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Abstract: The threshold roll-off is a vital phenomena to be considered for any low-power and small-scale circuit
design. With the advancement of the fabrication processes the channel length of the transistors is reducing
rapidly, this reduction in the channel length affects the threshold voltage of the transistors very severely. To
evaluate the effect of channel reduction on the threshold voltage this study analyzes the threshold roll-off by
taking SRAM cell mto consideration. The reason behind choosing SRAM cell 1s that now the IC’s are fabricated
using System on Chip (50C) design technique and currently approximately 70-80% of the SOC area are covered
by memories only. One of the most important figure of merit for SRAM cell is its Static Noise Margin (SNM)
and hence, the effect of threshold-roll is implemented with respect to SNM of the SRAM cell.
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INTRODUCTION

In the current digital integrated circuit designing a
complete system 1s being implemented on the chip which
15 formally known as System on Chip (SOC). Nowaday,
the designed SOCs usually contain memory in its larger
part of the area (roughly 70-80% of its total area), Hence,
it is very crucial to take the memory part in a very effective
way as the memory cells are very compact compared to
other logic parts present in the chip. The care should be
taken in such a manner that even if a single cell is
defective then it must be identified otherwise it may affect
the adjacent cell and may damage the functionality of the
whole memory component (Zhang et al., 2010; Shih et al.,
2005; Lundstrom, 2003; Chang et al., 2003; Tto et al., 2003;
Zhao and Cao, 2006, [shii et af., 1998, Shee et al., 2014,
Austin ef al., 1998).

However, as the fabrication process of the integrated
circuits are advancing quickly, it affects the size of the
transistors or other components present in that chip.
Presently many vendors are working on <20 nm process
technology which directly has impact on the size of
transistors short channel length 1s one of the impacts of
this scaling. Due to continuous scaling of the various
parameters the threshold roll-off comes in the design
issue and this issue may affect the behavior of the
component or the entire system very badly.

An SRAM cell 1s taken in this case to analyze the
effect of threshold roll-off on its static noise margin as the

SNM of the SRAM cell is very crucial design issue for the
cell stability and how effectively an SRAM cell can read
and/or write is determined by its SNM analysis only. If
the SNM of the cell 1s not properly optimized it may
degrade overall functionality of the entire memory of
the IC.

MATERALS AND METHODS

Threshold roll-off: According to the classical theory of
the transistors in the channel region for depletion charges
the gate voltage has to be compensated before malking the
channel to go into strong inversion. This gate voltage is
responsible for the constitution of the threshold voltage
given in Eq. 1:

,/26 €. qNA
VT:VFB+2(pF+UC751q /2(pF (1)

Where:

VFB = The Flat Band Voltage
NA = Accepter concentration
F Fermi level

However, a very small amount of the depletion
charges caused by the source and drain junction present
near the source and drain region, this in turn ncreases the
leakage current. For long channel transistors, this effect
is negligible while comparing to the overall depletion
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Fig. 1: Threshold roll-off w.r.t gate length
Table 1: Geometric parameters
Gate length (rirm) 16 nm 22 nm 32 nm 45 nm
Dielectric thickness 1.2e-9 1.4e-9 1.6e-9 1.8e-9
Junction depth 5e-97 2e9 S5e-8 1.4e-8
Channel depletion S5e-9 7.2e9 5e-8 1.4e-8
thickness
Table 2: Parameters
Gate length (nm) 16 nm 22 nm 32 nm 45 nm
EI 1.00055 1.04 1.0061 1.0000154
VT-roll 1.886 D 1.963yD  1.899¢D  1.888 4D

charges. This effect comes into the design where
transistor channel length or gate length is short as shown
mFig1.

The other factors which affect the threshold roll-off
include gate-oxide thickness, channel-depletion depth and
junction-depth as the length of the channel becomes
shorter. By optimizing immer junction and depletion depth,
the threshold roll-off may be controlled till a certain extent.
Another most critical effect is charge sharing in short
channel transistors. Empirically, the Threshold roll-off
approximately calculated 1s given by Eq. 2:

V; = 0.64(g /e, )@y )(ED) (2)

where, ¢, D 18 source to channel junction built in voltage
and ET is known as electrostatic integrity of the device
and calculated using:

2
EI = 1+%.%.—Tft (3)

where, T, is the depletion depth in the channel. Hence,
from above equation, we can conclude that by reducing
the value of EI in the device structure the threshold
roll-off voltage can be reduced. The modeling for
transistors 1s related to its device geometric parameters as
shown in Table 1.

The calculated values of EI and VT-roll are shown in
Table 2. From this expression, it is also clear that the
threshold roll-off depend largely on source to chamnel
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Fig. 2: Variation of V1;,, and El wr.t gate length
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Fig. 3: Basic single port SRAM cell

built-in voltage (@ D) rather than electrostatic integrity
only (if ET is somehow maintained nearly equal to 1 as it is
always desired).

