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Manipulation of Tools by Means of a Robotic Arm Using Artificial Intelligence

M. Paula Catalina Useche, Ruben D. Hernandez Beleno and Robinson Jimenez Moreno
Facultad de Ingenieria, Universidad Militar Nueva Granada, Bogota, Colombia

Abstract: The following study presents the development of an algorithm of recognition, grip detection and
trajectory planning for a robot of three degrees of freedom where objects are recognized by Convolutional
Newral Networks (CNN) and gripping detection by geometric analysis of the object. The algorithm works on
a non-controlled environment where it receives the images through a webcam, segments all the objects that are
found in them, classifies them into one of three categories of tools (scalpel, scissors, screwdriver) trained on
the CNN and searches for the tool desired by the user on which a feasible gripping point is selected and a path
1s executed that allows the mampulator to take the found object and move it to another point. Finally, functional
tests are presented for the trained categories and the results are analyzed to determine grip accuracy in the real

environment.
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INTRODUCTION

Nowadays, mampulator robots have been able to
imitate human movement for the execution of different
types of tasks whether repetitive, dangerous or high
precision which in turn often require specialized systems
for the execution of these tasks, however in spite of their
high working capacities, these robots must be able to
interact with their surroundings when it is not structured
and for this it is necessary to imitate in the same way, the
visual capacities of the human bemng as proposed by
Pardo (2009).

To try to unitate the sense of sight, the robot must
have the ability to differentiate and identify objects withun
its environment which involves performing processes of
segmentation of images and individual detection of
elements as mentioned (Pardo, 2009; Gil et al., 2004), so
that, the robot can select the desired object and execute
a sequence of movements to mteract with it This
sequence 1s known as the trajectory of the manipulator
which seeks to control the position and orientation of the
object held either with a robot arm or with two as
presented by Garvin et al. (1997).

The process of segmentation of objects 13 done
by capturing an image of the environment where, either
based on the RGB and HSV color information of the
objects with respect to the environment as proposed by
Gil et al. (2004) or by the contours of the elements as
presented by Xu et al (2007), it is a matter of
differentiating each object from the background or the
surface that supports it. For the case discussed by

Stander et al. (1999), an additional phase is added to the
segmentation process to reduce the influence of shadows
1n the detection of objects in order to avoid generating a
wrong classification of a moving object and by
Leibe et al. (2008) representations of previously learned
object shapes are used with a probabilistic extension of
the generalized hough transformation n conjunction with
the segmentation in order to increase the probability of
detection of the objects.

After solving the problem of segmentation, all objects
found m the resaerch area must be recognized, so that, the
mamipulator 15 able to find the element on which to
perform the action. Facedwith this problem, work has
been carried out by Liang and Hu (2015), Yao and
Miller (2015) with convolutional neural networks
(Krizhevsky et al., 2012) to detect different types of
objects using large databases of images for the training of
networks. On the other hand by Young ez al. (1997) a
multilayer Hopfield neural network 1s used (Adler ef af .,
2017) where each layer learns a particular feature of the
object and all together make the classification. While by
Guevara et al. (2008), Haar cascade classifiers are used for
the detection of faces and by Fergus et af. (2003) object
recogmtion 18 done from disordered and non-segmented
images where the detector must learn the invariant
features of the image that do not depend on a scale
factor such as shapes or geometries of parts of the
lumage.

By Malpartida (2003), a particular case of an object
recognition and manipulation algorithm is presented
with a SCORBOT ER-mamipulator where the processes
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described above are developed to allow the manipulator
to take a particular object such as a nut and move 1t from
one point to another.

A tool recognition and grip algorithm 1s presented
where it is used an object recognition method by means
of convolutional neural networks and segmentation and
geometric analysis techniques for calculating the grip
based on the friction surface between the end effector and
the element and the shortest possible gripping distance
with respect to the centroid of the tool. Trajectory
planming was performed at each pomt of the run for a
manipulator of three degrees of freedom and tests were
performed with several tools to verify the accuracy of the
robotin the actual grip.

