_sh3 1293 1203 1293 2344 1293 142 1293 282
eil51_sh7 1673 1188 1673 2359 1673 142 1673 281
berlin52_sh15 19419 1218 19419 2531 19419 156 19419 308
berlin32 sh23 19600 1266 19600 2516 19600 156 19600 307
berlins2 sh30 19792 1250 19792 2516 19792 155 19792 309
Rold values are large instances

30007 —e— CUP (msec} ACO

2500+ —% CUP (msec) parallel ACO

2000 4
1500 1

CPU time (msec)

Fig. 7. Comparison of the CPU time of ACO and parallel ACO both adapted to instances of Table 1 with 100 ants using

four threads

considered 1n real-world applications. In the followmg
Table 4, we show the numerical results of the adaptation
of both the ACO algorithm and the parallel-ACO algorithm
obtained by resolving our new instances shown in
Table 1. Whereas m Table 5, we give numerical results for
| arger instances which are shown m Table 2. Note that
each row represents the best solution in 50 runs. In the
ACO column as well as in the parallel-ACO column, we
give the results obtained by using both, 50 and 100 ants,
we show the total cost of the solution (TCost) and the
CPU time by millisecond (CPU).

Referring to the results, we can confirm that for small
mnstances when the number of ants mereases in both the

ACO and parallel-ACO we obtain better results in terms of
TCost but only for a few instances (which are represented
inbold in Table 4: hk48 shl5, gr48 shl2and gr48 sh25).
However, in Table 5 which represents larger instances, we
obtam better results for almost all mstances (represented
in bold in Table 5). Moreover, when the number of ants
increases, the performance of parallel-ACO mcreases as
well in terms of execution CPU time for both smaller and
larger instances.

In addition, we give a comparison in terms of CPTJ
time of ACO and parallel-ACO, both adapted to mstances
of Table 1 by using 100 ants (Fig. 7). Note that these
results were conducted on Intel® Core™ 15-4570 CPU @
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Table 5: Numerical results of the adaptation of ACO and parallel ACO on instances of Table 2

ACO -bfgParallel-ACO
50 ants 100 ants 50 ants 100 ants
Instances TCost CPU (msec) TCost CPU (msec) TCost CPU (msec) TCost CPU (msec)
st70_sh3 2568 3406 2568 6905 2568 661 2595 1320
eil7é sh3 2133 4125 2133 8187 2133 785 2133 1573
rat99 sh3 2792 7016 2792 14033 2792 1390 2792 2777
kroA 100 sh3 38888 7187 38888 14015 38888 1439 38888 2882
kroAl00 sh7 53538 7188 53538 13805 53616 1434 53538 2871
kroAl00 shlo 57851 7234 57851 13985 58839 1432 57851 2863
kroAl00 shi2 62236 7188 61853 14187 61853 1431 61198 2862
kroA100_shi1s 66450 7188 66773 14126 66450 1430 66280 2863
kroA 100 sh20 71414 7312 71414 14328 71414 1430 72232 2856
kroR100_sh3 40362 7251 40362 14469 40362 1437 40362 2870
kroB100 sh7 49989 7203 49836 14375 49836 1434 49836 28635
kroB100_sh10 59727 7250 59396 14391 59396 1433 59396 2860
kroB100 shi12 61399 7219 61399 14391 61624 1431 61399 2859
kroB100 _shl3 66425 7203 66425 14422 66425 1431 66425 2856
kroB100_sh20 73814 7203 73323 14312 73814 1429 73323 2853
kroC100_sh3 37593 7234 37593 14485 37593 1436 37593 2869
kroC100 sh7 49428 7219 48990 14406 49428 1433 48990 2864
kroC100_sh10 56505 7219 56505 14484 56505 1432 56505 2860
kroC100 shi2 58923 7203 57266 14407 58923 1431 57266 2859
kroC100_shi1s 63884 7203 63396 14406 63884 1430 63396 2856
kroC100 sh20 70809 7235 70809 14360 70809 1430 70809 2855
kroD100_sh3 39257 7219 38858 14375 39257 1435 38858 2870
kroD100 sh7 52028 7219 S1424 14344 52028 1433 51424 2862
kroD100_sh10 58029 7234 58029 14406 58029 1432 58029 2859
kroD100_sh12 61187 7219 61187 14391 61187 1431 61187 2859
kroD100_sh15 64584 7203 64033 14344 64584 1430 64033 2856
kroD100 sh20 71203 7219 71203 14328 71203 1428 71203 2853
kroE100_sh3 40904 7204 40852 14375 40904 1438 40852 2871
kroE100 sh7 50961 7234 S02535 14375 50961 1433 S02535 2863
kroE100 shl0 59157 7219 S9157 14407 59157 1430 59067 2860
kroE100 shi2 64329 7265 63541 14344 64329 1430 63541 2860
kroE100_sh15 65348 7235 63621 14344 65348 1433 63621 2859
kroE100_sh20 74006 7203 73853 14390 73853 1430 73853 2855
eil101_sh3 2315 7343 2236 14625 2315 1453 2236 2902
lin105 sh3 23193 7984 23151 15922 23193 1587 23151 3173
lin105 sh7 29317 7954 28916 15875 29317 1587 28916 3171
1lin105_sh10 20737 7953 29737 15875 29737 1585 29737 3167
lin105_sh12 31151 7953 30268 15891 31151 1584 30268 3165
lin105_shlS 34907 7938 34482 15906 34907 1584 34482 3165

