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Abstract: This scientific study involves a comparative study of eighteen systematical technique that can be
used mn numbering the nodes of finite elements meshes mn the three dimensional analysis of structural elements
which have a rectangular section. The BandWidth (BW) equations of these techmques were derived by using
8-nodes linear brick element and the optimal technique, called as (SML, Small Medium Large) is selected
according to the mmimum BW. Besides, the general equations of computing the BW for 8, 20 and 32-nodes
brick element are derived depending on the SML technique. The research produces a simple optimal
systematical nodes numbering techmque that can be inderstood and used by engineers and researchers easily.
The optimal systematical technique SML avoids the computational effort required for reordering the coefficients
of matrix or renumbering the nodes which are usually used in traditional techniques. The study proves that the
numbering technique SML 1s efficient, applicable and easy to be implemented. The technique also reduces the
execution time to about 99% 1n some cases. For practical benefit, nodes mesh generation program for straight

beam or wall is prepared according to the numbering technique SMIL..
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INTRODUCTION

Recently, many structural three dimensional analysis
studies have been done utilizing the Fmite Element
Method (FEM) which represents a powerful tool to
analyze the structural elements (slabs, beams, columns,
walls, foundations, .., etc). These analyses always
produce a symmetric and well diagonal blocked “banded”
stiffness matrix which means that the non-zero terms have
been situated around the major diagonal. Generally, the
FEM produces a large linear system of:

[K]{d} = {F} M)

The [K] is a positive square symmetrical known as
N=N, stiffness matrix and it is extremely sparse. Tt has a
large number of zero coefficients in a typical picture due
to the absence of some nodes numbers locate between
the largest and smallest node nmumber within the element.
{d} 13 a vector of unknowns displacements of length N
while the vector {F} represents the forces which are the
known vector of length N, where N represents the total
nmumber of equations. Mathematically, it is preferable to
make reduction mn the size of [K] to avoid the urmecessary
operations with zero values during the subsequent
numerical calculations. This 1s achieved by limiting the
number of zero in order to minimize the memory space and
finally reduce the execution time. The execution time is

approximately proportional either to the cubic of N, if the
bandedness 1s not considered or to the square of the BW
when the bandedness 13 accounted (Quoc and O’Leary,
1984; Papadopoulos, 2005). The need to minimize the BW
of [K] of the finite element meshes becomes very
important in the nonlinear analysis where it is often
necessary to solve algebraic equations many times.
Almost commercial programs have a built-in nodes
numbering technmique. This technique 1s usually optional
where it requires more computational effort and time to
perform the minimization which performed either by
internally renumbering the nodes using one of algorithms
of direct schemes (in these schemes for output purposes,
the nodes numbering scheme defined in the mput data
used but internally the program uses the optimal nodes
numbering scheme) or by changing the profile of [K] in
some manners to reduce the BW by using one of
algorithms of iterative schemes.

Many research studies have been done previously
concerning minimizing the execution time of solving the
global matrix which can be classified mto two types:
iterative and direct schemes. All these studies are efficient
inreducing the BW of the global matrix and/or the profile.
The iterative algorithms (Always and Martin, 1965,
Rodrigues, 1975; Veldhorst, 1982) such as Jacobi,
gauss-seidel, conjugate gradient and steepest descent are
basically dependent on reordering the coefficients
of the matrix to minimize its BW by finding the
non-zero coefficients that cause the largest BW and then
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interchanging columns and rows in some manner that
leads to reduce the BW. This category requires
high speed storage and it 1s
efficient for large systems. While the direct schemes
(Gibbs et al, 1976; Sloan and Randoph, 1983;
Boutora et af., 2007, Wang and Shi, 2009) such as gauss
elimination, choleski and frontal are generally based on

substantial more

some consideration of theoretical graph concepts
including renumbering the nodes to reduce the BW of
matrix. The direct schemes are used for relatively small

systems  (N<10%)  (Papadopoulos, 2005). Many
bibliographies of renumbering algorithms are also
presented i reference (Everstine, 1979). Many

researchers illustrated the effects of nodes numbering
scheme on the BW of matrix, their examples focused on
structures of one and/or two direction (s) (Sloan and
Randolph, 1983; Wang and Shi, 2009; Hearn, 1997; Kaveh,
1995; Kress, 2014). Throughout the search for available
previous researches, the subject of nodes numbering and
its effect on the size and profile of [K] of structural
element in three dimensional analyses is rarely addressed
by the researchers, thus, this research 15 devoted for this

purpose.