The algorithm developed offers a solution to the
problem of detecting and gripping objects m an
unsupervised environment where no element is identified
by some type of marker, nor do they have mn common
basic geometnes whose grip can be generalized m families
of objects which makes the recognition of each element
and the calculation of the grip umque for each of the
detected tools and allows it to be used in an application
with any type of object that has been previously tramed
in the convolutional neural network.

This study is divided as follows: first, the structure of
the algorithm is presented, explaimng the architecture
and the basic operation of the algorithm, subsequently, it
15 analyzed the tests where the code i1s run for an
non-controlled environment in order to observe the
degree of accuracy m the grip, then the results are
presented and analyzed and finally the conclusions.

MATERIALS AND METHODS

Algorithm structure: The developed algorithm allows to
recognize a certain tool and transfer it from one point to
another using a manipulator of three degrees of freedom.
Segmentation and bmarization techniques are used for the
detection of each tool located in the work area and for the
calculation of the position and mclination required in the
gripper to make the final grip on the tool. Tt is used
convolutional neural networks for the recognition of each
of the tools, and trajectory plamming for the control of the
manipulator in the whole route.

The algorithm was divided into a series of successive
steps that give as final result the position in millimeters
and rotation in degrees of the gripper of the manipulator,
to do the physical grip of the object selected by the user.
Next, the five steps that make up the algorithm and their
respective tasks are presented.
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Fig. 1: Grayscale test image

Step 1; Tool segmentation: In the first place, the algorithm
determines the quantity and location of each object in the
work area to later identify each one. This first step is
performed on a clear surface of a single hue, following the
procedure described by Guacaneme (2012) where the
surface average is obtained, subtracted with the original
image and the result is binarized to perform the detection
of each element.

On the grayscale image, each of the elements of the
worl area is segmented, defining as the background
of the image all that soft change that presents the
surface of the same and defining as object or tool all
the sudden changes on said surface. As seen in
Fig. 1 and 2, the surface on which the tools are located 1s
of a single hue, while each element is of a darker color and
generates a sudden change with respect to the
background, causing peaks of intensity as shown in
Fig. 2.

In Fig. 2b, the mtensity changes of the input image
are plotted in a three-dimensional form where each
intensity change represents a change in the height of the
pixel in the image. Figure 2a shows the surface of the
image from the top view where it can be differentiated
each of the tools in the resaerch area thanlks to the change
of tonality they have with respect to the table and Fig. 2b
shows the side view of the surface where the background
presents smooth changes throughout the image and the
tools generate abrupt changes m the surface, causing
lower peales with darker colors than the bottom and higher
peaks with the tool’s metal shine.

From the subtraction of the background with the
original grayscale image, a bottomless image is obtained,
with the tools discriminated i white tones as mn Fig. 3a.
After differentiating the tools from the background, the
resulting image 1s binarized and a final detection of
objects is generated, resulting in the image of Fig. 3hb,
where each identified tool is delineated by a white line
and filled with a certamn color. In the case of Fig. 3b, 3 of
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Fig. 3: Daetection of objects: a) Image without backgroud
and b) Tools

the 5 tools were detected where the eye rings of the
closed scissors were removed just like the scalpel, since,
the algorithm by Guacaneme (201 2) eliminates all elements
that have contact with the edges.

On the other hand, the first scissors from left to right
were almost completely recognized, losing part of the tool
due to the gloss of the metal. The screwdriver was
completely detected and the right scissors were detected
in parts and not as a single object as the shifts caused by
the shine of the metal generated that part of the image was
considered as background.

Step 2; Centroids and selection of objects: In the second
step of the algorithm, the image resulting from object
detection is used and binarized in order to be able to
operate the pixels of the image more easily. On it, the
centroids of each tool are searched and marked with a
rectangle each of the objects found as shown m Fig. 4b.
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Fig. 4: Centroids and rectangles of each tool: a) Defined
objects (Binarized) and b) Defined objects
(Binarized)

The rectangle completely contains the tool and
covers all those white pixels that are in contact. With each
of the rectangles 1t 13 possible to know the total nmumber of
tools recognized and their location in the image.

