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Abstract: Numerous studies in optimization problems often lead to tailoring a specific algorithm to adapt to the
problem instances, especially in expensive optimization problems. The focus of these researches 1s often to
challenge and outperform another algorithm in the specific problem instant. Once the problem instants changes,
more tailoring of the algorithm has to be done in order for the algorithm to perform at an optimum level.
Expensive optimization often requires a large amount of resources to run on such as computational power, high
run-time budget and consumes a lot of time. As such, tailoring an algorithm to perform well in expensive
optimization requires a lot of expertise and time. Hyper-heuristics is an approach that utilizes a set of Low-Level
Heuristic (LLH) and a selection mechanism to solve expensive optimization problems. The main aim of using
hyper-heuristics 1s to be able to apply a general yet efficient optimizationalgorithm to all expensive problem
mstances with very minor or minimal tweaks. In this study, three different selection mechanisms for
Hyper-heuristics are introduced and compared against one of the top performing expensive optimization
algorithms known asthe Mean-Variance Mapping Optimization (MVMO) as described in the CEC 2015 and 2016
expensive optunization competitions. Three variants of hyper-heuristics were used in this study, Sumple Random
All Moves Acceptance (SRAMA), Tabu-Search All Moves Acceptance (TSAMA) and Random Gradient
Descent All Moves Acceptance (RGDAMA). The set of LLH will also include a simplified version of MVMO.
The performance of hyper-heuristics is highly encouraging against a specifically tailored algorithm for CEC test
set of expensive optimization problems.
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INTRODUCTION

Expensive optimization problems refer to optimization
problems in the real world that requires a large amount of
resources to run. Hence, 1t 18 crucial that optimum solution
can be found m a short number of evaluations. A
competition on expensive optimization problem in
Congress on Evolutionary Computation (CEC) 2015 was
held to address the need to focus on this area of research.
Most of the researcher participated in this competition
merely focus on tuning and tailoring a specific algorithm
that can run well in the test suit provided. Mean Variance
Mapping Optimization (MVMO) emerge as the best
performing algorithm m the competition and again in CEC
201 6. Tuning and tailoring an algorithm is time consuming
and requires expertise on the algorithm. Since, the tailored
algorithm was created to perform well towards a specific
algorithm when the problem nstances change more time
and expertise are needed to tune the algorithm, hence,

the reusability of tailored algorithm 1s relatively low.
Hyper-heuristics is defined as high-level approaches that
utilize a set of low level heuristic to any problem
mstantly at any decision pomt. It was first ntroduced
by Cowling et al. (2000) and he further extends the
use of hyper-heuristics i scheduling problems
(Cowling and Chakhlevith, 2003). A throughout study
of hyper-heuristics in recent-years was conducted by
Burke ef al. (2013) he review the method and structure of
hyper-heuristics usage. Burke has also identified one of
the main challenges of how to develop the framework of
hyper-heuristics to be more generally applicable to all
search methodologies.

There are only a few hyper-heuristics usages m
continuous problem domain (Kiraz et al, 2013;
Topcuoglu et al, 2014; Maashi et al, 2014).
McClymont and Keedwell (2011) attempted to use
hyper-heuristics m a reduce number of evaluations
multi-objectives problems. Thus, in this study, we
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compare the selection mechanism and also compare
hyper-heuristics against a tailored algorithm in
continuous real expensive optimization problems.

First part of this study has been structured to go
through the basic framework of a hyper-heuristics and
explanation of how the component of the hyper-heuristics
research. It is then followed by describing the CEC 2015
bench mark test problems. The purpose algorithm details
will also be presented before proceeding to the results
and discussion. The future research of the usage of
hyper-heuristics will be the last study of this study.

MATERIALS AND METHODS

Hyper-heuristics

Strucuture of hyper-heuristics: Hyper-heuristics has two
distinct categories namely hyper-heuristics selection and
hyper-heuristics generative (Burke ef a/., 2010) as shown
in Fig. 1. Selection hyper-heuristics will select and
applies low level heuristics to modify a solution in hand
(Kheiri, 2014) while generative hyper-heuristics refer
to the hyper-heuristics methodologies for generating
new heuristics from the component of existing ones
(Burke et al., 2010).

Forming the second level of the hyper-heuristics
framework is the perturbation and constructive heuristics
(Hoos and Stutzle, 2004). In perturbation heuristics, the
searching processesinvolve complete szolutions while
constructive heuri stic will only processes partial solution.
Feedback mechanism behind hyper-heuristics framework
is to support learning algorithmand there are three
categories in this feedback mechanism, online learning,
offline learning and no learning. Online learning iz a
feedback that learns during the process while offline
learning is a feedback that learns before the start of the
process.

