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Abstract: In this study, we study the concept of doubly connected geodetic number of a graph. A set 3V in
agraph G is a Doubly Connected Geodetic Set [DCGS] if S is a geodetic set and both induced subgraphs <S>
and <V -3> are connected. The mimmum cardinality of a doubly connected geodetic set and it 18 denoted by g,
(@) 15 called doubly connected geodetic number of a graph G. A doubly connected geodetic set of cardality
24(3) 18 called g, (G)-set. We determine the doubly comnected geodetic number 1n cartesian product, strong

product, join of two graphs.
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INTRODUCTION

A u-v path of length d(u,v) is called a u-v geodesic of
G and for a nonempty subset S of V(G), I[S] = v, .. I[u, v].
A set S of vertices of G is called a geodetic set in G
if I[S] = V[G] and a geodetic set of mimmum cardinality 1s
the geodetic number g (G). The geodetic mumber was
mtroduced by Chartrand et af. (2002). Nonsplit geodetic
mumber g, (G) of a graph was studied by Tejaswini and
Goudar (2016) and 1s defined as follows. The set ScV(G)
is a nonsplit geodetic set in G if S is a geodetic set and
<V(G-3)> 18 comected, nonsplit geodetic number g, (G) of
G 18 the minimum cardinality of a nonsplit geodetic set of
G. The connected geodetic number was studied by
Santhakumaran et al. a connected geodetic set of G is a
geodetic set 3 such that the subgraph G[S] induced by S
is connected. The minimum cardinality of a connected
geodetic set of G 1s the connected geodetic nmumber and
is denoted by g.(G). The split geodetic number was
studied by Venkanagouda and Ashalatha. The set ScV(Q)
is a split geodetic set in G if S is a geodetic setand
<V-S= 15 discommected,

A vertex V is an extreme vertex in a graph G, if the
subgraph induced by its neighbours 1s complete. A vertex
cover in a graph G is a set of vertices that covers all edges
of G. The mimmum number of vertices n a vertex cover of
(G is the vertex covering mumber ¢ ,(G) of G.

For any undefined term in this study (Harary, 1969,
Chartrand and Zhang, 2006). The following theorems are
used i the sequel

Theorem 1.1 (Chartrand et al., 2002): For any cycle C, of
order n=3:
_|2ifnis even
8l¢.) = {3 ifnis odd
Theorem 1.2 (Chartrand et al., 2002): Every geodetic set
of a graph contans its extreme vertices.

Theorem 1.3 (Chardrand and Zhang, 2006): For any
cycle of order C, of order n>3:

n.. .
Elf n is even
8,{C,) =
+
2 s odd
2

Theorem 1.4 (Tejaswini and Goudar, 2016): Let k,
and G = C, be the graphs then:

2 if n is even
g..(K,xG)=13ifn>5is odd
4ifn=3

Theorem 1.5 (Venkanagouda et al.): For any path P, of
order ni:

2, forn=2

3, forn=3

2:(Kopn ) = {
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In this study, we study the doubly connected
geodetic set on Cartesian product, strong product and
join of two graphs.

Doubly connected geodetic number of a graph: A set ScV
i a graph G 1s a Doubly Connected Geodetic Set [DCGS]
if S is a geodetic set and both induced subgraphs <S> and
<¥-S> are connected. The mimmum cardinality of a
doubly connected geodetic set and it is denoted by g, (&)
15 called doubly connected geodetic number of a graph G.
A doubly connected geodetic set of cardinality g, (G) is
called g,(G)-set.

MATERIALS AND METHODS

Results on cartesian product of two graphs

Definition 3.1: The Cartesian product of the graphs H,
and H,, written as Hy, 1s the graph with vertex set
V(H)=V( H,), two vertices u,, 1, and v,, v, being adjacent
m H, H, if and only if either u, = v, and (u,, v;)eE(H,) or
1, = v, and (u,, v )EE(H,).

