Journal of Engineering and Applied Sciences 13 (12): 4403-4405, 2018

ISSN: 1816-949X

© Medwell Journals, 2018

On Some Properties of Alfa Sets

Belal K. Nairat Applied Sciences Private University, Amman, Jordan

Abstract: In this study, we introduce and study the concepts of α -open set, α -continuous functions then, we also study the concepts of α -compact subsets and study some new characterizations of α -connectedness. Then we discuss the relations between the α -continuous functions and these concepts.

Key words: α -open set, α -compact, α -open cover, α -closed sets, α -continuous, concepts

INTRODUCTION

Generalized open sets play a very important role in general topology and they are now the research topics of many topologists worldwide. In this study, we discuss the properties of α -sets and α -continuous functions. All through this study (X, τ) and (Y, σ) stand for topological spaces with no separation assumed, unless otherwise stated. The closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.

MATERIALS AND METHODS

Preliminaries; Definition 3.1: A subset A of a space X is said to be (Andrijevic, 1996; Mustafa, 2005; Calads and Jafari, 2003; Crossley and Hildebrand, 1971; Dugundji, 1996; El-Deeb *et al.*, 1983; Levine, 1963; Maheshwari and Prasad, 1972):

- Semi-open if $A\subseteq Cl(Int(A))$
- Pre open if A⊆Int(Cl(A))
- α -open if $A\subseteq Int(Cl(Int(A)))$

Definition 3.2: A function f: X→Y is called (Al-Obiadi, 2005; Mashhour *et al.*, 1982):

- Semi continuous if f¹(V) is semi open in X for each open set V of Y
- Pre continuous if f¹(V) is pre open in X for each open set V of Y
- α -continuous if $f^1(V)$ is α -open in X for each open set V of Y

Definition 3.3;Mustafa (2005): A space X is a α -T₂ space iff for each x, $y \in X$ such that $x \neq y$ there are α -open sets U, $V \subset X$, so that, $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

α-connectedness

Definition: A space which is a union of two disjoint non-empty α -open sets is called α -disconnected.

Equivalently: A space X is α -connected f the only subsets of X which are both α -open and closed are \varnothing and X.

Proof of equivalence: If $X = A \cup B$ with A and B α -open and disjoint then X-A = B and so, B is the complement of an α -open set and hence, is α -closed. Similarly, B is clopen.

Conversely, if A is a non-empty, proper open subset then A and X-A α -disconnect X. A subset of a topological space is called α -connected if it is connected in the subspace topology.

Theorem: The α -continuous image of a α -connected space is α -connected.

Proof: If $f: X \rightarrow Y$ is α -continuous and $f(X) \subset Y$ is α -disconnected by α -open sets U, V in the subspace topology on f(X) then the α -open sets f-1(U) and f-1(V) would α -disconnect X.

Corollary: α -connectedness is preserved by homeomorphism.

Theorem: If A and B are α -connected and $A \cap B \neq \emptyset$ then $A \cup B$ is α -connected.

Proof: Suppose α -open sets U and V α -disconnect $A \cup B$. Then $A \cap U$ and $A \cap B$ would α -disconnect A and so, one of them is \varnothing . So, suppose $A \subset U$. Similarly we have either $B \subset V$ or $B \subset U$. Since, B meets A the first of these is impossible and so, we have $A \cup B \subset U$ and $V = \varnothing$.

RESULTS AND DISCUSSION

Covering properties

Definition 5.1: Let $\{G_\alpha\colon \alpha\epsilon\Delta\}$ be a family of α -open sets of the space X. The family $\{G_\alpha\colon \alpha\epsilon\Delta\}$ covers X if $X\subseteq\bigcup_i G_\alpha$.

Definition 5.2: A space X is called a α -compact space if each α -open cover of X has a finite subcover for X.

Theorem 5.3: Let A be a α -compact subset of the α -T₂ space X and \notin A. Then there exist two disjoint \notin -open sets U and V containing x and respectively.

Proof: Let $y \in A$, since, X is $\alpha - T_2$ space there exist two α -open sets U_x , $V_y \in X$ such that $x \in U_x$, $y \in V_y$, $U_x \cap V_y = \varphi$ the family is open cover of A has a finite subcover, thus:

Theorem 5.4: If X is α -T₂ space and A is a α -open subset, if A is α -compact then A is a α -closed.

Proof: Let $x \in X$ -A, by the theorem 4.3 there exist two α -open sets U and V such that $X \in U$, $A \subseteq V$, $U \cap V = \varphi$, thus, $x \in U \subseteq X$ -V $\subseteq X$ -A which implies X-A is α -open, so that, A is α -closed.

Theorem 5.5: Let A and B be a two α -compact subsets of the α -T₂ space X then there exist disjoint α -open sets U and V containing A and receptively.

Proof: Let beB, since, A is a α -compact subset and α -open in X there exist two α -open sets U_b , V_b such that $U_b \cap V_b = \varphi$; beV_b, A \subseteq U_b, so, $\beta = \{B \cap V_b; b \in B\}$ is a α -open cover of B, since, B is α -compact subset there exist finite subcover $\{B \cap V_{in}; 1 \le i \le n\}$ from β . Let:

$$U = \bigcap_{i=1}^{n} U_{b_i}, V = \bigcup_{i=1}^{n} V_{b_i}$$

Thus:

$$A \subseteq U, B \subseteq V, U \cap V = \phi$$

Theorem 5.6: Let $f: (X, \tau) \rightarrow (Y, \rho)$ be a α -continuous surjection open function, if X is a α -compact then Y is a α -compact.

