ISSN: 1816-949X

© Medwell Journals, 2018

Doubly Connected Geodetic Number on Operations in Graphs

 ¹K.L. Bhavyavenu and ²Venkanagouda M. Goudar
¹Research Scholar Mathematics, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, India
²Department of Mathematics, Sri Siddhartha Institute of Technology, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, India

Abstract: In this study, we study the concept of doubly connected geodetic number of a graph. A set $S\subseteq V$ in a graph G is a Doubly Connected Geodetic Set [DCGS] if S is a geodetic set and both induced subgraphs <S> and <V-S> are connected. The minimum cardinality of a doubly connected geodetic set and it is denoted by $g_{dc}(G)$ is called doubly connected geodetic number of a graph G. A doubly connected geodetic set of cardinality $g_{dc}(G)$ is called $g_{dc}(G)$ -set. We determine the doubly connected geodetic number in cartesian product, strong product, join of two graphs.

Key words: Cartesian product, geodetic number, strong product, join, composition, minimum cardinality, connected geodetic, doubly connected

INTRODUCTION

A u-v path of length d(u,v) is called a u-v geodesic of G and for a nonempty subset S of V(G), $I[S] = \bigcup_{u,v \in S} I[u,v]$. A set S of vertices of G is called a geodetic set in G if I[S] = V[G] and a geodetic set of minimum cardinality is the geodetic number g (G). The geodetic number was introduced by Chartrand et al. (2002). Nonsplit geodetic number g_{ns} (G) of a graph was studied by Tejaswini and Goudar (2016) and is defined as follows. The set $S\subseteq V(G)$ is a nonsplit geodetic set in G if S is a geodetic set and <V(G-S)> is connected, nonsplit geodetic number g_{ns}(G) of G is the minimum cardinality of a nonsplit geodetic set of G. The connected geodetic number was studied by Santhakumaran et al. a connected geodetic set of G is a geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number and is denoted by g_c(G). The split geodetic number was studied by Venkanagouda and Ashalatha. The set S⊆V(G) is a split geodetic set in G if S is a geodetic set and <V-S> is disconnected.

A vertex V is an extreme vertex in a graph G, if the subgraph induced by its neighbours is complete. A vertex cover in a graph G is a set of vertices that covers all edges of G. The minimum number of vertices in a vertex cover of G is the vertex covering number $\alpha_0(G)$ of G.

For any undefined term in this study (Harary, 1969; Chartrand and Zhang, 2006). The following theorems are used in the sequel.

Theorem 1.1 (Chartrand *et al.*, **2002):** For any cycle C_n of order $n \ge 3$:

$$g(C_n) = \begin{cases} 2 \text{ if n is even} \\ 3 \text{ if n is odd} \end{cases}$$

Theorem 1.2 (Chartrand *et al.*, **2002):** Every geodetic set of a graph contains its extreme vertices.

Theorem 1.3 (Chardrand and Zhang, 2006): For any cycle of order C_n of order $n \ge 3$:

$$a_{0}(C_{n}) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n+1}{2} & \text{it is odd} \end{cases}$$

Theorem 1.4 (Tejaswini and Goudar, 2016): Let k_2 and $G = C_n$ be the graphs then:

$$g_{ns}(K_2 \times G) = \begin{cases} 2 \text{ if } n \text{ is even} \\ 3 \text{ if } n > 5 \text{ is odd} \\ 4 \text{ if } n = 3 \end{cases}$$

Theorem 1.5 (Venkanagouda *et al.*): For any path P_n of order n:

$$g_s(K_{2Pn}) = \begin{cases} 2, & \text{for } n=2\\ 3, & \text{for } n \ge 3 \end{cases}$$

In this study, we study the doubly connected geodetic set on Cartesian product, strong product and join of two graphs.

Doubly connected geodetic number of a graph: A set $S \subseteq V$ in a graph G is a Doubly Connected Geodetic Set [DCGS] if S is a geodetic set and both induced subgraphs <S> and <V-S> are connected. The minimum cardinality of a doubly connected geodetic set and it is denoted by $g_{dc}(G)$ is called doubly connected geodetic number of a graph G. A doubly connected geodetic set of cardinality $g_{dc}(G)$ is called $g_{dc}(G)$ -set.

MATERIALS AND METHODS

Results on cartesian product of two graphs

Definition 3.1: The Cartesian product of the graphs H_1 and H_2 , written as H_{1H2} is the graph with vertex set $V(H_1)\times V(H_2)$, two vertices u_1 , u_2 and v_1 , v_2 being adjacent in H_1 H_2 if and only if either $u_1 = v_1$ and $(u_2, v_2)\in E(H_2)$ or $u_2 = v_2$ and $(u_1, v_1)\in E(H_1)$.