Theorem 3.2: For the cycle C, of order n>3:

n o_.. .
—+2if n is even

ng(KZCn) = 0+l

—+2ifnis odd
2

Proof: Consider V (K,) = {u,, w,} and V (C,) = {v,, v, ...,
v,} by the definition of Cartesian product K, C, has two
copies G and G, in Ky, Let V = {(uv,), (uv,), (wv,), ...,
(uv,), (u, vy), (U, vy, ... (0, v} be the vertices in K,
We discuss the following cases.

Case (i): Suppose n is even, then S, = {(u, v), (0% )}
be the geodetic set of K, where (u, v,), (u,”",) are the
antipodal vertices of K ,. Thus, I[S,] = V[K,xC,]. But the
mnduced subgraph <3, 1s not connected. Let us consider
S =8,uS, where S, = {(u, v, ..., ™% w™)}. Clearly
the mduced subgraph <S> and <V-S> are connected.
Therefore, g.(K,c,) = |5 = n/2+2.

Case (ii): Suppose n is odd, then S, = {(1y, v,), (4™,
(™", 1} be the geodetic set of K, where (u,™"),
(u;*"%,)) are the antipodal to the vertex (u, v,). Thus,
I[S,] = V[K, C.]. But the induced <S> is not connected.
Let us consider S = S,uS, where 8, = {(u, v,, ..., 4™,
u,"™ ")}, Clearly the induced subgraphs <S> and <V-S>
are connected. Therefore, gy (K,.,) = |S| = n+1/2+2.

Theorem 3.3: For any path P, of order n=3, g,
(Kp) = ntl.

Proof: Let G,, G, be the two copies of G = P, in
Kip,. Consider U = {u, u,} be the vertex set of G,
V={v, v, ..., v} bethe vertex set of G, and W = {(uv,),
(uv,), ..., (uv )y (uv)), (uv,). .., (uv,)} are the vertices
of K,p Let S; = {(uwv)), (u,v,)} be the split geodetic set
and are the antipodal vertices in Kgp,. But the induced
subgraph <S> 1s not connected. Consider S = S,uS,
where 8, = {(uv,), (wv,), ..., (v} Clearly both
induced subgraphs <S> and <W-5> are connected.
Hence, |S|=2+n-1 =n+ 1. Tt follows that g,(K,z,) = nt].

Theorem 3.4: For any path P, of order n>2,
ng(PnPn) =Zn-1.

Proof: Let G|, G,, ..., G, be the n disjoint copies of P, in
PP, and W = {(uyv ), (uvy), ..., (uvy) (uv,), (uvs), ...,
(u,v,), ..., (ww,), (v,), ..., (uv)t is the vertices of
P.P.. Let 3, = {(uv,), (uv,)} be the geodetic set and are
the antipodal vertices of P, P,. But the induced
subgraph <S> is not connected. Consider 5 = SuS,,
where S, = {(uv)), (Uv)), ..., (uw), (Uyy), ., (uv, bV
(P.P.)-5,. It is known that the induced subgraphs <S> and
<W-S> are comnected. Hence, |3| 1s the doubly connected
geodetic set of P.P,. Tt follows that g, (P, P,) = [S| = 2n-1.

Results on strong product of two graphs

Definition 4.1: The strong product of graphs G, and G,,
denoted GG, has vertex set V(G))*xV(G,) where two
distinct vertices (x,, y,) and (x,, y,) are adjacent with
respect to the strong product if, x, = x; and yv,y,€E (G,) or
¥i = yp and x,x,€B(G) or xx,€B(G)) and y,y,cE(G,).

Theorem 4.2: Let P, and P, be the paths of order n,>2
and n,>3, then:

n,+n,if n,is even and n, <n,

gdc(Pnl PnZ) = {

n,+n,-lifn is odd and n, <n,

Proof: Consider G = P,®P,; be the graph formed
from n, copies of P,. Let V(P,) = {u,u, ..., u(n,) and
V(P,) = {vi, vy ..o, Viob, then |[V(G)| = nn,. We have the
following cases.