Proof: Let $\beta = \{V_{\alpha}: \alpha \in \Delta\}$ be a α -open cover of Y, then $L = \{f^1(V_{\alpha}): \alpha \in \Delta\}$ is a α -open cover of X. Since, X is a α -compact space there exist a finite subcover from L to the space X. Such that:

$$X \subseteq \bigcup_{i=1}^{n} f^{-1}(V_{\alpha i})$$

Thus:

$$Y = f\left(X\right) \subseteq f\left(\bigcup_{i=1}^n f^{\text{-}1}\!\left(V_{\alpha,i}\right)\right) = f\left(f^{\text{-}1}\!\!\left(\bigcup_{i=1}^n\!\!\left(V_{\alpha,i}\right)\right)\right) = \bigcup_{i=1}^n\!\!\left(V_{\alpha,i}\right)$$

Hence:

$$Y \subseteq \bigcup_{i=1}^{n} (V_{\alpha i})$$

This shows Y is a α -compact.

Corollary 5.7: α -compactness is a topological property

Proof: The proof from Theorem 4.5.

Definition 5.8: A family of sets β has "finite intersection property" if every finite subfamily of β has a nonempty intersection.

Theorem 5.9: A topological space is α -compact if and only if any collection of its α -closed sets having the finite intersection property has non-empty intersection.

Proof: Suppose X is α -compact, i.e., any collection of α -open subsets that cover X has a finite collection that also cover X. Further, suppose $\{G_{\alpha}: \alpha \in \Delta\}$ is an arbitrary collection of α -closed subsets with the finite intersection property. We claim that:

$$\bigcap_{\alpha \in \Lambda} G_{\alpha} \neq \emptyset$$

Is non-empty. Suppose otherwise, i.e., suppose:

$$\bigcap_{\alpha \in \Lambda} G_{\alpha} = \emptyset$$

Then:

$$\bigcup_{\alpha \in \Delta} (X \text{-} G_{\alpha}) = X \text{-} \left(\bigcap_{\alpha \in \Delta} G_{\alpha}\right) = X \text{-} \varphi = X$$

Since, each $G\alpha$ is α -closed, the collection $\{X - G_{\alpha}: \alpha \in \Delta\}$ is an α -open cover for X. By compactness there is a finite subcover L such that:

$$X = \bigcup_{i=1}^{n} (X - G_{\alpha_i})$$

But then:

$$\bigcap_{i=1}^n G_{\alpha_i} = \bigcap_{i=1}^n \Bigl(X - \Bigl(X - G_{\alpha_i} \Bigr) \Bigr) = X - \Biggl(\bigcup_{i=1}^n \Bigl(X - G_{\alpha_i} \Bigr) \Biggr) = X - X = \varphi$$

which contradicts the finite intersection property of $\{G_{\alpha}: \alpha \in \Delta\}$. Conversely, take the hypothesis that every family of a α -closed sets in X having the finite intersection

property has a nonempty intersection. We are to show X is α -compact. Let $\{G_{\alpha}: \alpha \in \Delta\}$ be any α -open cover of X. Then $\{X \ G_{\alpha}: \alpha \in \Delta\}$ is a family of α -closed sets such that:

$$\bigcap X - G_{\alpha} = X - \left(\bigcup_{\alpha \in \Delta} G_{\alpha} \right) = X - X = \emptyset$$

Consequently, our hypothesis implies the family $\{X-G_\alpha: \alpha \in \Delta\}$ does not have the finite intersection property. Therefore, there is some finite subcollection $\{X-G_\alpha: i=1,2,3,...,n\}$ such that:

$$\bigcap_{i=1}^{n} X - G_{\alpha_{i}} = \phi$$

And hence:

$$X = \bigcup_{i=1}^n G_{\alpha_i} = \bigcup_{i=1}^n \Bigl(X - \Bigl(X - G_{\alpha_i} \Bigr) \Bigr) = X - \Biggl(\bigcap_{i=1}^n \Bigl(X - G_{\alpha_i} \Bigr) \Biggr) = X - \varphi = X$$

Thus:

$$X\!=\!\bigcup_{i=1}^n\!G_{\alpha_i}$$

Implying X is α-compact.

CONCLUSION

In this study, the relations between the α -continuous functions and their concepts are discussed clearly.

ACKNOWLEDGEMENT

The resarcher acknowledges Applied Science Private University, Amman, Jordan, for the fully financial support granted of this research.

REFERENCES

- Al-Obiadi, A.K., 2005. On totally b-continuous functions and strongly B-continuous functions. Mutah Lil Buhuth Wad Dirasat, 20: 63-71.
- Andrijevic, D., 1996. On B-open sets. Mat. Vesnik, 48: 59-64.
- Calads, G.D.N and S. Jafari, 2003. Characterizations of low separation axioms via-open sets and closure operation. Bol. Soc. Paran. Mat., 21: 1-14.
- Crossley, S.G. and S.K. Hildebrand, 1971. Semi-closure. Texas J. Sci., 22: 99-112.
- Dugundji, J., 1966. Topology. Allyn & Bacon, Boston, Masachusetts, USA.
- El-Deeb, N., I.A. Hasanein, A.S. Mashhour and T. Noiri, 1983. On P-regular spaces. Bull. Math. Soc. Sci. Math. Republique Socialiste Roumanie, 27: 311-315.
- Levine, N., 1963. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70: 36-41.
- Maheshwari, S.N. and R. Prasad, 1972. Some new separation axioms. Ann. Soc. Sci. Bruxelles, 89: 395-402.
- Mashhour, A.S., M.A. El-Monsef and S.N. El-Deeb, 1982.
 On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt, 53: 47-53.
- Mustafa, J.M., 2005. Some separation axioms by B-open sets. Mutah Lil Buhuth Wad Dirasat, 20: 57-64.