The source to channel built-in voltage (¢ D) can be
calculated using in Eq. 4 and by varying the involved
parameters the VT-Roll can be controlled as per the
requirem ents:

@p =V, * In (SD*N,, /n,") (4)
Where:
SD = Substrate Doping
N, = Donor density
n; = Intrinsic carrier concentration

The final graph 1s plotted between gate length, EI and
Vrza @8 shown in Fig. 2. By observing the obtained graph
it can be concluded that the variation is almost constant
w.r.t. El as well as @ D. Hence, the Vyg, 1s not only
dependent on EI but also it depends on the value of @ D
and by controlling the value of it the V ., can also be
controlled.

Sram cell: The basic single port SRAM cell 13 shown in
Fig. 3. It consists of two inverters connected back to back
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and this connection is responsible for the reinforcing the
cell and make it suitable for data retention. The Bit-Lines
(BL and BLB) are used for reading and writing the data
from the memory while the Word Line (WL) is used for
selecting the particular cell of the memory.

The above cell 1s just a single read/write cell, however
now most of the memories contain double or dual port
read/write cell as shown in Fig. 4. Double port SRAM cell
increases the memory density to a higher extent.

The two ports present in the given cell is able to
access the cell independent to each other but to achieve
this the bit lines (also known as access lines) and word
lines should be duplicated. In the above cell, two extra
pass transistors are required to control the access of the
second port (Inaba et al., 2002; Khalkifircoz and
Antoniadis 2006; Abd-Elhamid et ai., 2006, Pavlov and
Sachdev, 2008, Farkhani et al., 2014) (Table 3).

Static noise margin: For SRAM cell, its SNM is a key
figure of merit. The SNM can be calculated by drawing a
largest possible square m between the two Voltage
Transfer Characteristics (VTC) of the back to back
connected mverters the configuration can be shown in
Fig. 5.

Where the voltage source is given as noise voltage
source. The side length of the square which 13 usually
given m volts represents the SNM of the cell. When the
given noise voltage is increased and becomes more than
SNM, the state of the SRAM cell may alter and the data
may lost which 1s not a desired result. Furthermore, since

Table 3: Parameters

Device name Mos size W/L (nm)
PMOS 200/70
NMOS 66/22
Supply voltages (V)

Vop 3.8

Word Line (WL) 1.6

Bit Line (BL) 1.6

the cell perform both read as well as write operation of the
data the SNM also characterized as read as well as write
margin. In the case of read margin the SNM 1s calculated
when the word line voltage is set high and the bit lines are
also recharged to its high value on the other hand the
write SNM is defined as the minimum bit-line voltage
required to change the stored data of the cell.

RESULTS AND DISCUSSION

The above single and double port SRAM cell 1s
simulated using HSPICE simulator and their threshold
roll-off 15 maintained by varying the device parameters as
shown in Eg. 2 and 3. The noise margin simulation is also
performed to measure the effective SNM of both the cell
with respect to the optimized threshold roll-off. The
standard 22 nm process technology 1s used for the
modeling of transistors. The various other major
parameters are noted in Table 3.

Figure 6a shows the value of supply voltage is given
to VDD and WL port of the cell. In Fig. 6b, the bit line
signal is shown, However, the output can be observed by
Fig. 6¢ which shows the value at Q and QB node of the
SRAM cell.

Now, Fig. 7a, b shows the voltage transfer
characteristics of the inverters used in the SRAM cell
design. As it can be clearly seen from Fig. 7b that how the
threshold roll-off affects the VTC of the mverter and thus
further mfluence the SNM of the cell (Hassanzadeh et af.,
2013; Dhilleswararac et al., 2014, Wang, 2011;
Madiwalar and Kariyappa, 2013; Sil ef al., 2008; Sil ef af .,
2007, Wang and Choi, 2011; Nii et al, 2004;
Premalatha ef al., 2015; Wong, 2011).

Figure 7 and 8a, b show the static noise margin of the
single port and double port SRAM cell respectively. This
is obtained by taking the VTC cwrve of the inverter
connected back to back as shown m Fig. 5. The square
drawn in between the two VTC will be used for calculating
the SMN value in volts,

Since, the design is working under the optimized
threshold roll-off condition, so, it 13 necessary to check
the current flow through the circuit. Figures 9a, b
represent the current flow w.r.t. the supply voltage for
single and double port SRAM cell, respectively. Now
finally, Table 4 can summarize the obtained results of the
two cells w.r.t. threshold roll-off.
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Table 4: Parameters
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Fig. 7: Voltage transfer charecterstics

This study presents the static noise margin analysis of
two different SRAM cell by optimizing the threshold
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roll-off of the MOS device used in the cells. The threshold
roll-off directly affects the sub-threshold current of the
device which intum affects the device performance in our
case the SNM of the SRAM cell 1s chosen, since, the
SNM of the cell is a key parameter design issue for
stability and data retention of the cell. If the SNM is low
the data which 1s stored mnto the cell may lost quickly and
our memory may not work as desired. Hence, the device
parameters are optimized and that the obtained SNM of
the cell is suitable for memory cell design and proper data
retention application.
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