Case (i): Suppose n, is even and n<n,. We have two
subcases.

Subcase (i) : If n, n,, then S;= {(u,, v,, W, v, Wy, Vo, U,
v.2)} be the geodetic set of G. We observed that <S> is
not comected and <V(G)-S > 1s connected which is not a
doubly connected geodetic set of G. Consider S = S,uS,
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is the doubly connected geodetic set of G where:

un, um, um, !
S, =4, v,), (u,v, -1, =, — L =,
2 {{( 2 2)(2 ny ) [2 2 } [ 2 ny 2}

[“I;H, ”;11} ( LY, 2} (unl—l,v2),(unl—l,vn2—l)}

[2e35){20nt)

Thus, it follows that:
g. (P, B _)=[5=n,+n,

Subcase (ii): If n,

Sl = {(ul, V1)= (unl’vl)’ (unl’vﬂz )’ (ul’vnz )}

Be the geodetic set of G. We observed that <S>
18 not comnected and <V(G)-S>> 1s connected. Consider
S = S,u8, is the doubly connected geodetic set G where:

=1,, then:

Sz = {{(uza Vz)’ (113, VB)’ '”’(unl-l ’ vr‘ll )} -

(3070, ) (02}

——

Clearly:
84 (Pnl P, ): S| = [ 8y H3; |= 4+ny4m,-4 = 1,4,

Case (ii):
subcases.

Suppose n, is odd and n,<n,. We have two

Subcase (i): If n,<n,, then:
8= {(uy, v}, (unlavl)a(unla 112) (ulavnz)}

Be the geodetic set of G. We observed that <S> 1s
not connected and <V(G3)-3,>> is connected which is not a
doubly connected geodetic set of G. Consider S = S,u5,
1s the doubly commected geodetic set of G where:

1 1
s, - H(uz,vz ) (v, ) s {%%}
u, +1 1
[ ‘2 ,vn2+1_n12+ }___,{(unl-l,vz),(unl-l,,vnz-l)}}

{{ unl : n1+l J}}
- ’VnZ-
2 2

Thus, it follows that:

2. (P, P.,) =[S|=[8,US, [ =n,1n,-]

mTng

Subcase (ii): If n, = n,, then:

5, = {(upvl), (unl,vl),(unl,vn ) (“1:‘%2 )}

Be the geodetic set of G. We observed that <S> 1s
not connected and and <V{((G)-3,> is connected. Consider
S = S,uS, 1s the doubly connected geodetic set G where:

Clearly:

8 (P Poy ) = IS/ =1 8,8

fyp g

= 4+n, n s

, 1= =n,+n,

Theorem 4.3: For the cycle C, of order n = 4:

n+2 ifnis even
n+3 if nis odd

8o (K Cpl = {

Proof: Let G be the strong product of K, C,with C = 4.
Consider K;: u, u, and C: v, v,, ...
K,, C,, respectively. V.(KC) = {(uy ), (uy) ..

), (0pvy), ..o, (v, )}

v, be the vertices of

(uy )

= 2n, we have the following cases.

Case (i): Suppose n is even cycle. Let S, = {(uv,),
(u,™ N, (1, v,), (W™} be the geodetic set of K, C,.
We observed that the induced subgraphs <S> and
<V (3)-8"> are not comnected. Censider S = S,uS,, where:

S, = {(ulvz), {ul "“7} (U, v,), {u"“?} c V(G)S,

Forms a doubly connected geodetic set of G with
minimum cardinality. Tt implies that both induced
subgraphs <S> and <V (G)-3> are comected. Hence, it
follows that g (K, C,) = 5] =|S,+5,| = ¢+n/2-14n/2-1 =n+2.