In Fig. 4a, the centroids of all the areas formed by
white pixels are searched and the boxes that cover each of
the areas are drawn. In Fig. 4b, the same boxes are placed
on the original mmage to verify that the tools on the table
that were found with the detection algorithm are indeed
recoghized.

The boxes are used to evaluate each tool separately.
The position in pixels of the upper left comer of the box
(with coordinates X, Yg) and the width and height
measurements of the rectangle (W, H, respectively) are
known in such a way that 1t 1s possible to know all the
pixels that compose the area within the box which are
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Fig. 5: Dectection of tools separately: a) Tool 1; b) Tool 2
and ¢) Tool 3

within the ranges defined by Eq. 1 where X, Y, 18 the set
of coordinates that make up the vertices of the box in
which are found the coordinates X, Y, of the box in the
first column of the array and the coordinates of the
following vertices, clockwise in the following colummns:

{X } _ |:XHUXHU WX tW Xy, (1

Y YHD YHD YHD +H YHD +H

re

The coordinate axis X 1s the horizontal axis of
Fig. 5 and 6 positive to the right and the coordinate axis Y
1s the vertical axis and positive down.

Step 3; Tool recognition: The next step of the algorithm
15 to find the tool selected by the user where
Convolutional Neural Networks (CNN) are used to
recognize each of the objects detected in the work area
and thus find the desired one.

Imitially, all tools, except the one to be evaluated are
“hidden™ using three versions of the mput image the
original Tmage (Imo), a copy of the original Tmage (Tmoo)
and the binary image of Fig. 4a (Imb). The objective of
“hiding” the objects is to try to make them as close as
possible to the color of the surface that supports them, so
that, only the object to be evaluated can be distinguished
as shown in Fig. 5. With the binarized image the objects
are searched to lnde them i the copy of the original image
the objects are hidden and with the original image all the
tools are recovered to restart the recognition process with
the next tool. In Fig. 5, each tool to be identified was
separately plotted, liding those that were not wanted to
be observed. In case of tool 1, the scalpel and the
screwdriver were hidden to make only the scissors visible,
and 1n the cases of tools 2 and 3 only the scalpel and the
screwdriver were visible, respectively.
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Fig. 6: Tool select for recognation with CNN

In order to enter the image of each tool to be
classified by the network, the tool 1s cut out as shown in
Fig. 6a and padding is added, so that, the image is square
(Fig. 6b), since, the CNN mput 1s size 128x128 due to the
uniformity required for structuring the architecture of the
network in the same way the padding prevents the
image of the tool from bemng deformed when it 1s
resized.

The structure of the Convolutional Neural Network 1s
shown in Fig. 7 where the input mmage 1s m color and
resized to 1 28=128 pixels. Tt consists of a deep architecture
of 6 convolutional layers (CONV), 2 Dropout (DROP), 2
MaxPooling (POOL}, 6 Rectified Linear Unuts (REL U), two
fully comected and a softmax layer, allowing to identify
one of the three categories with which it was trained:
scalpel, scissors y screwdriver. Figure 7 shows the size of
the Filters (F) of each convolutional layer, the Step (3), the
Padding (P) and the number of filters (K). By Eq. 2 and 3,
itis calculated the dimensions of the output image of each
convolution layer where W, and H,,, correspond to the
width and height of the input image and W,,, and H,,, are
the width and height of the output unage, respectively:

W-F+2*P
w,, - WF2TP @)
S
_F+2*
b, - BF2P 3)

A fundamental part of the algorithm 1s to identify the
desired tool which is the input parameter of the networl.
When the network recognizes one of the objects entered,
compares the result with the name of the mput tool
desired by the user and upon detecting the first match,
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Fig. 7. CNN architecture

Fig. 8: Gripper dimensions

the recognition process is stopped, the image matching
the desired tool 15 saved and the algorithm goes to the
grip detection section.