Theorem 3.2: For the cycle C_n of order $n \ge 3$:

$$g_{dc}(K_{2Cn}) = \begin{cases} \frac{n}{2} + 2 & \text{if } n \text{ is even} \\ \frac{n+1}{2} + 2 & \text{if } n \text{ is odd} \end{cases}$$

Proof: Consider $V(K_1) = \{u_1, u_2\}$ and $V(C_n) = \{v_1, v_2, ..., v_n\}$ by the definition of Cartesian product K_{2Cn} , C_n has two copies G_1 and G_2 in K_{2Cn} . Let $V = \{(u_1v_1), (u_1v_2), (u_1v_3), ..., (u_1v_n), (u_2v_1), (u_2v_2), ..., (u_2v_n)\}$ be the vertices in K_{2Cn} . We discuss the following cases.

Case (i): Suppose n is even, then $S_1 = \{(u_l \ v_1), (u_2^{vm/2}_{+1})\}$ be the geodetic set of K_{2Cn} , where $(u_l \ v_l), (u_2^{vm/2}_{+1})$ are the antipodal vertices of K_{2Cn} . Thus, $I[S_1] = V[K_2 \times C_n]$. But the induced subgraph $\langle S_1 \rangle$ is not connected. Let us consider $S = S_1 \cup S_2$ where $S_2 = \{(u_1 \ v_2, ..., \ u_1^{vm/2}, u_2^{vm/2})\}$. Clearly the induced subgraph $\langle S \rangle$ and $\langle V - S \rangle$ are connected. Therefore, $g_{dc}(K_{2Cn}) = |S| = n/2 + 2$.

Case (ii): Suppose n is odd, then $S_1 = \{(u_1 \ v_1), (u_2^{vn+1/2}), (u_2^{vn+1/2}_{+1})\}$ be the geodetic set of K_{2Cn} where $(u_2^{vn+1/2}), (u_2^{vn+1/2}_{+1})$ are the antipodal to the vertex $(u_1 \ v_1)$. Thus, $I[S_1] = V[K_2 \ C_n]$. But the induced $\langle S_1 \rangle$ is not connected. Let us consider $S = S_1 \cup S_2$ where $S_1 = \{(u_1 \ v_2, \dots, u_1^{vn+1/2}, u_2^{vn+1/2})\}$. Clearly the induced subgraphs $\langle S \rangle$ and $\langle V \rangle$ -so are connected. Therefore, $g_{dc}(K_{2Cn}) = |S| = n+1/2+2$.

Theorem 3.3: For any path P_n of order $n \ge 3$, $g_{dc}(K_{2Pn}) = n+1$.

Proof: Let G_1 , G_2 be the two copies of $G = P_n$ in K_{2Pn} . Consider $U = \{u_1, u_2\}$ be the vertex set of G_1 , $V = \{v_1, v_2, \ldots, v_n\}$ be the vertex set of G_2 and $W = \{(u_1v_1), (u_1v_2), \ldots, (u_1v_n), (u_2v_1), (u_2v_2), \ldots, (u_2v_n)\}$ are the vertices of K_{2Pn} . Let $S_1 = \{(u_1v_1), (u_2v_n)\}$ be the split geodetic set and are the antipodal vertices in K_{2Pn} . But the induced subgraph $<S_1>$ is not connected. Consider $S = S_1\cup S_2$ where $S_2 = \{(u_1v_2), (u_1v_3), \ldots, (u_1v_n)\}$. Clearly both induced subgraphs <S> and <W-S> are connected. Hence, |S| = 2+n-1 = n+1. It follows that $g_{dc}(K_{2Pn}) = n+1$.

Theorem 3.4: For any path P_n of order $n \ge 2$, $g_{dc}(P_n P_n) = 2n-1$.

Proof: Let G_1 , G_2 , ..., G_n be the n disjoint copies of P_n in P_nP_n and $W = \{(u_1v_1), (u_1v_2), ..., (u_1v_n) (u_2v_1), (u_2v_2), ..., (u_2v_n), ..., (u_nv_1), (u_nv_2), ..., (u_nv_n)\}$ is the vertices of P_nP_n . Let $S_1 = \{(u_1v_1), (u_nv_n)\}$ be the geodetic set and are the antipodal vertices of P_nP_n . But the induced subgraph $< S_1 >$ is not connected. Consider $S = S_1 \cup S_2$, where $S_2 = \{(u_2v_1), (u_3v_1), ..., (u_nv_1), (u_nv_2), ..., (u_nv_{n-1})\} \subseteq V$ $(P_nP_n)-S_1$. It is known that the induced subgraphs < S > and < W-S > are connected. Hence, |S| is the doubly connected geodetic set of P_nP_n . It follows that $g_{dc}(P_nP_n) = |S| = 2n-1$.