Case (ii): Suppose n 18 odd cycle. Let 3, = {(u, v,), (u,,
vntl/2), (™), (u, v1), (U2 ™), (™ be the
geodetic set of K, C,. But the mduced subgraphs <S>
and <V (G)-3,> are not connected. Consider S = S,US,,
where:
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v, +1 v, +1
s, ={(u1v2 ), ...,(ul, 5 —1], (ul,zﬂ}

(u,.v, ),[u2 Vn;l _1} C V{G)-5,

Forms a doubly connected geodetic set of G with
minimum cardinality. It mmplies that both induced
subgraphs <S> and <V (G)-3> are connected. Clearly:

n+l _n+l
gdc(KZCn):|S|:‘Sl+SZ‘:6+ 2 _2 2

-2=n+3

Results on join of two graphs
Definition 5.1: The join of two graphs G and H, denoted
by G+H, is the graph with:

V (G+H) =V{G)w V(H) and E(G+H)=

E(G)E(H)U{uv:iue V{G) andve V(H)}
Theorem 5.1: If Fay and ™. be the paths then:

gd: (Pnl +Pn1 ) = {(n2+3)/2
Proof: Let *n, and Fn: be the paths, then:
G=P, +P,_and V (G) =n,+n,

We have following cases.
Case (i): Suppose n, = 2 and n,>3, nyis odd. Consider:

Pn1 - {ula uz} and Pn2 = {Vl, VZ""V[]}

If n; 18 odd, then the geodetic set S = {v,, v,, ... v}
contains n,+1/2 vertices. But the induced subgraph <S>
18 not connected. Consider:

8=8{u}={v.v,...v,,u}, foranyi=

1,2andw € P,

Be the doubly connected geodetic set of G, such that
mnduced subgraphs <S> and <V-3,> are connected.
Hence:

+
Hznz 3
2

n,+1

gdo{P, +B, J=[SUfu }=[S+1 =

Case (ii): Suppose n; = 2 and n;=3, n, is even.

Consider:

P ={u,u,fandP, = {v, v, ...v,|

If n, 18 even, then the geodetic set S = {v,, v;, ..., v,
v} contains n,/2+1 vertices. But the induced subgraph
<S> 1s not connected. Consider S, = Suful} = {v,, v, ...,
Vo Ve Uib, for any 1 = 1, 2 and ueP,, be the doubly
comected geodetic set of G, such that
subgraphs <S> and <V-3,> are connected. Hence:

v,

2

induced

n,+4

n
Zac (Pnl +Pn2)=‘s U{U1}|:|S‘+]=72+1+1:

Casge (iii): Suppose n, =3 and n, = 3, n, is odd. If:

= 1 = 1
P, ={u,u,u;} andP _={v,v,, ., v |

Then, the geodetic set S = {u,, u,} = 2 vertices. But
the induced subgraph <S> 13 not comnected. Consider
3, = Sufu,} be the doubly connected geodetic set of G
such that induced subgraphs <S> and <V(G)-3,> are
connected. Hence, S, = [Sufu}| = |S|H] = 241 = 3.
Therefore:

8Py 1R, ) =3

Case (iv): Suppose i, n,24, consider *n = {u,, u,, ..., u}
and Fn. = {v,, v,, ..., v,}, then the geodetic set S = {u,, u,,
Vi, Vot = 4 vertices, be the doubly connected geodetic set
of G. Clearly induced subgraphs <S> and <V-S> are
connected. Therefore, g, (B, P, ) =4

Theorem 5.3: Tf P, be the path of order m=>2 and C, be the
cycle of order n>4, then:

g, (P, +that O thevertex =
2 if o, (C_ ) <m, nis even
2

+
“71+1 if o, (C,) < m, nis odd

m if o, (C,)2m

Proof: If P, be the path of order m=2 and C, be the
cycle of order n=4, then V(P,+C,) = V(P HV(C,), where
V(P =4u,1, ...,u,} and V(C) = {v,,v,, ..., v,}. We have
following cases.

Case (I): Suppose C, 15 even and ¢ (C )<m, then
(P +C) = a,(C,) = n/2 by theorem 1.3. But the induced
subgraph <S> 1s not commected. Consider 3, = Su{u} for
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any i = 1, 2 and weP,, be the doubly connected geodetic
set of G such that the induced subgraphs <S> and
<V-S;> are connected. Hence, g, (P, +C, ) = n/2+1.