BRold values are adaptation of results on instances of Table 2

3500 71 —a— CUP {msec) ACO
_| == CUP {msec) parallel ACO

CPU time (msec)

Fig. 8: Comparison of the CPU time of ACO and Parallel ACO both adapted to instances of Table 1 with 100 ants using
eight threads

3.20 GHz which has four threads. Whereas in Fig. 8, we performance of the parallelism concept in our algorithm by
tested our algorithms inIntel® Core™ 17-4770 CPU (@ 3.40 showing the big gap between the CPU time of the simple
GHz which has eight threads. Both charts confirm the version (ACO) and that of the parallel one (parallel-ACO).
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Fig. 9: Comparison of the CPU time (msec) of paralle]l ACO adapted to instances of Table 2 with 100 ants by using four

threads and eight threads

In particular, a sharp decrease in the parallel ACO’s
computation time is observed starting from the instance
swiss 42_sh3 with 42 clients, especially, when using eight
threads.

To show the relation between the performance of
the parallel-ACO algorithm and the number of threads,
we plotted in Fig. 9, the progress of the CPU
time of parallel-ACO adapted to instances of Table 2 with
100 ants by using both four threads and eight threads.
We can confirm that the parallel-ACO algorithm shows
more efficiency when executed in a machine with more
threads.

To conclude and referring to all results given above,
we can confirm that the parallel-ACO algorithm gives
excellent results on average of the CPU time solutions for
all instances compared with the ACO algorithm. It allows
us to reduce the computational time by more than 80%,
especially, for large sized instances. Furthermore, the
variation of the CPU time 1s strongly correlated with the
variation of the number of threads in the machine.

CONCLUSION

In this study, we have mtroduced the shifting
traveling salesman problem, a transport of a single stack
of a finite set of levels such that a number of products
must be removed m order to reach products below them
i which shifting costs are taken into account. We have
formally introduced this problem as a new variant of the
traveling salesman problem that is combined with the
shifting problem. Our problem addresses the challenge
of determiming the vehicle’s optimal tour that takes

account of the products additional movements caused by
LIFO policy of stack. We have proposed a suitable
mathematical model as a mixed nonlinear program and
then we adapted the ant colony and the parallel-ant
colony algorithms to solve it which were tested on a
mumber of problem instances of varying problem
characteristics from the TSPLIB benchmark sets.
Therefore, we have shown that the parallel version of the
ant colony algorithm is very efficient in terms of CPU
tune.
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