MATERIALS AND METHODS

Systematical nodes numbering techniques: The
numbering scheme of the nodes plays an important role in
the size and shape of the profile of stiffness matrix [K].
Eighteen possible manners of systematical (regular) nodes
numbernng m three dimensional analysis of any traditional

structural element have a rectangular section presented in

thus study.

Table 1: The details of eighteen techniques by using 8-nodes brick elements

Techniques codes: To illustrate the manner of coding the
techniques as well as the effect of nodes numbering
technique on the BW of structural stiffness matrix,
consider the beam shown in Fig. 1. The &-nodes brick
element with three degree of freedom (dof) per node is
adopted. The finite element mesh 1s selected here to
consider beamn consisted of 24 elements, (NX*xNY xNZ)
where NX, NY and NZ represent the number of elements
indirection X, Y and 7, respectively. In the first technique
(LMS) as shown in Fig. 2a and in Table 1, the numbering
starts along the dimension that contamns the largest
here with the
direction +Z.), then moves gradually along the dimension

number of elements (it coincides

that has the medium number of elements (it comncides here
with the direction +Y) and finally the numbering moves
step by step along the dimension +X which has the
smallest number of elements (Note: after moving, the
numbering still m the same original direction of
numbering, 1.e., +Z-direction). Thus, this system 1s called
“LMS”. In other words, the first term always refers to the
general direction of numbering while the second and third
terms always refer to the first and second direction of
moving or transition, respectively but the name of each
term follows the number of elements in the corresponding
direction. The other seventeen techniques shown in
Fig. 2 had been coded according to the same manner.

Y re

V-

Fig. 1: A simple beam consists of 24 element

} L~ | L~

Technique Technique Main direction Directions of moving The general BW as
number code of numbering or transmission equation of (BW) calculated
1 LMS +Z, Fig. 2a +Y then+X (NZXNY+H2NZANY+4)y<dof 27x3=81
2 LSM +Z, Fig. 2b +X thentY (NZXNXA2NZANX+4y<dof 22%3 = 66
3 MLS +Y, Fig. 2¢ +7, then+X (N =*NZ+2NY+ N7+ dat 26x3=78
4 MSL +Y, Fig. 2d +¥ thern+7 (NT = NXA2NTHNK+4) < dot’ 183 =754
5 SLM +¥, Fig. 2e +7, then+Y (NX ANZA2NKNZ D= dat 20x3 =60
6 SML +X, Fig. 2f +Y thentZ (NXNY+2NXHNY+H)dof 17%3=51
7 LAMS +7, Fig. 2¢ +Y then+X (NZ>NY+3NZANY+3)xdof 30%3=90
8 LE8M +Z, Fig. 2h +X thentY (NZXNXA+3NZANX+3)<dof 25%3=75
9 M+LS +Y, Fig. 2i +7, then+X (NY =*NZ+AINT+NZ+ 3= dat 28%3=84
10 M=SL +Y, Fig. 2 +X thentZ (NY *NE+3NT+NK+3) <dof 20x3 =60
11 S+L.M +¥, Fig. 2k +7, then+Y (NXANZAINKNZ+ 3= dat 21x3=63
12 S+ML +X, Fig. 21 +Y thentZ (NX*NYHINXANY+3)=<dof 18x3 =54
13 LAMZS +7, Fig. 2m £Y then+X [(NZ+DNY+1)%2] % dof 4043 =120
14 LASEM +7, Fig. 2n +X thentY [(NZ+1)(NX+1)%2] % dof 30%3=90
15 M=LAS +Y, Fig. 20 +7, then+X [(NY+1)(NZ+1)x2]x dof 40x3=120
16 M=S+L +Y, Fig. 2p +X then+Z [(NY+1)(NK+1)x2] % dof 24x3=72
17 SHAM +X, Fig. 2q +7, then+Y [(NX+1)(NZ+1)x2] dof 30x3=90
18 SEMEL £X, Fig. 2r £Y thentZ [(NHD(NY 1) 2] % dof 24x3=72

The sign (+) in Table 1 and Fig. 2 refers to possibility of alternative direction of numbering or transmission according to the position of sign
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Fig. 2: Continue
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Fig. 2: Details of eighteen systematical nodes mumbering techniques presented m this study