Results on strong product of two graphs

Definition 4.1: The strong product of graphs G_1 and G_2 , denoted G_1G_2 has vertex set $V(G_1)\times V(G_2)$ where two distinct vertices (x_1, y_1) and (x_2, y_2) are adjacent with respect to the strong product if, $x_1 = x_2$ and $y_1y_2\in E(G_2)$ or $y_1 = y_2$ and $x_1x_2\in E(G_1)$ or $x_1x_2\in E(G_1)$ and $y_1y_2\in E(G_2)$.

Theorem 4.2: Let P_{n1} and P_{n2} be the paths of order $n_1 \ge 2$ and $n_2 \ge 3$, then:

$$g_{\text{dc}}\left(P_{n1}\,P_{n2}\right) = \begin{cases} n_1 + n_2 \, \text{if} \, n_1 \, \text{is even and} \, n_1 \leq n_2 \\ n_1 + n_2 - 1 \, \text{if} \, n_1 \, \text{is odd and} \, n_1 \leq n_2 \end{cases}$$

Proof: Consider $G = P_{n1} \otimes P_{n2}$ be the graph formed from n_1 copies of P_{n2} . Let $V(P_{n1}) = \{u_1, u_2, ..., u(n_1) \text{ and } V(P_{n2}) = \{v_1, v_2, ..., v_{n2}\}$, then $|V(G)| = n_1 n_1$. We have the following cases.

Case (i): Suppose n_1 is even and $n_1 \le n_2$. We have two subcases.

Subcase (i): If $n_1 n_2$, then $S_1 = \{(u_1, v_1, u_{n1}, v_1, u_{n2}, v_{n2}, u_1, v_{n2})\}$ be the geodetic set of G. We observed that $\langle S_1 \rangle$ is not connected and $\langle V(G) - S_1 \rangle$ is connected which is not a doubly connected geodetic set of G. Consider $S = S_1 \cup S_2$

is the doubly connected geodetic set of G where:

$$\begin{split} S_2 &= \left\{ \left\{ (u_2, v_2), (u_2, v_{n_2}\text{-}1), ..., \left(\frac{u n_1}{2}, \frac{u n_1}{2}\right), \left(\frac{u n_1}{2}, v_{n_2}\text{+}1\text{-}\frac{n_1}{2}\right), ..., \right. \\ &\left. \left(\frac{u n_1}{2} + 1, \frac{u n_1}{2}\right), \left(\frac{u n_1}{2} + 1, v_{n_2} + 1\text{-}\frac{n_1}{2}\right), ..., \left(u_{n_1}\text{-}1, v2\right), \left(u_{n_1}\text{-}1, v_{n_2}\text{-}1\right) \right\} \\ &\left. \cup \left\{ \left(\frac{u n_1}{2} + 1, \frac{u n_1}{2} + 1\right), ..., \left(\frac{u n_1}{2} + 1, v_{n_2} + 1\text{-}\frac{n_1}{2}\right) \right\} \right\} \end{split}$$

Thus, it follows that:

$$g_{\text{dc}}(P_{n_1}P_{n_2}) \!=\! |S| = n_1 \! + \! n_2$$

Subcase (ii): If $n_1 = n_2$, then:

$$S_{1} = \left\{ \left(u_{1}, v_{1}\right), \left(u_{n_{1}}, v_{1}\right), \left(u_{n_{1}}, v_{n_{2}}\right), \left(u_{1}, v_{n_{2}}\right) \right\}$$

Be the geodetic set of G. We observed that $\langle S_1 \rangle$ is not connected and $\langle V(G) - S_1 \rangle$ is connected. Consider $S = S_1 \cup S_2$ is the doubly connected geodetic set G where:

$$\begin{split} \mathbf{S}_{2} &= \left\{ \left\{ \left(\mathbf{u}_{2}, \mathbf{v}_{2}\right), \left(\mathbf{u}_{3}, \mathbf{v}_{3}\right), ..., \left(\mathbf{u}_{_{\mathbf{n}\mathbf{l}\mathbf{l}}}, \mathbf{v}_{_{\mathbf{n}_{2\mathbf{l}}}}\right) \right\} \cup \\ \left\{ \left(\mathbf{u}_{2}, \mathbf{v}_{_{\mathbf{n}_{2\mathbf{l}}}}\right), ..., \left(\mathbf{u}_{_{\mathbf{n}_{\mathbf{l}\mathbf{l}}}}, \mathbf{v}_{_{2}}\right) \right\} \right\} \end{split}$$