Step 4; Selection of the grip zone: In the fourth step of
the algorithm, the best grip position according to criteria
of friction between the gripper and the selected tool 1s
sought. The algorithm allows to enter the dimensions of
the gripper corresponding to the maximum aperture
thereof (dimension A of Fig. &) and the width of the tips
of the gripper (dimension B of Fig. ®), so that, it 1is
possible to know the space occupied by the gripper in the
working area and thereby define a grip where no clashes
are generated between the tips of the gripper and other
tools.
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Fig. 9: Grip detection for an inclined scalpel

An example of the grip selection for an mchned
scalpel is shown in Fig. 9 where the horizontal box
represents the position and grip area of the gripper on the
work area from which it can be obtained the degree of
rotation that the gripper must have in relation to the
tool and its coordinates in pixels to make the grip
found.

The grip algorithm receives as input the image of the
tool selected by the user but without adding padding as
in the previous step, instead it increases the area of view
of the tool when reading part of the elements that are near
the object as shown in Fig. 9 where the vertical rectangle
1 15 the box that covers the tool and that 1s obtained in the
second step of the algorithm and the extra edges outside
the box (area between boxes 1 and 2) correspond to the
expansion of the viewing area where part of the origmal
image 1s captured around the selected tool.

Unlike the CNN, in the gripping code the objects
surrounding the tool must be known to have an idea of
the free area that exists around the desired object, so that,
the gripper can perform the grip without collisions. In
Fig. 10a it is possible to observe more clearly the input
image to the gripping code where it can be seen
parts of the lidden tools such as the shadows and the
edge thereof that become visible when looking for the
grip.

For the calculation of the grip, the tool and some of
hidden tools are segmented (Fig. 10a) mn order to identify
the geometry of the objects and focus the algorithm only
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Fig. 10: Input image to the grip alghorithm: a) Selected
tool: scissors and b) Binarized tool

on the segmented elements and not on the background.
The image is binarized obtaining the result of Fig. 10b
where the black pixels correspond to the objects and the
whites in the background and a crop box 1s moved over it
that is responsible for analyzing possible points of grip on
the whole binarized image (box m the upper left corner in
Fig. 10b). The frame is moved across the image and cuts
out fragments of it to find a gnp. Where the box 1s located,
the image is croped below it and evaluated independently
where the possible grips are those that comply with
conditionals such as: degree of mclination of the gripping
section with respect to the gripper tips, the area
occupied by the tool section within the crop box and the
free space between the gripping area and the area
occupied by the gripper mside the frame to avoid
collisions.

The dimensions of the frame that crosses the image
are equalized to the dimensions of the gripper and when
all possible grips on the tool are stored, the one with the
highest grip area, the smallest inclination between the
gripper section and the gripper, the more rectangular
geometry and the smaller distance with the geometrical
centroid of the tool 1s selected m order to look for the
position and inclination of grip that ensures greater area
of friction between the elements and that is closer to the
centroid of the tool in order to look for greater stability of
grip.

To determine the widest gripping surface, the number
of pixels that compose the tool under the cropping box are
added by Eq. 4 and select the highest value. The
dimensions Dim 1 and 2 correspond to the width and
height of the box 1m 1s the image captured under the box
and, ..., the total sum of the pixels of the tool:
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Fig. 11: Grip selection for scissors

In Fig. 11, a grip 1s selected for the tool of Fig. 10,
where due to the dimensions of the gripper and the
interference generated by the hidden tools around the
scissors, a point of grip was chosen on the tips of the
scissors whose stability 1s smaller than the area of the eye
ring but 1t 13 mn a region that is more accessible for the
gripper.

The hidden tools as shown in Fig. 10b, generate some
degree of mterference in the search for the grip and
n tumm are narrow enough to prevent the gripping
algorithm from considering them as part of the desired
tool.

The gripping algorithm results in the X, and Y,
position of the final gripping point, corresponding to the
point in the center of the box of Fig. 11 and brings the
inclination of the frame (Ang) which is evaluated between
the horizontal of the original image and the edge of the
frame dimension B, for example 110° of inclination for
Fig. 11.

The coordinates X, and Y, correspond to the pixel
position of the pomt of Fig. 11 with respect to the upper
left corner of the image of Fig. 10a.

