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Mechanical and Temperature Stress Composite Material Pipes with Finite Length
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Abstract: The stress and strain condition of a multi-layer hollow cylinder of limited length under the effect of
mternal pressure and heat 15 confirmed on the basis of the classical theory of amsotropic body elasticity. The
kinematic and static conditions of contact coordinating surfaces of neighboring layers are supposed ideal. By
using a multi-layered nearby based on the theory of the layered composites, the solutions of temperature,
displacements and mechanical thermal stresses in a functionally stepped circular hollow cylinder are obtainable
1n this research. The cylinder has fimite length and 1s yielded to to axisymmetric mechanical and thermal loads.
The values of the internal pressure and temperature vary sinusoid ally laterally the length of the cylinder. The
results showed that, the increase in temperature on the outer surface of the composite pipe has a significant
effect on its stress state. The maximum normal stresses in the longitudinal direction in the outer layer of
duralumin increased by 59% with an increase in temperature of only 30 K and 57% in bearing layer of fiberglass.
When analyzing the changes of normal stresses in the circumferential direction of the cylinder temperature rise

30 K marked decrease in these stresses of 6% in the outer layer and 2% m the carrier layer.
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INTRODUCTION

Composite materials are still found mn limited use,
primearily in the high performance mdustries (automotive,
aeronautical and marine) (Dasgupta and Huang, 1997
Tain and Mai, 1997, Tucker et ai., 2001). This is dueto a
lack of knowledge and full understanding of the
mechamsms governing composite materials. This 1s
extremely true when dealing with thick composite parts as
the majority of applications of composite materials are
with thin laminates (and hence, the majority of analysis 1s
centered on this).

In metallic structures, increases in thickness do not
generally possess any serious implications, apart from
part cost. In contrast, the increase in thickness of
composite parts has serious implications which need to be
considered. To compound this, these effects do not
account for by the traditional methods of analysis for
anisotropic materials.

Traditionally, composite analysis techmques tend to
be based on the assumption of plane stress and are
therefore only applicable to thin laminates. Possibly the
most well-known of these techniques is Classical
Lamination Plate Theory (CLPT) (Herakovich, 1997).
Many researches have been approved out for thermo
elastic problems of functionally arranged constructions
(Obata and Noda, 1994; Tamigawa, 1999, Ootac and

Tanigawa, 2000; Kim and Noda, 2002a, b). Kim and Noda
(2002} studied the one-dimensional steady thermal
stresses m a functionally arranged circular hollow cylinder
and hollow sphere by using a agitation method. By
introducing the theory of laminated composites but work
(Tabbari et al., 2002) treated the three, three-dimensional
passing thermal loading of functionally coordinated
rectangular plates caused by partial heating was studied.
Piezoelectric thermoelastic problems of piezoelectric plates
and functionally prepared rectangular plates have been
analyzed (Jabbari et al., 2003).

In this research we considered the steady
thermoelasticity of a circular hollow cylinder with a
finite functional configuration. The mechamcal and
thermomechanical loads spend on the cylinder are
axisymmetric in the structural orientation and different in
the axial orientation. Tn order to take out analytical
solutions for temperature, displacement and stress for the
two-dimensional thermoelastic problem, the cylinder
should contain of n workable layers i the radial
direction.

MATERITALS AND METHODS
Basic equations: When the circular hollow loaded is

mounted on a cylndrical surface 1 = 1, and r = g
stationary temperature leads t, (z) and t, (z) and uniformly
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Fig. 1: Multilayer circular hollow cylinder of fimte length

deal out lengthways the circumferential coordinate efforts
g, (z) and q, (z). Directions of the axes of the cylindrical
system coordinates are show mn Fig. 1.