Clearly:

$$g_{dc}(P_{n_1}P_{n_2}) = |S| = |S_1| + |S_2| = 4 + n_1 + n_2 - 4 = n_1 + n_2$$

Case (ii): Suppose n_1 is odd and $n_1 \le n_2$. We have two subcases.

Subcase (i): If $n_1 < n_2$, then:

$$S_1 {=} \{(u_1, v_1), (u_{n_1}, v_1), (u_{n_1}, v_{n_2}), (u_1, v_{n_2})\}$$

Be the geodetic set of G. We observed that $\langle S_1 \rangle$ is not connected and $\langle V(G) - S_1 \rangle$ is connected which is not a doubly connected geodetic set of G. Consider $S = S_1 \cup S_2$ is the doubly connected geodetic set of G where:

$$\begin{split} S_2 &= \left\{ \left\{ \left(u_2, v_2\right), \left(u_2, v_{n_{2-1}}\right), ..., \left(\frac{u_{n_1} + 1}{2}, \frac{u_{n_1} + 1}{2}\right), \\ &\left(\frac{u_{n_1} + 1}{2}, v_{n_2} + 1 - \frac{n_1 + 1}{2}\right), ..., \left\{ \left(u_{n_1} - 1, v_2\right), \left(u_{n_1} - 1, v_{n_2} - 1\right) \right\} \right\} \\ & \cup \left\{ \left(\frac{u_{n_1} + 1}{2}, v_{n_2} - \frac{n_1 + 1}{2}\right) \right\} \right\} \end{split}$$

Thus, it follows that:

$$g_{dc}(P_{n_1}P_{n_2}) = |S| = |S_1 \cup S_2| = n_1 + n_2 - 1$$

Subcase (ii): If $n_1 = n_2$, then:

$$S_1 = \{(u_1, v_1), (u_{n_1}, v_1), (u_{n_1}, v_{n_2}), (u_1, v_{n_2})\}$$

Be the geodetic set of G. We observed that $\langle S_1 \rangle$ is not connected and and $\langle V(G) - S_1 \rangle$ is connected. Consider $S = S_1 \cup S_2$ is the doubly connected geodetic set G where:

$$\begin{split} \mathbf{S}_2 &= \left\{ \left\{ \left(\mathbf{u}_2, \mathbf{v}_2\right), \left(\mathbf{u}_3, \mathbf{v}_3\right), ..., \left(\mathbf{u}_{\mathbf{n}_{1-1}}, \mathbf{v}_{\mathbf{n}_{2-1}}\right) \right\} \cup \\ \left\{ \left(\mathbf{u}_2, \mathbf{v}_{\mathbf{n}_{2-1}}\right), ..., \left(\mathbf{u}_{\mathbf{n}_1}, \mathbf{v}_2\right) \right\} \right\} \end{split}$$

Clearly:

$$g_{dc}(P_{n_1}P_{n_2}) = |S| = |S_1| + |S_2| = 4 + n_1 + n_{2^{-5}} = n_1 + n_{2^{-1}}$$

Theorem 4.3: For the cycle C_n of order n = 4:

$$g_{dc}(K_2C_n) = \begin{cases} n+2 & \text{if n is even} \\ n+3 & \text{if n is odd} \end{cases}$$

Proof: Let G be the strong product of K_2 C_n with $C_n = 4$. Consider K_2 : u_1 , u_2 and C_n : v_1 , v_2 , ..., v_n be the vertices of K_2 , C_n , respectively. V (K_2) = {($u_1 v_1$), ($u_2 v_1$), ($u_1 v_2$), ..., ($u_2 v_n$)} = 2n, we have the following cases.