Selection hyper-heuristics: Selection hyper-heuristics are
consider as a high level problem zolving framework with
two major mechanisms namely heuristic selection and
move acceptance as shown in Fig. 2. There are various
heuristic selection mechanizsms and cowling presented
a few simple heuristic selections in his research
(Cowling et al., 2000). They studied the performance
of Simple Random (SR), Random Descent (Gradient)
(RD (&), Random Permutation (RP), Random Permutation
Descent (Gradient) (RPD (&) and Choice Function
(CF).

Simple random selection chooses randomly based
on a uniform probability. Random descent (gradient)
randomly selects the low-level heuristic and applies it
until there is no improvement and the next selection
will be randomly selected again. Random permutation
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Fig. 2: Selection hyper-heuristics pzeudocode

randomly generates low-level heuristic into a list of all low
level heuristics and applies them one after another at each
step sequentially. Random permutation descent (gradient)
use the same concept as random permutation but
randomdescent (gradient) approach without changing the
order of heuristics. Greedy uses all low-level heuristics to
generate potential solution and selects a heuristic that has
the biggest improvement. Choice Function uses a
mechanism that grades the low-level heuristic based on
the improvement or worsen solution and also the duration
of the last use low-level heuristic.

In Cowling’s research, Tabu-searched was
introduced as a selection mechanism (Cowling and
Chakhlevith, 2003). Tabu-search will ranked the low-level
heuristic to determine the next selection while keeping a
list of disallow low-level heuristic to avoid using bad
performing low-level heuristic. Tabu-search was first
introduced by Glover (1986) in an integer programming.

Second mechanism of selection hyper-heuristics is
move acceptance. This mechanism is the decision maker
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to accept or not for the newly generated solution. The

basic move acceptances that were suggested by

Cowling et al. (2000) are:

«  All Moves (AM)
*  Only Improving (OI)
¢ TImproving or Equal (TE)

AM will accept all the generated solution, OI will
check whether the curent solution improved from
previous best and only accept all the improved solution
and TE accepts non worsening solutions from the
previous best solution. In move acceptance criteria, it
can be further distinguished into determimstic and
non-deterministic.  Deterministic  refers to move
acceptance that return the same decision at every iteration
while non-deterministic refer to move acceptance criteria
that depends on the current iteration. It can then be
categorized into stochastic or non-stochastic category.
These categories exist when probabilistic framework is
considered while making acceptance decision.

Multi-point search refers to the search that mamtains
a pool of population solution while single-point search
refers to search that improves and maintains a single
solution. Most of the researches done are base on single
point perturbation approach and only a few studies use
the multi-point perturbation approach (Burke et al., 2013).

Test suits and hyper-heuristics setup: Competition on
expensive optimization was held in CEC 2015. In the
competition, test suits of 15 benchmark problems were
introduced and each test suits are only allowed up to 500
evaluations. This study will also use the same test suits
in CEC 2015. Tt comprises from F1-F15 benchmark
optimization problems as shown in Table 1. Mean
Variance Mapping Optimization (MVYMO) were the best
performing algorithm m CEC 2015 expensive optimization
competition, hence, the results from MVMO will be used
as comparison guideline.

In this study, three variants of hyper-heuristics were
used. Sunple Random All Moves Acceptance (SRAMA),
Tabu-Search All Moves Acceptance (TSAMA) and
Random Gradient Descent All Moves Acceptance
(RGDAMA). These variants will employ perturbation
multi-point search. There are five low-level heuristics that
will be used by SRAMA, TSAMA and RGDAMA:

¢ Covariance Matrix Adaptation (CMA), A = 4+3 log
(N), u =2

»  Particle Swarm Optimization (PSO), mitial velocity 1
and maximum velocity 3

+  Differential Evolution (DE), Cr=09,F =0.2

Table 1: Test function for CEC 2015

Function name F

Rotated bent cigar function 100
Rotated discus function 200
Shifted and rotated weierstrass function 300
Shifted and rotated schwefel’s function 400
Shifted and rotated katsuura function 500
Shifted and rotated happycat finction 600
Shifted and rotated HGB at function 700
Shifted and rotated expanded griewan’s plus rosenbrock’s finction 800
Shifted and rotated expanded scaffer’s Fé function 900
Hybrid function 1 (N =3) 1000
Hybrid function 2 (N =4) 1100
Hybrid function 3 (N =15) 1200
Composition function 1 (N=5) 1300
Composition fimction 2 (N =3) 1400
Composition finction 3 (N=5) 1500

¢ Genetic Algorithms (GA), Cr = 0.5, mutation rate = 0.1
tournament selection, tournament size = 2
»  Mean vanance mapping optimization, archive size = 3

These L.LLLH were chosen as a popular algorithm used
in many research fields such as software effort estimation
{Thamarai and Murugavalli, 2016), cluster determmation
{(Jun, 2006) and project scheduling (Nasereddin, 2006).