Step 5; Trajectory planning: Once the coordinates and
the degree of inclination of the grip are obtained, the
marnipulator 13 controlled to hold the object and move 1t
from one point to another where the end of the gripper
performs a series of trajectories in a straight line to fulfill
its objective. The first step 1s to obtain the coordinates of
the gripping pomnt with respect to the coordmates of the
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Fig. 12: Coordinates of the work area

manipulator, for which measurements must be made from
the work area and conversions from pixels to millimeters
until obtamming global coordinates. Figure 12 shows the
general coordinates of the manipulator [Xg, Yy, the
position of the gripping point [3{., Y] with respect to the
general coordinates of the scissors box m Fig. 12 [,
Y,al, the general coordmates of the work area [X;, Y], all
in pixels and the working area measurements in millimeters
corresponding to the distance between the 3, Y, axes
and Yy, X, axes and the distance between the gripping
pomt and the robot [X;, Y;] that determines the trajectory
planning of the manipulator

The known distances are X, Y, corresponding to the
final grip position generated in step four of the algorithm
and the distance between the coordmate axis [X, Y]
which corresponds to the position of the upper left corner
of the tool box with respect to the upper left corner of the
original image which 1s obtained i the second step of the
algorithm with the coordinates Xy, Yy, To know the
distance X, and Y, the sum between the positions
(3, Y,) and (X, Yyp) 18 performed as shown in Eq. 5:

IR b
Yoo Ye| | Y

Then the distance between the coordinate center [3{,,
Y,] and the center of the robot [Xp, Yy in millimeters is
measured to obtain [X,,, Y,,] and the conversion of pixels
to millimeters 1s performed for the distances [Xq,, Y] in
order to subtract both values as shown in Eq. 6 to obtain

the final grip point coordinates [ X, Y] with respect to the
center of coordinates of the mampulator:

X5 _ Y, + Yeq (6)
YR Xm XCO
These coordinates allow to generate the trajectory of
the manipulator from a certam starting point to the point

Symbol  Small mainpulator
AU Arduino one

Servomotor 1

1

2 Servomotor 2
3 Servomotor 3
4

Servomotor 4

Fig. 13: Mainpulator of 3° of freedom

of arrival where the desired object must be moved. For the
tests, the camera was placed at a fixed height from the tool
table and the distance [X,. Y.] in millimeters was
measured. The conversion of pixels to millimeters also
depends on the resolution of the camera where each
millimeter containg a certain amount of pixels in a directly
proportional relation as shown in Eq. 7 where the distance
inpixels obtained for the grip [X, Y] by a constant B is
multiplied in order to obtain its equivalence in millimeters
and to use 1t m the subtraction (Eq. 6) to have the true
grip position between the tool and the manipulator:

Milimeters = B* Pixels N

Once the final gripping point is known, intermediate
points are established for the trajectory where the end
effector moves m a straight line between each of them,
simultaneously moving its motors and passes through all
until reaching the final position where it must leave the
tool. The manipulator used which 1s shown in Fig. 13 has
four servomotors that control the movement of the links
and the opening and closing of the gripper and an
Arduino Uno used to control each servomotor. Tt is the
same manipulator that was used in a previous research
exposed by Murillo et al. (2016) reason why its structure
is known. The upper and lower views of the manipulator
are shown in Fig. 14 whose inverse kinematics
(Murillo and Moreno, 2016) are used to control the
marmipulator at each point in the trajectory, commanding
the motors directly from MATLAB®

To define each pomt of the trajectory, the distance
between the start and end point for the components X-Z
was calculated and the result was divided by a constant
nmumber of steps in order to obtain the intermediate
positions of the trajectory and with them to calculate the
value of angular rotation for each servomotor.
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Fig. 14: Views of the manipulator for inverse kinematics

In Eq. 8 shows, the equation used to calculate each
mtermediate step of the trajectory 13 shown where [X; Y,
7" are the coordinates of the end point [X,, Y, Z,]" are the
coordinates of the initial point [x,, v, z]" are the
coordinates of the current position of the end effector,
[%ei» ¥ wis Z 1] are the coordinates of the next end
effector position and 1 is the number of intermediate
positions to be taken by the manipulator to move from the
mtial to the final position where the calculation of Eq. 8 1s
repeated iteratively until the error between the current
position and the final position is <0.05 mm:

K Xy 1 X X
Yoo | = |V [T | Y [ H || Y (®)
Zyiy Z, ! Zs Z

Fach intermediate position [%.., Vi, 7 ]” 15 entered
mnto the nverse kinematics of the mampulator to calculate
the angles of rotation of each servomotor and generate
the motion in the actual manipulator, however, the
coordinate plane from which the inverse kinematics was

Fig. 15: Intial positions of the manipulator

calculated does not comcide with the directions of
rotatton of the mamipulator motors or their initial
positions, so, it was necessary to add or subtract an
offset to each servomotor to consider these coordinated
changes and to give the manipulator the real angles of
each degree of freedom of movement.