The stresses that arise in point of the cylinder
undera the an act of an external load Fig. 1b. Tt is believed
that the thermal load is specified in the personal
cylindrical with respect to axisymmetric
pressure the longitudinal axis of the cylinder. But their
magnitude varies along meridian and based on the
coordinate z. Moreover, the length of the cylinder is
mfinite 1 and it had free end bearing conditions. As
well as in solving the problem effect of slip cylinder
layers for each other in the longitudinal direction can be
considered.

Based on the theory of anisotropic elastic body
(Lekhmtskyy, 1977) equilibrium equations, physical and
geometric relationships were drawn in order to solve this
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Geometric equations: With a cylindrical coordinate
systemr, 8, zand specifying the direction of the x-axis,
measured at an angle 8 Fig. 1a, the following physical
relationships i-the can be written for the contrast of the
cylinder layer derived from layer:

fel=[B].{a}+{a.ad (i=12...8)

Where:
o, £ o At
o e, o, At
i_ |9 & i al At
ot et o=
, a 0
Tire Vi 0

Matrix columns stress-strain state with thermal
strains and the coefficient matrix vielding [&]
respectively. Here, [ELE.E;] are the moduli of
elasticity [G%.%%. %] in the radial, circumferential and
longitudinal directions, shear moduli in the planes
(6.5 o] | respectively, [ (v i=782)] Poisson’s ratios,
[¢ {i=r.6.7)] -coefficient of Linear thermal amplification in
cylindrical axis directions, [At] temperature change on the
front surface of the cylinder, N-number of layers of the
cylinder. Solving equation system 1, it i1s siumple to
detection the following physical relationships:

forf=[a fej-{ o at) @
Where:
7a111 a, a;, 0 0 0 |
0 a, a, 0 0 0
[Ai } 00 ? 0 0
0 0 0 a, 0 0
0 0 0 0 a, 0
0 0 0 0 0 a)

i i i i b
(ot11 +0o, + otlj)ar At

i i i i
(a21 + 0, + OLZE)OLBAt

[Oiir At:| = (ai:sl + 0‘Li:sz + 0(,133)0;; At

Here are the coefficients of the stiffness matrix [A']
determined by the expressions:
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Geometric relations:

p_du i louy u ; du

g €, R
ar radd T 0z

Yiaz - %+18u‘z 'rz = du, +%, (3)
dz 1 09 o oz

v _du duy U (i=1,2,...N)

0 or T

where, u},u,u} move in the radial, circumferential and
longitudinal direction of the T-the layer orthotropic
cylinder (r{r{r.,), respectively.

The problem in the preparation of the axisymmetric
about the axis z, v} displacement does not change n the
peripheral direction. Therefore, the Eq. 3 can be rewritten
as follows:

N PR R
& = €= € = Yo =0
or r oz (4)
R VU T u!
i A SV —— 1:1:2: __,N

Equilibrium equations: When formulating a two-
dimensional axisymmetric equation of equilibrium problem
the traditional theory of anomaly elasticity (Tucker et al.,
2001) takes viewers:

aq+£+dr_dezoj aﬁz+aclz +£:0 (5)
o dz T a0z T

Complemented third heat equation by two equilibrium

Eq &
2 2
[G—+1E+B—Jt‘ =0 (6)

In order to solve this item for a system self-
possessed of three partial differential Eq. 5 and 6, we
should set the boundary conditions at the ends and front
surfaces cylinder and the conditions of contact for join
surfaces neigsdfhboring layers.

Boundary conditions: Tn the face of the end cylinder:

wi(r, 0)=0, &.(r,0) =1, (r,0) =0,

u (r,1)=0, o,r,)=1,(r 1)=0,

o, (1, 2)=q,(2), 1,(1r,, 2) =0, (7)
ol (t,, z)=q, (), To(r,, 2)=0,

tir, O=t'(r, D=0 (=12 ..,N),

t'(r, 2)=t,(z), t" (s, z) =1,(2)

On the join surfaces of neighboring layers:

0, (1, 2) = 0.(x, 2), T.' (5, 2) = T, (1. 2u,'(1, 2) =
U (5,2, v (1, 20, (1. 2) =K1, (1, 2t (1, 2 = (§)

1-1 1
M. 2) 5 2 4

ti ) , 7\‘1—1
@ 2) ar ar

In the final Eq. 8 factor A; corresponds to a factor
thermal accessibility of th e i-th layer. Equation 8 holds
two options: the 1/K(i) = 0 is elastic slip neighboring
layers each proportion of each other along intermarry
surfaces while k-Commurnication perfection

The dimensionless parameters: To simplify data input
and synthesis numerical results, following (Herakovich,
1997), enter the next dimensionless quantities:

R=_,R,==R,=2=1 7=2,
L, L, L, L,
1 A
L:f,A;d:akla T, = i ,
I, E, oE,
tl )\dl 1 1
T oo A=t U Ulo—t2
t, Ao Ao Er, aBr (©)
o ;o o
So——r g i g e
aEt, o Et, o Et,
i T, q,(z) 9,(2)
U, =—2—,Q,(z)=—" . Z)= .
" T GEL Q.(z) @Bt Qy(2) WKL
t,(z t,(z
T -2, 1, -0

where, E,, A, and -modulus of elasticity, thermal
conductivity and coefficient of thermal linear amplification
of the reference material, t;-indication temperature of the
cylinder.
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Equations of the boundary condition: Compensating Eq. 4
and 5 as well as given the dimensionless parameters
mtroduced above, we can get:

[ 2 i 2
Ay a—z+ii 7A_222+A55 0 U+
L JR” ROR R a7’

e P e a2 | e eT
(A13+A55)M+(A13'Aza)£} U, :Frﬁ

(A ), ) }UH (10

I R T
Al Al = —
{ [BRZ } B oz’ ﬂ T o7
2 2
R N o
aR2 R 3R a7}

The boundary Eq. 7 and 8 recorded using
dimensionless parameters Fg. 9 takes the form: At the
ends of the cylinder faces:

U'(R,0)=0, S/(R,)=TU' (R, 0)=0
UNR,0)=0, S(R,1)=TU_(R,1)=0
S(R,,z)=Q,(z), TUL(R_,z)=0
8/(R,, 2)=Q,{z), TUL(R,, 2)=0
TR,0)=T(R,1)=0(i=12,. . N),
TR,, 2)=T,(2), T(R,,z)=T,(z)

(1

On the overlapping surfaces of adjacent laers:

SR, 7)= SR, ), TU (R, z) =

TU (R, z), U"(R, 2 =ULR,, 2),

UL(R,, 2-UL(R,, 2)= K. TU(R,, 2)

aT (R, 7) _
aR

(12)
TR, 2)=T'(R,z), A~
AT R, 2)

i=1,2,..N
R (i )

Algorithm solves boundary value problems: Solution of
the boundary Eq. 10-12 towards the longitudinal axis
cylinder found in the procedure of trigonometric
sequence:

ULR, Z) = ¥ @\ (R).sin(B7)
U'R, Z) = YW (R).cos(BZ) (13)

Ti(R, Z)= Y E(R). sin(Bz)

where, p = nuX,/I. Eq. 13 satisfy the circumstances of
allowed backup at the ends of the cylinder. To
compensate Eq. 13 by Eq. 10, we get the following:

fd o1 d
All 2 Izt 2
dR* RdR | R

{(AHA;S) B§+(A;3-Aza)§} W(R) =

SSBZ} @ (R)+

i dT;(R) i i d i i B
I dr |:(A13+A55)B£+(A23'A55)E} (14)

; L d? 1d -
®n(R)+{{A55[ClR2+Rd.R}+ABBB }}

‘PL(R)—FiF;(R)H d 1 d} BZ}FA(R)—O

dR* RdR

A sumilar scheme and boundary conditions are
converted Eq. 11 and 12. At the end and faces of the
cylinder:

2, 00y B g w ) =a,

Afl d(bgf({Rb) A}, (bfdg{a) =0A INI d(Dgf({Rb) “ns)
an P B, =, BEIR,)

d‘{’n (Rb)

™ =0,FR)=T,, E'(R,)=T,

On the mtermarry surfaces of neighboring layers:

o' ®)
dR
i-1 i
A d(IDz]IiR )
a¥ R
dR

@1 I(Rl

A1111 +A1 -1 ) BAI 1\{;1 I(Ri) -

@1 1(R1

+A], ) BALY (RHBE(R) +

— 3% (R d‘PL(R‘)
=P, (R R

L@, (R)=0(R)
ORI (REY— ri (R
BRI LR K{B‘bn(R e }

di(R) | dER)
dR dR

F;J-I(Rl) :E-I(Rl), Al-l

Where:

Q= omsneniz,q, - i{Qb@)sm(BZ)%@

h\_-

T, = 'DI.LT (Zysin{Pzydz, T, Lllz‘!-L (Z)sin(Bz)d7.
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It is believed to function in the radial direction

@R, LR, E®)  continuous with respect to the
thickness of the i1-th layer, then using the Taylor series

they can be written as:

@Ry = Y CLRDF, W (R)=
= (17)

Y BL(R-1)", E(R) =Y Di(R-1)*

k=0 k=0

Substituting  Eq.
coefficients (R-1)F
following Eq. 18:

17 inte Eq. 15 and equally
to zero, we can simply get the

2 A
L(k+1)B,, P A (1)

k+1 i

i 1 A
Bes Tyt Al +a i A
( )( ) BA13+A55 e _BA55'A23 e Flr D
i e+l 1 k il
Ass A A

D, :m[-(kﬂ)nmﬁz ]
(18)
From the recurrence Hq. 18, it follows that all
the coefficients ), B, and D, can be expressed
through C', ', B, B, D\, D\, when k=1. Then
the system of Eg. 15 can be written in compact

form:

; =) gy (k, DC gk, 2+gik, 3B+ k
wn(R)_Z{ 1h i bl 1‘tl 1 1 ( -1) °
0| gy (k, B+, (k5D + g, (k, 6)D),

; o) gl DT +g (K, 2rg (k, 3)B, + .
an(R):Z i 1 1 i i i ( _1) *
| g (k, B gLk, 5)D +g. (k. 6) D)

. = | ok 1O+l (k, 23+¢' (k, 3B +
l::(R)_Z{gld( DUk, 2k, DB, J( I
i g\ (k, HB +gLk, 5)D +g. (k, 6)D;

(19
where, & (k0).g(k ek constants determined using the
recurrence Eq. 19. Unknown constants C,, C', By, B, D',
the number of which is determined by the number of
discrete words cylinder N are found by substituting Eq. 19
into the boundary Eq. 15 and 16. Obtained with the linear
algebraic system of equations contains 6N umdentified
constants.

After decisive the value of the Eq. 19 and
substituting them into the specific solutions Eq. 13, 1t 1s
easy with the help of geometrical and physical relations
presented above to solve the problem of the value of
flexible thermal limits.

RESULTS AND DISCUSSION

Geometric parameters of multilayer circular hollow
cylinderr,= 0.148 m, r, = 0.18 m and 1 = 1 m. The reference
temperature, modulus of elasticity and coefficient equal
to: T, = 50 K, E, = 40 GPa and a, = 7.0-10°K"". Thermal
stress on the inside and the outer surface and internal and
external pressure are defined as follows where:

T,(z)=0, T,(z)= AT.sin[nlzJ

qa<z>—qu.sin[”f} q,(z)=0

q0 =50 MPa, AT =50K;,80 K

The cylinder consists of 4 layers: A solid high
density polyethylene pressure (h = 4 mm) E = 260 MPa,
A=04, ¢=044W/mK, o =2010"K"; Fiberglass (h =20
mm), A=04WmK, ¢=4-7-10°K"; Penovinilplast (h =
4mm)E=83MPa,v=033,A=04WmK, a=1510"K",
Duralumin (h=4mm)E = 71GPa, v = 0.31, A=160 W/m-K,
o = 2.310°K". For the first-fourth layers made of a
resilient isotropic material, the following relations:

G =
2(1+v)

Flexible properties were 1dentified in the fiberglass
method (Dasgupta and Huang, 1997). The modulus of
elasticityof Ep, modulus of rigidity G, and Poisson’s ratio
v wound bars, recruited from aluminoboro silicate yams,
Eg = 55.000 MPa, Gp = 22000 MPa and vy = 0.25. The
template fiberglass epoxy resin was used with the
following elastic parameters: Ep = 3550 MPa, Gy =1270
MPa and v, = 0.4.

B Each 0.25 mm thick monolayer volume engaged
ribbons (70%) of the whole volume. Technical keep under
review the multilayer fiberglass is summarized in Table 1.
Analysis of theoretical results can be observed in
Fig. 2-12, the following can be seen: the maximum normal
stresses m the longitudinal direction Fig. 8 m the outer
layer of duralumin mcreased by 59% with an mncrease in

Table 1: Elastic characteristics f fiberglass

Reinforcerment

arrangement E (MPa) G (MPa) Vi Vy

[0°4/-75°/0°,-75°/ E,=23800 Gy, = 23800 G;p=23800 Ve =23800

TSONP-TR/0°,  FEp=33500 G, =33500 G, =33500 V,=23800
E,=23870 Gg=23870 Gy =23870 V= 23800
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Fig. 2. The temperature distribution in the cylinder
(AT =80°K)
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Fig. 3: Distribution of radial displacements m the cylinder (g,
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temperature of only 30 °K and 57% in bearing layer of
fiberglass. When eanalyzing the changes of normal
stresses 1 the circumferential direction of the cylinder
(Fig. 9) temperature rise 30 °K marked decrease in
these stresses of 6% in the outer layer and 2% in the
carrier layer. In this, thermal stress has little effect on the
value of maximum pressure values for the region. Figures
11 and 12 show that, the transverse shift slightly depends
on the magnitude of the thermal load but as known, even
small stresses 1n the presence of the cross shear
compressed or stretched transversal stresses. Figure 5
can cause delamination of the multilayer shell
consideration.

(b)

0.176

00 0162

= 50 MPa): a) AT = 80 °K and b) AT = 50 °K

Fig. 4: Distribution of longitudinal displacements in the cylinder (q, = 50 MPa): a) AT = 80 °K and b) AT = 50 °K
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Fig. 5: Distribution of radiation stresses inside the cylinder (g, = 50 MPa, AT =80 °K)
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Fig. 6: Distribution of radial stresses inside the cylinder (g, = 0 MPa): a) AT = 80 °K and b) AT = 50 °K
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Fig. 8: Apportionment of axial stresses inside the cylinder (g, = 0 MPa): a) AT = 80 °K; b) AT = 50 °K
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Fig. 11: Distribution of transverse shear stresses in cylinder (g, = 50 MPa): a) AT =80 °K and b) AT = 50 °K
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Fig. 12: Distribution of transverse shear stresses in cylinder (q, = 0 MPa). a) AT = 80 °K and b) AT = 50 °K
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CONCLUSION

This study based on the discrete-structural theory,
presents a study of stress-strain state of multilayered
membranes under the impact of both static and thermal
load, when taking into calculation the actual conditions
and the amount of nteraction between layers varnation of
contact stresses at the interlayer boundaries. A proposed
algorithm to solve a class of problems considered here
with estimations to assess the effect of physical and the
mechamcal characteristics of the mdividual layers on the
thermo flexible strain state of inhomogeneous thickness
of cylinders.
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