To utilize the basic MVMO an archive was used to
store three best solutions found. This archive is used to
calculate the mean and shape variable to generate new
solution as describe by Gonzalez-Longatt ef al. (2012). A
basic version of MVMO was used instead of the extended
version.

SRAMA uses sinple random as heuristic selection
and all moves acceptance criteria while TSAMA uses
Tabu-Search heuristic selection and All Moves
Acceptance criteria. ITn RGDAMA, Random Gradient
Descent 1s the heuristic selection used wlile the
acceptance criteria are the same as SRAMA and TSAMA.
Island based uses a single heuristic chosen by heuristic
selection and controls a population in a single iteration
while smgle based will allow different heuristics to
generate single solution that forms a population in a
single iteration. Tt was found that island based setup
yields better results in a multi-point search, hence, Island
base setup will be used in this study for all algorithms.

Experimental setup: The proposed algorithm will be
tested using the CEC 2015 expensive optimization bench
mark test suites. Population size of 5 was used for all
algorithms as it was found to be the ideal population size
to be used in order to get a good result from island base
setup.

Each algonithm will be tested on the fifteen
benchmark optimization problems from F1-F15 and each
function will be tested for 51 tumes as per CEC
2015 expensive optimization criteria. Evaluations of all
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Fig. 3: TSAMA F1 LLH selection of random selected run

experiments were carried out on the same PC. As per
standard rules in CEC 2015 expensive optimization
competition only 500 evaluations are allowed (Fig. 3).

RESULTS AND DISCUSSION

In Table 2, SRAMA shows that it was able to
compete with MVMO by performing well in eight out of
fifteen functions in the test suits. SRAMA was not able
to out perform MVMO in unimodal function which is F1
and F2. MVMO and SRAMA results in simple multimodal
functions (F3-F9) are comparable, since, SRAMA able to
perform well in four out of five simple multimodal
functions. In hybrid functions (F10-F12) and composite
function (F13-F15) SRAMA out perform MVYMO where it
manages to do well m two out of three functions,
respectively for both hybrid and composite functions.

Table 3 shows the results of TSAMA compared to
MVMO. TSAMA performed well in eight functions where
else MVMO performed well in seven functions. Again in
urimodal functions MVMO dominates as TSAMA wasn’t
able to perform well in any of the unimodal functions. In
simple multimodal functions TSAMA performed well in
four of seven functions. While in hybrid functions and
composite function TSAMA out perform MVMO.

RGDAMA performance against MVMO 1s shown
in Table 4 MVMO shows dominance in unimodal
functions by performing better against all three of the
hyper-heuristics variant but could not perform well n
hybrid and composite functions agamst all three
algorithms.

In Table 5, the three algorithms are compared against
each other in order to investigate the better performance
of these selection mechanisms against each other.
TSAMA outper form SRAMA and RGDAMA in ten out
of fifteen functions. SRAMA manage to perform
well in four functions while RGDAMA only manage to

Table 2: Results of SRAMA-IS against MVMO

F-values SRAMA MVMO Results
1 1.47E+08 1.93E+02 Worse
2 1.47E+04 1.68E-02 Worse
3 7.26E+00 9. 40E+00 Better
4 5.78E+02 4.65E+02 Worse
5 1.12E+00 1.13E+00 Better
[ 9.61E-01 3.26E-01 Worse
7 4.43E+00 6.37E-01 Worse
8 2.31E+01 4.14E+01 Better
9 3.65E+00 4.01E+00 Better
10 4.61E+04 4.97E+02 Worse
11 7.14E+00 1.17E+01 Better
12 1.27E+02 2.00E+02 Better
13 3.19E+02 3.16E+02 Worse
14 1.95E+02 2.06E+02 Better
15 1.99E+02 4.76E+02 Better
Table 3: Results of TSAMA-IS against MVMO

F-values TSAMA MVMO Results
1 1.30E+08 1.93E+02 Worse
2 1.38E+04 1.68E-02 Worse
3 T.15E+00 9 40E+00 Better
4 5.86E+02 4.65E+02 Worse
5 1.11E+00 1.13E+00 Better
[ 9.31E-01 3.26E-01 Worse
7 2.88E+00 6.37E-01 Worse
8 1.22E+01 4.14E+01 Better
9 3.60E+00 4.01E+00 Better
10 2.66E+04 4.97E+02 Worse
11 T.15E+00 1.17E+01 Better
12 1.37E+02 2.00E+02 Better
13 3.17E+02 3.16E+02 Worse
14 1.95E+02 2.06E+02 Better
15 2.24E+02 4.76E+02 Better
Table 4: Results of RDGAMA-IS against MVMO