Figure 15 shows the directions of increase of angular
rotation for each servomotor and the initial position of
each of them (dashed line) with respect to the coordinate
axes that were taken i the mverse kinematics (arrows)
and Eq. ¢ shows the correction that was added to each
angle where [6,, 8,, 6,]7 are the angles that are given to
the manipulator and [0, 0,, 0,.]" are the angles of inverse
kinematics:

1 elc -10°
8, | =18, |+-260 ©
8, |8, |45

The correction angles mdicated m Eq. 9 were
experimentally determined by trial and error by executing
a known trajectory where the offset angles for each
servomotor were varied until the manipulator imitated the
desired trajectory.

The displacement of the manipulator was divided into
different linear trajectories where each inflection point is
determined by the coordinates of Eq. 10 in which each
column of the matrix represents a position in space with
respect to the coordinate axis of the robot according to
Fig. 12, the vector [P,, P,, P.]" is the position of the end
effector at each inflection pomnt and X; and Yy are the
positions of the final grip in millimeters. All measurements
of the matrix are in millimeters:
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The first column of the matrix of Eq. 10 takes the
manipulator to an initial position located 200 mm from the
ground and with the end effector on the table, the next
column takes it to the [X; Y] position of the final
gripping poimt, then goes down to the table to hold the
tool and finally climbs up again with thevcoordinates of
column 4. After lifting the tool, it moves through the
points of columns 5 and 6 to deliver the tool in the hand
of the user located on the other side of the manipulator,
achieving its final goal (Fig. 12).

Tn the next study, it is presented different tests carried
out on the manmipulator where 15 tried to determme the
degree of precision in the grip with respect to the
calculated coordinates for the three categories of tools
trained in the CINN.

Test: A working area was set according to Fig. 12 where
three tools, one of each category were located at different
distances from the manipulator and the robot was fixed to
the ground to ensure a fixed reference pomt. The camera
and table were positioned as shown m Fig. 16 and
polystyrene tools were used because the manipulator
gripper does not have enough force to support the weight
of real tools or generate enough friction to maintain the
grip.

Figure 17 shows the input image captured by the
camera (original image) where the three tools used for the
tests can be distinguished. Biarization and segmentation
of the input image (binarized image and defined objects),
and the demarcation of each object found with a box
(Defined Objects (Binarized)) are also shown. In the
“Binarized image” all the objects recognized are set with
black color and background with white in the “Defined
objects” image, the noise of “Binarized image™ 1s
eliminated to make visible only the recognized objects,
where the background is demarcated black.

After segmenting the work area, all objects found are
recognized as shown mn Fig. 18 and the user selected tool
is exported as shown in Fig. 19 to calculate the grip where
the “binarized tool” image is the segmentation and
binarization of the scalpel entered and Fig. 20 shows the
selected grip (for this example).

Similarly, with a more irregular and dark background
than the tools, good results were obtained in the
segmentation of objects as shown n Fig. 21 and 22,
where both tools were differentiated from the surface and
correctly identify through CNN thanks to the threshold
changes made.

Fig. 16: General work areal
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Fig. 18 Recogmtion of each tool: a) Scissors: 96.7253%;
b) Scalpel: 99.8944% and ¢) Screwdriver:
99.6822%
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@

50
$ 100
3
B 150 \
200

100 200 300
@

50

2 100
T 150
200

N |
100 200 300 100
Shadows

Shadows

Similarly, with a more irregular and dark background
than the tools, good results were obtained in the
segmentation of objects as shown in Fig. 22 where both
tools were differentiated from the surface and correctly
identify through CNN thanks to the threshold changes
made.