Case (ii): Suppose C, 15 odd and «,(C, )<m, then g
(P, +C,) = a,(C,) = nt+1/2 by theorem 1.3. But the induced
subgraph <S> 1s not comnected. Consider 5, = Su{u} for
anyi=1, 2 and ueP,, is a doubly connected geodetic set
of G. Clearly, the induced subgraphs <S,> and <V-S> are
connected. Hence, g, (P, +C,) = [Sufu}| = [S|+] =nt+1/2+1.

Case (iii): Consider the graphs with ¢,(C,) = m. We have
following subcases.

Subecase (i): Suppose P 1s even, then the geodetic set
S = fu, u;, .., u,, u.}t is not a doubly comected
geodetic set. Because the mduced subgraph <S> 18 not
connected. Consider S, = {u,, u,, ..., u,,. u,+ contains m
vertices such that both the induced subgraphs <S> and
<V-8;> are connected. Hence 3, is a doubly connected
geodetic set. Therefore g, (P.+C,) =m.

Subcase (ii): Suppose P, is odd, then the geodetic set
S={u,u, ..., 1} is not a doubly connected geodetic set.
Because the induced subgraph <S> is not connected.
Consider 3, = {uy, u,,... u} contains m vertices, clearly
both the induced subgraphs <S> and <V-5;> are
comnected. Hence, 3, 1s a doubly connected geodetic set.
Therefore, g, (P,+C,) = m.

Theorem 5.4: Let, G be a complete graph and H = K -e,
then g,.(G +H ) =g, (H ) =3.

Proof: {1 G=K H=K~<cand V(G+H ) = V(G)uV(H),
then the geodetic set g(G+H) = g(H )= 2. But the
induced subgraph <S> is not connected. Hence,
S is not a doubly connected geodetic set. Let us consider
S, = Suix} = 2+1 =3 = g, (H) where A(x) = n-1 and
xeV(G)UV(H ) be the doubly connected geodetic set.
Clearly both the mduced subgraphs <S> and <V-3>
are connected. Hence, g,(G+H ) =g, (H)=3.

Theorem 5.5: Let, G and H be a connected graphs of
order n and m, respectively, such that A(G) = n-1 and
A(H) = m-1, then g,,(G+H ) = mini{g(H), g(G)}+1 where
g(H) and g(G) are the geodetic sets of H and G,
respectively.

Proof: Let, acV(G) and be V(H) such that deg G(a) = A(G)
=n-1 and deg H(b) = A(H ) = m-1, then S = g(G+H) = min
{g(H ), g(G)}. Since, the induced subgraph <S> is not

connected. Consider, = Su{al or Su{b}. Clearly both the
induced subgraphs <S5,> and <V-S>> are connected.
Hence, g, (G+H) = mm{g(H), g(G)}+1.

Theorem 5.6: If C_ and C, be the cycles order n, m=4,
respectively and nzm, then:

if n is even

gdc(cn+cm) = m+3

ifnis odd

Proof: Suppose C, and C_ be the cycle of order n, m=4,
respectively and V(C +C_) = V(C )+V(C,), where V(C)) =
v, vy, ., vt and V(C) = {fu, u, .., u,}. Iifn>m, then, we
have following possibilities.

Case (i): Let, m 13 even, then the geodetic set S = g
(CHACL) = (C)=m/2 by theorem 1.3. But the induced
subgraph <S> is not connected. Hence, S is not a doubly
connected geodetic set. Consider 3, = Su{v} for any
I =1,2 ..nand veC_ Such that both the induced
subgraphs <S> and <V-5,> are connected. Hence, S, is a
doubly connected geodetic set, hence, |S,| = m+2/2.
Therefore, g, (C,+C,) = m+2/2.