F-values RGDAMA MVMO Results
1 3.81E+08 1.93E+02 Worse
2 1.70E+04 1.68E-02 Worse
3 7.69E+00 9 40E+00 Better
4 6.61E+02 4.65E+02 Worse
5 1.05E+00 1.13E+00 Better
[ 1.53E+00 3.26E-01 Worse
7 8.67E+00 6.37E-01 Worse
8 1.31E+02 4.14E+01 Better
9 3.65E+00 4.01E+00 Better
10 9.97E+04 4.97E+02 Worse
11 T.78E+00 1.17E+01 Better
12 1.28F+02 2.00E+02 Better
13 3.25E+02 3.16E+02 Worse
14 1.97E+02 2.06F+02 Better
15 3.16FE+02 4.76E+02 Better
Table 5: Results of SRAMA-IS against MVMO

F-values SRAMA MVMO Results
1 1.47E+08 1.93E+02 Worse
2 1.47E+04 1.68E-02 Worse
3 7.26E+00 9 40E+00 Better
4 5.78E+02 4.65E+02 Worse
5 1.12E+00 1.13E+00 Better
3] 9.61E-01 3.26E-01 Worse
7 4.43E+00 6.37E-01 Worse
8 2.31E+01 4.14E+01 Better
9 3.65E+00 4.01E+00 Better
10 4.61E+04 4.97E+02 Worse
11 7.14E+00 1.17E+01 Better
12 1.27E+02 2.00E+02 Better
13 3.19E+02 3.16E+02 Worse
14 1.95E+02 2.06E+02 Better
15 1.99F+02 4. 76E+02 Better
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Fig. 4: TSAMA F1 LLH selection for the best run
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Fig. 5: TSAMA F3 LLH selection of random selected run

perform well in one functions. TSAMA performed well
mn the umimodal, simple multimedal and composite
functions. SRAMA has shown better results mn hybrid
functions.

To investigate further, the selection of LLH made by
the selection mechanism for all three algorithms was
recorded. For each type of function group in the test suit
only one function are selected and presented in this
study., Unimodal function F1, simple multimodal F3,
hybrid F10 and composite functions F13 are selected. A
random run will be selected to be compare with the best
run in the same function. Since, TSAMA outperform the
other two algorithms, the LLH selection by TSAMA are
use as comparison. The 500 evaluations are then broken
mnto four parts for example in Fig. 4. For purpose of this 1s
to gain more detail observation of the LLH selection.
Figure 4 and 5 shows the TSAMA selection best run. In
early first quarter of the evaluation PSO are used more
often while DE are used mostly in second and third
quarter of the evaluation. Figure 6-8 shows TSAMA best
run in F3. In the first quarter of the .L.H selection DE was
mainly used to generate new solution. GA in the other
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Fig. 6: TSAMA F3 LLH selection for the best run
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Fig. 7: TSAMA F10 LLH selection of random selected run
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Fig. 8 TSAMA F10 LLH selection for the best run

hand was not use that often in the first quarter but in the
third quarter GA was choosen more often to be used to
generate new solution. In the hybrid function F10, the
combination of DE, GA and CMA-ES was used for most
of the time m the first and second quarter. In composite
function F13 best run by TSAMA 1s shown in Fig. 9 and
10 overall the usage of GA and CMA-ES are mainly used
to generate new solution.
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Fig. 9: TSAMA F13 LLH selection of random selected run
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Fig. 10: TSAMA F13 LLH selection for the best run
CONCLUSION

From the results obtamned, 1t shows that
hyper-heuristics is capable to post good results as a
generalized algorithm against a tailored algorithm. If a
generalized algorithm is able to post good solutions it will
reduce the time and expertise needed to tailored an
algorithm for different problem nstances. More attention
and research on hyper-heuristics in continuous problem
domain should be done in order to gain from the
convenient of using hyper-heuristics.

Hyper-heuristics leverage on the usage of different
LLH to solve different type of problems and this might
help in addressing no free lunch theorem. From the results
of observing the LLH selection by using different
algorithm at different stages of the search process will
enable good results that can be compared with specific
tailored algorithms.

More research on researching hyper-heuristics
selection mechamsm 1s need as well as addressing the
acceptance criteria. Both of mechamsm plays an important

role that will enable hyper-heuristics to be a generalized
algorithm that can be applied in any problem instances
without major tailoring towards the problem.
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