Case (i): Suppose n is even cycle. Let $S_1 = \{(u_1v_1), (u_1^{v_11/2+1}), (u_2 v_1), (u^{v_11/2+1})\}$ be the geodetic set of K_2 C_n . We observed that the induced subgraphs $\langle S_1 \rangle$ and $\langle V(G)-S^1 \rangle$ are not connected. Consider $S = S_1 \cup S_2$, where:

$$S_{2} = \left\{ \left(u_{1}v_{2}\right), ..., \left(u_{1}\frac{vn_{1}}{2}\right), \left(u_{2}v_{2}\right), ..., \left(u_{2}\frac{vn_{1}}{2}\right) \right\} \subseteq V(G) - S_{1}$$

Forms a doubly connected geodetic set of G with minimum cardinality. It implies that both induced subgraphs <S> and <V (G)-S> are connected. Hence, it follows that $g_{dc}(K_2 C_n) = |S| = |S_1 + S_2| = 4 + n/2 - 1 + n/2 - 1 = n + 2$.

Case (ii): Suppose n is odd cycle. Let $S_1 = \{(u_l \ v_1), (u_1, v_1+1/2), (u_1^{v_1+1/2}), (u_2, v_1), (u_2^{v_1+1/2}), (u_2^{v_1+1/2})\}$ be the geodetic set of K_2 C_n . But the induced subgraphs $< S_1 >$ and < V (G)- $S_1 >$ are not connected. Consider $S = S_1 \cup S_2$, where:

J. Eng. Applied Sci., 13 (12): 4330-4335, 2018

$$\begin{split} \mathbf{S}_{2} &= \left\{ \left(\mathbf{u}_{1} \, \mathbf{v}_{2} \right), \, ..., \left(\, \mathbf{u}_{1}, \frac{\mathbf{v}_{n} + 1}{2} - 1 \, \right), \left(\, \mathbf{u}_{1}, \frac{\mathbf{v}_{n} + 1}{2} + 1 \, \right), \\ \left(\, \mathbf{u}_{2}, \mathbf{v}_{2} \, \right), \left(\, \mathbf{u}_{2} \, \frac{\mathbf{v}_{n} + 1}{2} - 1 \, \right) \right\} \subseteq \mathbf{V}(\mathbf{G}) - \mathbf{S}_{1} \end{split}$$

Forms a doubly connected geodetic set of G with minimum cardinality. It implies that both induced subgraphs <S> and <V (G)-S> are connected. Clearly:

$$g_{dc}(K_2C_n) = |S| = |S_1 + S_2| = 6 + \frac{n+1}{2} - 2\frac{n+1}{2} - 2 = n+3$$

Results on join of two graphs

Definition 5.1: The join of two graphs G and H, denoted by G+H, is the graph with:

$$\begin{split} V\left(G+H\right) &= V\left(G\right) \cup V(H) \text{ and } E(G+H) = \\ E(G) \cup E(H) \cup \left\{u,v: u \in V(G) \text{ and } v \in V(H)\right\} \end{split}$$

Theorem 5.1: If P_{n_1} and P_{n_2} be the paths then:

$$g_{dc}(P_{n_1} + P_{n_1}) = \{(n_2 + 3)/2\}$$

Proof: Let P_{n_1} and P_{n_2} be the paths, then:

$$G = P_{n_1} + P_{n_2}$$
 and $V(G) = n_1 + n_2$

We have following cases.

Case (i): Suppose $n_1 = 2$ and $n_2 \ge 3$, n_2 is odd. Consider:

$$P_{n_1} = \{u_1, u_2\} \text{ and } P_{n_2} = \{v_1, v_2, ... v_n\}$$

If n_2 is odd, then the geodetic set $S = \{v_1, v_3, ... v_n\}$ contains $n_2+1/2$ vertices. But the induced subgraph $\langle S \rangle$ is not connected. Consider:

$$S_{l} = S \left\{u_{i}\right\} = \left\{v_{1}, v_{3}, ..., v_{n}, u_{i}\right\}, \text{ for any } i = 1, 2 \text{ and } u_{i} \in P_{n}$$

Be the doubly connected geodetic set of G, such that induced subgraphs $\langle S_1 \rangle$ and $\langle V - S_1 \rangle$ are connected. Hence:

$$gdc\Big(P_{n_1} + P_{n_2}\Big) = |S \cup \{u_1\} = |S| + 1 = \frac{n_2 + 1}{2} + 1 = \frac{n_2 + 3}{2}$$

Case (ii): Suppose $n_1 = 2$ and $n_2 \ge 3$, n_2 is even. Consider:

$$P_{n_1} = \{u_1, u_2\}$$
 and $P_{n_2} = \{v_1, v_2, ..., v_n\}$

If n_2 is even, then the geodetic set $S=\{v_1,\,v_3,\,...,\,v_{n-1},\,v_n\}$ contains $n_2/2+1$ vertices. But the induced subgraph < S> is not connected. Consider $S_1=S\cup\{u_i\}=\{v_1,\,v_3,\,...,\,v_{n-1},\,v_n,\,u_i\},$ for any $i=1,\,2$ and $u_i{\in}P_{n1}$ be the doubly connected geodetic set of G, such that induced subgraphs $< S_i >$ and $< V-S_i >$ are connected. Hence:

$$g_{\text{dc}}(P_{n_1} + P_{n_2}) = |S \cup \{u_i\}| = |S| + 1 = \frac{n_2}{2} + 1 + 1 = \frac{n_2 + 4}{2}$$