The BW of each technique: The BW of [K] depends
directly on nodes numbering technique. The BW is
determined according to the maximum difference among
the nodes numbers connected by any one of the finite
elements multiplied by the number of dof per node. The
equations of BW for all techniques are derived and
written in Table 1 according to the following concept
(Segerlind, 1984; Fernando, 2015):

BW = (m[BWE]ﬂ)xdof (2)

where, BW”® represents the difference in nodes numbers
which 1s determmined by calculating the difference in nodes
numbers for each element of a finite element model while
dof represents the degree of freedom per each node as it
is mentioned previously.
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Fig. 3: a-¢) SML technique with 8, 20 and 32 nodes brick elements for straight beam of 24 element

Tt is important to note that the first six techniques
(LMS, LSM, MLS, MSL, SLM, SML) represent the
most regular techniques because the numbering and
translations always have one direction that coincides with
the positive direction of coordinates of axes as it is shown
in Fig. 2a-f, respectively. Moreover, these techniques
produce a uniform profile of [K] where all elements have
the same BW (Fig. 3 and 4).

Optimal systematical techmique: Obviously, the last
equation shows that the optimal techmque 15 one which
keeps the nodes numbers of each element as close as
possible. The results of all techniques are tabulated in the
last column of Table 1 for eight nodes brick elements as it
1s shown in this table and in Fig. 2f. The most suitable
(optimal) systematical techmique which produces the
mimmum BW 1s the SML techmque. In this technique, the
numbering has been done section by section. In each
section the numbering must be along the direction that
coincides with the dimension which contains the minimum
numbers of elements (1.e., smallest), then the numbering
moves step by step withun the section along the other
dimension that contains the medium number of elements
and finally moves to numbering another section along the
direction that coincides with the dimension which
containg the maximum numbers of elements (i.e., largest).

The general equation of BW according to the SML
technique: To avoid the direction of axis, one can

N = 60x3 = 180

BW =17x3=51

Fig. 4: Structural stiffness matrix according to SML
technique for straight beam of 24 element, the BW
for each element is equal to 51

transform the general equation of BW from terms of NX
and NY to N1 and N2. Thus, for 8-nodes linear brick
elements, the general equation of BW which 1s previously
derived can be expressed as:
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Fig. 5: Applications of SML technique in the structural members which have a rectangular section: a) Case 1: Straight
beam; b) Case 2: Arch; ¢) Case 3: Homrizontally curved beam; d) Case 4: Coloum; e) Case 5: Slab; f) Case 6: Footing

and g) Case 7: Wall
BW= (N,N,+2N +N,+4).dof 3

In the present example, 24 elements are shown in
Fig. 3a and 4. The BW is equal to 51 for all elements as it
is calculated by Eq. 3. In Fig. 4 for simplicity, the nodes
contributions are denoted as shaded squares while the
empty squares are denoted by zeros and each square in
this [K] diagram represents nine terms. The nodes
numbers might be used instead of the degree of freedom,
because this will not alter the conclusion in any way.
Some structural applications require using 20-nodes
quadratic brick elements or even 32-nodes cubic brick
elements. However, Fig. 3-b illustrates the present example
simulated by 20-nodes quadratic brick elements. The
general equation of BW is derived and expressed in Eq. 4.
The BW of [K] and each element is equal to 156. When
using 32-nodes cubic brick elements for present example,
as it is shown in Fig. 3-c, the BW of [K] and each element
will be equal to 261. The general equation of BW is
expressed in Eq. 5.

BW= (4NN, +6N,+3N,+7).dof C))

BW= (7N,N,+10N,+5N,+10).dof (5
Where:

N; = Number of elements in the direction of numbering
which must contain the smallest number of elements
according to SML technique

N, = Nnumber of elements in the first direction of
transmission that must contain the medium number
of elements according to SML technique

As the last three equations show, the BW of equations
according to the SML technique depends only on
numbers of elements in two directions, the direction of
numbering and the first direction of transmission. The BW
of equation does not depend on the number of elements
in the second direction of transmission N..