Case (ii): Let, m is odd, then the geodetic set S = g
(CACI=0C,)=m+]1/2 by theorem 1.3. Butthe induced
subgraph <3 13 not connected. Hence, S 13 not a doubly
connected geodetic set. Consider S, = Suv, for any
i=1,2 .,n and v¢C, Clearly both the induced
subgraphs <S> and <V (C+C,)-S> are connected.
Hence, S, is a doubly connected geodetic set. Thus, g,

(CAHC) =15 = [Suv = (m+3)/2.
RESULTS AND DISCUSSION

Definition 6.1: The composition of two graphs G and H,
denoted by G[H] is the graph with V(G[H]) = V(G)*xV(H)
and (u,w,) is adjacent to (v,, v, ) if either uv,eE(G)
oru, =v,andu, v,eE (H ).

Theorem 6.2: Let, C, be the cycle of order n>4 and K, be
the complete graph of order n = 2, then:

n+2if nis even
n+2ifnis odd

e (Caliy]) = {

Proof: Suppose C, be the cycle of order n>4 and K, be
the Complete graph= V(C) = v vy, L v}, VK = {u,
u} and V(C,[K,]) = 2n, we have following cases.
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Case (i): C, is even cycle. Let S = {(u,v,), (W ), (0v),
(u,vn/2+1)} is a geodetic set for C,[K,] with minimum
cardinality but the imduced subgraphs <S> and <V-3=
are not comnected. Censider S = {(uv,), ..., ™,
(u,v,), ..., (™) with n-2 vertices, then S, = SuS be the
doubly connected geodetic set of C,[K,]. Here both
mnduced subgraphs <S> and <V-3;> are connected.
Hemnge, [S)| = | SuS’| = |SH{S’| = 44n-2 = n-2. Therefore, g,
(Co[K]) =nt2.

Case(ii: C, is odd cycle. Let S = {(uv), (™"
(0", (v, (™), (0™t = 2 glc,) = g(C[K,D.
But the induced subgraphs <S> and <V-5> are not
connected. Consider 8 = {(uv,), ..., (W™, (wyv,), ...,
(1,™")} with n—3 vertices, then S, = SuS be the doubly
connected geodetic set of C[K,]. Here both induced
subgraphs <S> and <V-S> are connected. Hence,
ISy = |SuS’| = |S|H8’] = 6tn-3 = nt3. Therefore,
g (CIK]) - 13,

Theorem 6.3: Let, P, and P be the paths of m, n>4 and
mz=n, then:

Proof: Let P, and P, be the paths of order o, m = 4 and V
(P,[P.]) =mn, where P,= {v, v, .., vt and P, = fu, u, ...,
u, }, we have the following cases.

Case (i): If P, and P_, are even path. Then the geodetic set
S = vy, (viug), o (V) (g, (V) e (Vs
(v,u,)} is the geodetic set with m+2 vertices but the
induced subgraph <S> is not connected.

Let §° = {(v;u)), (vou), ..., (v, u)} bethe set with
n-2 vertices, then S, = SuS” be the doubly connected
geodetic set. Clearly both the induced subgraphs <S>
and <V-S;> are commected. Hence, S, = [SUS’| = |S|HS’| =
m+2+n-2 = m+n. Hence, g,(P,[P,.) = m+n.

Case (ii): When P, and P, are odd path. Then S = {(v,u,),
(viuy), ., (v, (vu,), .., (vu)d is the geodetic set with
m+1 vertices but the mduced subgraph <S> is not
connected. Let §° = {(v,u,). (vsu), ... (v, u,)} be the set
with n-2 vertices then, S, = SuS’ be the doubly connected
geodetic set. Clearly both the induced subgraphs <S>
and <V -3,> are commected. Hence, S, = [SuS’| = |S[+HS7| =
m+1+n-2 = m+n-1. Hence, g, (P, [P.) = m+n-1.

CONCLUSION

In this study, we found the exact value of doubly
comnected geodetic number for join, composition,
Cartesian and strong product of two graphs.
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