Case (iii): Suppose $n_1 = 3$ and $n_2 = 3$, n_2 is odd. If:

$$P_{n_1} = \{u_1, u_2, u_3\}$$
 and $P_{n_2} = \{v_1, v_2, ..., v_n\}$

Then, the geodetic set $S=\{u_1,u_3\}=2$ vertices. But the induced subgraph $<\!S\!>$ is not connected. Consider $S_1=S\cup\{u_2\}$ be the doubly connected geodetic set of G such that induced subgraphs $<\!S_1\!>$ and $<\!V(G)\!-\!S_1\!>$ are connected. Hence, $S_1=|S\cup\{u_2\}|=|S|+1=2+1=3.$ Therefore:

$$g_{dc}(P_{n_1} + P_{n_2}) = 3$$

Case (iv): Suppose n_1 , $n_2 \ge 4$, consider $P_{n_1} = \{u_1, u_2, ..., u_n\}$ and $P_{n_2} = \{v_1, v_2, ..., v_n\}$, then the geodetic set $S = \{u_1, u_n, v_1, v_n\} = 4$ vertices, be the doubly connected geodetic set of G. Clearly induced subgraphs $P_{n_1} = P_{n_2} = P_{n_3} = P_{$

Theorem 5.3: If P_m be the path of order $m \ge 2$ and C_n be the cycle of order $n \ge 4$, then:

$$\begin{split} &g_{\text{dc}}\left(P_{\text{m}} + \text{that 0 the vertex} = \right) \\ &\left\{ \frac{n}{2} + 1 \text{ if } \alpha_{_{0}}\left(C_{_{n}}\right) < m, \, n \text{ is even} \\ &\left\{ \frac{n + 1}{2} + 1 \text{ if } \alpha_{_{0}}\left(C_{_{n}}\right) < m, \, n \text{ is odd} \\ &m \text{ if } \alpha_{_{0}}\left(C_{_{n}}\right) \ge m \end{split} \right.$$

Proof: If P_m be the path of order $m \geq 2$ and C_n be the cycle of order $n \geq 4$, then $V(P_m + C_n) = V(P_m) + V(C_n)$, where $V(P_m) = \{u_1, u_2, ..., u_m\}$ and $V(C_n) = \{v_1, v_2, ..., v_n\}$. We have following cases.

Case (I): Suppose C_n is even and $\alpha_0(C_n) < m$, then $g(P_m + C_n) = \alpha_0(C_n) = n/2$ by theorem 1.3. But the induced subgraph <S> is not connected. Consider $S_1 = S \cup \{u_i\}$ for

any i=1, 2 and $u_i \in P_m$ be the doubly connected geodetic set of G such that the induced subgraphs $\langle S_i \rangle$ and $\langle V-S_i \rangle$ are connected. Hence, $g_{dc}(P_m+C_n)=n/2+1$.

Case (ii): Suppose C_n is odd and $\alpha_0(C_n) < m$, then $g(P_m + C_n) = \alpha_0(C_n) = n + 1/2$ by theorem 1.3. But the induced subgraph < S > is not connected. Consider $S_1 = S \cup \{u_i\}$ for any i = 1, 2 and $u_i \in P_m$ is a doubly connected geodetic set of G. Clearly, the induced subgraphs $< S_1 >$ and $< V - S_1 >$ are connected. Hence, $g_{dc}(P_m + C_n) = |S \cup \{u_i\}| = |S| + 1 = n + 1/2 + 1$.

Case (iii): Consider the graphs with $\alpha_0(C_n)$ = m. We have following subcases.

Subcase (i): Suppose P_m is even, then the geodetic set $S = \{u_1, u_3, ..., u_{m-1}, u_m\}$ is not a doubly connected geodetic set. Because the induced subgraph < S > is not connected. Consider $S_1 = \{u_1, u_2, ..., u_{m-1}, u_m\}$ contains m vertices such that both the induced subgraphs $< S_1 >$ and $< V - S_1 >$ are connected. Hence S_1 is a doubly connected geodetic set. Therefore $g_{dc}(P_m + C_n) = m$.