RESULTS AND DISCUSSION

Applications of SMIL technique in the structural
elements: The SML technique can be used for any three
dimensional member has rectangular section. In this article
seven structural members are presented. The number
of clements for each member is selected arbitrarily
(the convergence study must be done by the researcher
when he analyzes any member by increasing the number
of elements of the member until the results of the last
two successive meshes do not exceed 1% to achieve
accurate results (Al-Mutairee, 2008; Thevendran ef al.,
1999) but the arrangement of the cases in Table 2 and in
Fig. 5 was according to the ratio of Number of Elements in
the Smallest Section (NESS) to the Total Number of
Elements in the member (TNE). The reduction in the
execution time due to use of BW is computed according
to Eq. 6 and it is tabulated in the last column of Table 2.
The results of the seven investigated cases have proved
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Table 2: The details of the investigated cases using 8-nodes brick elements
Reduction in
NE Total BW (NESS/  execution
Case N N; N: 88 TNE nodes Egq. 3 N' TNE) (%) time (%)
2 3 4 6 M 60 51 180 25.00 7592
4 5 8 40 90 60 270 20.00 85.19
4 6 12 72 140 78 420 16.67 89.65
5 10 15 150 264 90 792 10.00 96.13
10 15 10 150 352 78 1056 06.67 98.36
5 20 10 200 378 69 1134 05.00 98.89
2 10 30 20 600 1023 114 3069 03.33 99.59
*The effect of restrained nodes is ignored in the calculation of N because it
is different in each case according to the application and type of support

[ N N S U N
[ SR FE IV ]

that SML technique has a very efficient effect on the
application of traditional structural elements, especially
when the ratio of (NESS/TNE) decreases, for example in
the last case, the reduction in time reach to 99.59% when
the user solved [K]y.0% 14 instead of [K 0 %5000-

BW Y
Reduction in exe. time % = 1_3{?] (6)

Mesh Generation Program of Straight Beam and Wall
(MGPSBW): In this study, a computer program
introduced according to SMIL. technique by using the
FORTRAN language to provide a simple way to users. In
this program, a seven input data which describe the
geometry of structure required to analysis must be
defined, these are:

. W = Width of beam or wall (mm) in X-direction
« D = Depth of beam or wall (mm) in Y-direction
¢ L = Length of beam or wall (mm) in Z-direction

o  NEIW = Number of elements in width

¢+ NEID = Number of elements in depth

¢« NEIL = Number of elements in length

+ K = Type of brick element selected as 1, 2, 3 for
8, 20, 32 nodes brick element, respectively

All these input data within line 11 (or eleven line) of
the program which contains the order PARAMETER.
After the user mputs the seven required data, he must
specify the filename which will contain the output data as
1t 15 shown m line 12 of the program within the order
OPEN. The mesh generation of straight beam can be used
for wall due to compatibility between them as it 1s shown
in Fig. 5. The directions of axes shown in Fig. 1 are
adopted n this program. For mput data shown in line 11,
the output will be as it is tabulated in Table 3 which
contains four celumns, the number of nodes and their
coordinates. The order FORMAT in the tail of the
program can be modified by the user according to the
compatible form required by some computer programs
such as ANSYS and ABAQUS.

Table 3: Output results of program MGPSBW, for straight beam consists
90 element as specified in the input data (line 11 in program)

Node number X Y Z

1 0 0 0

2 150 0 0

3 300 0 0

4 0 166.67 0

5 150 166.67 0

& 300 166.67 0

7 0 333.33 0

8 150 33333 0

9 300 333.33 0

10 0 500 0

11 150 500 0

12 300 500 0

13 0 0 333.33
14 150 Q0 333.33
15 300 0 333.33
16 0 166.67 333.33
17 150 166.67 333.33
18 300 166.67 333.33
19 0 333.33 333.33
20 150 33333 333.33
21 300 333.33 333.33
22 0 500 333.33
23 150 500 333.33
24 300 500 333.33
25 0 0 6660.67
26 150 0 666.67
27 300 0 6660.67
28 0 166.67 666.67
29 150 166.67 6660.67
30 300 166.67 666.67
31 0 333.33 6660.67
32 150 33333 666.67
33 300 333.33 6660.67
34 0 500 666.67
35 150 500 6660.67
36 300 500 666.67
37 0 0 1000
38 150 0 1000
39 300 0 1000
40 0 166.67 1000
41 150 166.67 1000
42 300 166.67 1000
43 0 33333 1000
44 150 33333 1000
45 300 333.33 1000
46 0 500 1000
47 150 500 1000
48 300 500 1000
49 0 0 1333.33
50 150 0 1333.33
51 300 0 133333
52 0 166.67 133333
53 150 166.67 133333
54 300 166.67 1333.33
55 0 333.33 1333.33
56 150 333.33 1333.33
57 300 33333 133333
58 0 500 133333
59 150 500 133333
60 300 500 1333.33
6l 0 0 1666.67
62 150 0 1666.67
a3 300 0 1666.67
64 0 166.67 1666.67
a5 150 166.67 1666.67
66 300 166.67 1666.67
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Table 3: Continue