Subcase (ii): Suppose P_m is odd, then the geodetic set $S = \{u_1, u_3, ..., u_m\}$ is not a doubly connected geodetic set. Because the induced subgraph <S> is not connected. Consider $S_1 = \{u_1, u_2, ... u_m\}$ contains m vertices, clearly both the induced subgraphs <S $_1>$ and <V-S $_1>$ are connected. Hence, S_1 is a doubly connected geodetic set. Therefore, $g_{dc}(P_m+C_n)=m$.

Theorem 5.4: Let, G be a complete graph and $H = K_n$ -e, then $g_{dc}(G + H) = g_{dc}(H) = 3$.

Proof: If $G = K_n$, $H = K_n$ —e and $V(G + H) = V(G) \cup V(H)$, then the geodetic set g(G+H) = g(H) = 2. But the induced subgraph $\langle S \rangle$ is not connected. Hence, S is not a doubly connected geodetic set. Let us consider $S_1 = S \cup \{x\} = 2+1 = 3 = g_{dc}(H)$ where $\Delta(x) = n-1$ and $x \in V(G) \cup V(H)$ be the doubly connected geodetic set. Clearly both the induced subgraphs $\langle S_1 \rangle$ and $\langle V - S_1 \rangle$ are connected. Hence, $g_{dc}(G+H) = g_{dc}(H) = 3$.

Theorem 5.5: Let, G and H be a connected graphs of order n and m, respectively, such that $\Delta(G) = n-1$ and $\Delta(H) = m-1$, then $g_{dc}(G+H) = min\{g(H), g(G)\}+1$ where g(H) and g(G) are the geodetic sets of H and G, respectively.

Proof: Let, $a \in V(G)$ and $b \in V(H)$ such that $\deg G(a) = \Delta(G) = n-1$ and $\deg H(b) = \Delta(H) = m-1$, then $S = g(G+H) = \min \{g(H), g(G)\}$. Since, the induced subgraph < S > is not

connected. Consider₁ = $S \cup \{a\}$ or $S \cup \{b\}$. Clearly both the induced subgraphs $\langle S_i \rangle$ and $\langle V - S_i \rangle$ are connected. Hence, g_{dc} (G+H) = min $\{g(H), g(G)\}+1$.

Theorem 5.6: If C_n and C_m be the cycles order $n, m \ge 4$, respectively and $n \ge m$, then:

$$g_{dc}(C_n + C_m) = \begin{cases} \frac{m+2}{2} & \text{if n is even} \\ \frac{m+3}{2} & \text{if n is odd} \end{cases}$$

Proof: Suppose C_n and C_m be the cycle of order $n, m \ge 4$, respectively and $V(C_n + C_m) = V(C_n) + V(C_m)$, where $V(C_n) = \{v_1, v_2, ..., v_n\}$ and $V(C_m) = \{u_1, u_2, ..., u_m\}$. If $n \ge m$, then, we have following possibilities.

Case (i): Let, m is even, then the geodetic set S=g $(C_n+C_m)=\alpha_0(C_m)=m/2$ by theorem 1.3. But the induced subgraph < S > is not connected. Hence, S is not a doubly connected geodetic set. Consider $S_1=S \cup \{v_i\}$ for any I=1, 2, ..., n and $v_i \in C_n$ Such that both the induced subgraphs $< S_1 >$ and $< V - S_1 >$ are connected. Hence, S_1 is a doubly connected geodetic set, hence, $|S_1|=m+2/2$. Therefore, $g_{dc}(C_n+C_m)=m+2/2$.

Case (ii): Let, m is odd, then the geodetic set S = g $(C_n+C_m)=\alpha_0(C_m)=m+1/2$ by theorem 1.3. But the induced subgraph < S > is not connected. Hence, S > is not a doubly connected geodetic set. Consider $S_1 = S \cup v_i$ for any i=1,2,...,n and $v_i \in C_n$. Clearly both the induced subgraphs $< S_1 >$ and $< V (C_n+C_m)-S_1 >$ are connected. Hence, S_1 is a doubly connected geodetic set. Thus, $g_{dc}(C_n+C_m)=|S_1|=|S \cup v_i|=(m+3)/2$.

RESULTS AND DISCUSSION

Definition 6.1: The composition of two graphs G and H, denoted by G[H] is the graph with $V(G[H]) = V(G) \times V(H)$ and (u_1, u_2) is adjacent to (v_1, v_2) if either $u_1 v_1 \in E(G)$ or $u_1 = v_1$ and $u_2 v_2 \in E(H)$.