Node of number X Y Z Node number X Y Z

67 0 33333 166667 134 150 0 366667
68 150 333.33 166667 135 300 0 366667
69 300 333.33 166667 136 0 166.67 366667
70 0 500 165667 137 150 166.67 366667
71 150 500 166667 138 300 166.67 366667
72 300 500 165667 139 0 333.33 366667
73 0 0 2000 140 150 333.33 366667
74 150 0 2000 141 300 333.33 366667
75 300 0 2000 142 0 500 366667
76 0 166.67 2000 143 150 500 366667
77 150 166.67 2000 144 300 500 366667
78 300 166.67 2000 145 0 0 4000
79 0 333.33 2000 146 150 0 4000
80 150 333.33 2000 147 300 0 4000
81 300 333 33 2000 148 0 166.67 4000
82 0 500 2000 149 150 166.67 4000
83 150 500 2000 150 300 166.67 4000
84 300 500 2000 151 0 333.33 4000
85 0 0 233333 152 150 333.33 4000
86 150 0 233333 153 300 333.33 4000
87 300 0 233333 154 0 500 4000
88 0 166.67 233333 155 150 500 4000
89 150 166.67 233333 156 300 500 4000
a0 300 166.67 B3R 157 0 0 433333
a1 0 333.33 233333 158 150 0 433333
o 150 333.33 233333 159 300 0 433333
93 300 333.33 233333 160 0 166.67 433333
94 0 500 31313 16l 150 166.67 433333
95 150 500 233333 162 300 166.67 433333
96 300 500 233333 163 0 333.33 433333
97 0 0 26667 164 150 333.33 433333
08 150 0 26667 165 300 333.33 433333
99 300 0 26667 166 0 500 433333
100 0 166.67 266667 167 150 500 433333
101 150 166.67 266667 168 300 500 433333
102 300 166.67 266667 169 0 0 466667
103 0 333.33 26667 170 150 0 466667
104 150 333.33 266667 171 300 0 466667
105 300 333.33 26667 172 0 166.67 466667
106 0 500 266667 173 150 166.67 466667
107 150 500 26667 174 300 166.67 466667
108 300 500 266667 175 0 333.33 466667
109 0 0 3000 176 150 333.33 466667
110 150 0 3000 177 300 333.33 466667
111 300 0 3000 178 0 500 466667
112 0 166.67 3000 179 150 500 466667
113 150 166.67 3000 180 300 500 466667
114 300 166.67 3000 181 0 0 5000
115 0 333.33 3000 182 150 0 5000
116 150 333.33 3000 183 300 0 5000
117 300 333.33 3000 184 0 166.67 5000
118 0 500 3000 185 150 166.67 5000
119 150 500 3000 186 300 166.67 5000
120 300 500 3000 187 0 333.33 5000
121 0 0 333333 188 150 333.33 5000
122 150 0 333333 189 300 333.33 5000
123 300 0 333333 190 0 500 5000
124 0 166.67 33333 191 150 500 5000
125 150 166.67 33333 192 300 500 5000
126 300 166.67 333333

3; ? 50 ggggg gggzgz Algorithm; Mesh Generation Program of Straight Beam
129 300 333.33 333333 and Wall MGPSBW):

130 0 500 333333

131 150 300 B o ToTar afa 0o ol o6l al 00 01 alol6 e a6 & 6l 0la a{al0: o1 oo olalelel 61 ol ala e al0re
}ii 300 300 gzéz-?_ COCCCCCCC CCC  MESH GENERATION PROGRAM FOR

STRAIGHT BEAM AND  CCC
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cce WALL OF RECTANGULAR SECTION CONSTRUCTED

THE  CCC

CCC  NODES AND THEIR COORDINATES ACCORDING TO THE
cce

cce SML TECHNIQUE BY §, 20 and 32 BRICK ELEMENT

cCe

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

CCOCCCCoC

PROGRAM MGPSEW

IMPLICIT REAL*S (A-H, O-Z)

INTEGER TE, TNON

REALL

PARAMETER (W = 300, D = 500, L = 5000, NEIW = 2, NEID = 3,

NEIL=15,K=1)

DIMENSION COORN (9000, 4)

OPEN (1, FILE = '$tBeam-90E-$N.80UT"

NES = NEIW*NEID

TE =NES*NEIL

NONS = (2#K-1)*(NEIW *NEID)+(K)* (NETWNEID +1

NONMS = (K-1)*(NEIW+1)*(NELD+1)

TNON = NEIL {NONS+NONMS)+NONS

cccece COORDINATE OF NODES cccece
I=0
IZ=0
DZ=0.0

DO 10NZ = 1, (NEIL*K+1)

StepZ = L/NEIL*K*1.0)

IF (NZ.EQ.1) StepZ = 0.0

DZ = D7Z+StepZ

KK=K

IF (K.EQ.2) THEN
IF ((INT(NZ/2.0*2) EQNZ) KK =1

ENDIF

IF (K.EQ.3) THEN

LZ=NZ-1Z*3

IF (INT(LZ/2.00*2)EQ.LZ) KK =1

IF (INT(LZ/3.0*3)EQ.LZ) KK =1

ENDIF
IY=0

DY =00

DO 20NY =1, (NEID*KK+1)

Step Y = DANEID*KK*1.0)

IF (NY.EQ.1) StepY = 0.0

DY =DY+StepY

KKK=K

IF (K.EQ.2) THEN

IF (INT(NY/2.0y*2).EQ.NY) KKK = 1
IF ((INT(NZ/2.0*2) EQ.NZ) KKK = 1

ENDIF

IF (K.EQ.3) THEN
IF ((INT(LZ/2.0)*2).EQ.LZ) KKK=1
IF ((INT(LZ/3.0)*3).EQ.LZ) KKK=1
LY =NYIV*3
IF ((INT(LY/2.0*2).EQ.LY) KKK =1
IF (INT(LY/3.0y*3).EQ.LY) KKK = 1

ENDIF

DX =0.0

DO 30NX =1, (NEIW*KKK+1)

StepX = W/NEIW*KKK*1.0)

IF (NX.EQ.1) StepX=0.0

DX =DX+StepX

LU =1I+1

COORN(LL) =11

COORN(L2) = DX

COORN(IL3) = DY

COORN(L4) =DZ

30 CONTINUE
IF (INT(NY/3.0*3) EQNY) IY =IY+1
20 CONTINUE

IF ((INT(NZ/3.0)%3).EQ.NZ) IZ =12+1

10 CONTINUE
DO 401=1, TNON
40 WRITE (1,50) I, COORN(I,2), COORN(,3), COORN(L4)
50 FORMAT (I5,3F12.2)
END

CONCLUSION

According to the scope of investigation, the
following points can be concluded: Among eighteen
systematical nodes numbering techniques, the SMIL
techmque represents the judiciously and optimal one
which always gives the minimum BW. Whenever the SMI,
technique is adopted, the general equation of BW (for 8,
20 and 32 node) depends directly on the number of
elements in the smallest section rather than on the number
of elements in the largest direction (i.e., the number of
elements in the smallest section control the value of BW).
According to the SML techmque, the researcher can
increase the number of elements in the case study without
changmg the size of BW by increasing the number of
elements in the largest direction (N3) but the aspect ratio
must be taken into account. The reduction in the
execution time mcreases with the decreasing ratio of
(NESS/TNE) and it reaches to about 99%. The SMIL
technique enables the users to know the size of all
matrices before the construction of the global stiffness
matrix. This
components and in turns reduces the requirements of
associated memory. The mesh generation program is easy
to be constructed according to the SML technique. The
SMIL technique saves the time which required in

produces compacted storage of its

traditional techniques for renumbering the nodes or
rearranging the coefficients of the stiffness matrix. The
SML technique preduces a uniform profile of stiffness
matrix where all elements have the same BW. The
presented program (MGPSBW) is very efficient; it
provides the numbers and coordinates of nodes for
straight beam or wall. Tt facilitates the job of researchers
and saves their time. The required time to mput data 1s
about fourteen seconds while the rurming time is less
than one second.
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