Theorem 6.2: Let, C_n be the cycle of order $n \ge 4$ and K_2 be the complete graph of order n = 2, then:

$$g_{dc}(C_n[K_2]) = \begin{cases} n+2 \text{ if n is even} \\ n+2 \text{ if n is odd} \end{cases}$$

Proof: Suppose C_n be the cycle of order $n \ge 4$ and K_2 be the complete graph, $V(C_n) = \{v_1, v_2, ..., v_n\}$, $V(K_2) = \{u_1, u_2\}$ and $V(C_n[K_2]) = 2n$, we have following cases.

Case (i): C_n is even cycle. Let $S = \{(u_1v_1), (u_1v_{(n/2+1)}), (u_2v_1), (u_2v_1/2+1)\}$ is a geodetic set for $C_n[K_2]$ with minimum cardinality but the induced subgraphs < S > and < V - S > are not connected. Consider $S = \{(u_1v_2), \ldots, (u_1^{v_1/2}), \ldots, (u_2^{v_1/2}), \ldots, (u_2^{v_1/2})\}$ with n-2 vertices, then $S_1 = S \cup S$ be the doubly connected geodetic set of $C_n[K_2]$. Here both induced subgraphs $< S_1 >$ and $< V - S_1 >$ are connected. Hence, $|S_1| = |S \cup S'| = |S| + |S'| = 4 + n - 2 = n - 2$. Therefore, $g_{dc}(C_n[K_2]) = n + 2$.

Theorem 6.3: Let, P_m and P_n be the paths of m, $n \ge 4$ and $m \ge n$, then:

Proof: Let P_m and P_n be the paths of order n, m = 4 and V $(P_n[P_m]) = mn$, where $P_n = \{v_1, v_2, ..., v_n\}$ and $P_m = \{u_1, u_2, ..., u_n\}$, we have the following cases.

Case (i): If P_n and P_m are even path. Then the geodetic set $S = \{(v_1u_1), (v_1u_3), ..., (v_1u_{m-1}), (v_nu_1), (v_nu_3), ..., (v_nu_{m-1}), (v_nu_m)\}$ is the geodetic set with m+2 vertices but the induced subgraph <S> is not connected.

Let $S'=\{(v_2u_1),\,(v_3u_1),\,...,\,(v_{n-1}u_1)\}$ be the set with n-2 vertices, then $S_1=S\cup S'$ be the doubly connected geodetic set. Clearly both the induced subgraphs $<\!S_1\!\!>$ and $<\!V\!\!-\!S_1\!\!>$ are connected. Hence, $S_1=|S\cup S'|=|S|+|S'|=m+2+n-2=m+n.$ Hence, $g_{dc}(P_n[P_m)=m+n.$

Case (ii): When P_n and P_m are odd path. Then $S = \{(v_1u_1), (v_1u_3), ..., (v_nu_1), (v_nu_3), ..., (v_nu_m)\}$ is the geodetic set with m+1 vertices but the induced subgraph < S > is not connected. Let $S' = \{(v_2u_1), (v_3u_1), ..., (v_{n-1}u_1)\}$ be the set with n-2 vertices then, $S_1 = S \cup S'$ be the doubly connected geodetic set. Clearly both the induced subgraphs $< S_1 >$ and $< V - S_1 >$ are connected. Hence, $S_1 = |S \cup S'| = |S| + |S'| = m+1+n-2=m+n-1$. Hence, $g_{ab}(P_n[P_m) = m+n-1$.

CONCLUSION

In this study, we found the exact value of doubly connected geodetic number for join, composition, Cartesian and strong product of two graphs.

ACKNOWLEDGEMENT

We are very thankful to the referee for correction and suggestions.

REFERENCES

- Chartrand, G. and P. Zhang, 2006. Introduction to Graph Theory. Beijing University of Posts and Telecommunications Press, Beijing, China, ISBN:9787115148346, Pages: 435.
- Chartrand, G., F. Harary and P. Zhang, 2002. On the geodetic number of a graph. Netw., 39: 1-6.
- Goudar, V. M., K.M. Tejaswini and R. Venkatesha, 2014. Strong non split geodetic number of a graph. Intl. J. Comput. Appl., 5: 171-183.
- Harary, F., 1969. Graph Theory. Addison-Wesley, Reading, Massachusetts, USA., Pages: 120.
- Tejaswini, K.M. and V.M. Goudar, 2016. Nonsplit geodetic number of a graph. Intl. J. Math. Comb., 2: 9-120.