On the other hand, Fig. 23 shows the activation areas
of each object when 1s entered to the network, 1e., the
parts of the object that most recognize the network where
white sections represent the areas that most characterize
the object and the black ones that are most urelevant to
CNN. It can be observed that, mn the case of the
screwdriver, the greatest area of activation is the handle,
whereas in the case of the knife the entire body of
the tool 1s distinguished. In the case of scissors, the eye
rings generate the greatest activation of the tool In
contrast, the background is kept in dark tone which means
thatthe network does not consider it at the time of the
classification.

After selecting the tool and a feasible gripping point
on it, the inverse kinematics of the manipulator is executed
and the results of the physical grip are compared with the
chosen one n the code, n order to try to establish the
accuracy of the system. In Fig. 24, the grip selection for
the scalpel can be compared with the grip made by the
gripper, where it is possible to appreciate a slight shift of
the end effector with respect to the final grip coordinates,
however, the inclination and height of the gripper with
respect to the tool body were found close to the specified
gripping ranges with 98% accuracy.

For the scissors, a very close grip was achieved to
the one selected by the code as shown i Fig. 25 where
the adjustment of the gripper with the tool was
performed almost on the desired point with an

accuracy of 99%, achieving at the same time a quite stable
grip due to its proximity to the geometrical centroid of the
object.
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Fig. 21: Removel of the shadow: a) Orignal iamge; b) Binarized image; ¢) Scalpel: 99.9974%; d) Defined objects
(Binarized), e)Defined objects (color) and f) Scresdriver

3488



J. Eng. Applied Sci., 13 (10): 3479-3492, 2018
o(C)

$ 100
=]

B 150
200

Values
Values

(d

@ 100
>

Values
Values

T 150
200

100 200 300 100 200 300 20 60 100

Images Images Images
Fig. 22: Recognition of tools on dark irregular bacground: a) Orignal image; b) Binarized image; ¢) Scalpel: 99.9974%;
d) Defined objects (Binarized); ¢) Defined objects (color) and f) Screwdriver
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Fig. 25: Gripping on scissors
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' @
| - .

Fig. 23: Activations od each tool on the CNN
@ (b)

Fig. 26: Gripping on the screwdriver

with respect to the tool body as shown in Fig. 26,
however, achieved the lateral grip shown in the box,
where the center of the gripper is not just on the tool
handle but shifted to the right with a grip accuracy of
78%.

RESULTS AND DISCUSSION

Fig. 24: Gripping on the scalpel _
Four tests were performed on each tool placing them
In the case of the screwdriver, a more noticeable in different positions of the table and the distance
displacement was observed than that of the scalpel where  between the final position of the gripper (physical or
the physical grip reached a higher point than the desired  experimental grip) and the final gnip point (theoretical grip
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Table 1: Position errors

J. Eng. Applied Sci., 13 (10): 3479-3492, 2018

Selected grip (mim) Real grip (mm) Relative error (%6)
Tool X Y d X Y d X Y d
Scalpel 76.52 134.22 154.50 76 134.0 154.05 00.68 0.16 0.29
7771 144.33 163.92 75 144.0 162.36 03.49 023 0.95
81.306 153.33 173.58 78 1529 171.65 0413 0.28 111
62.36 143.30 156.34 60.8 143.0 155.39 02.50 0.25 0.61
Scissors 98.22 139.53 170.63 97.5 139.2 169.95 00.73 0.24 0.40
106.89 142.38 178.04 106.5 142.0 177.50 00.35 027 0.30
89.92 13847 165.10 89.5 137.0 163.64 00.47 1.06 0.88
93.51 138.73 167.30 928 137.2 165.64 00.76 1.10 1.00
Screwdriver 26.75 145.30 147.74 24 144.7 146.68 10.28 0.41 0.72
3373 146.82 150.64 32 146.0 149.47 05.13 0.56 0.78
42.73 153.80 159.63 42.5 153.7 159.47 00.54 0.07 010
25.91 147.59 149.85 234 147.0 148.85 09.69 0.40 0.60
Average error - - - - - - 03.23 0.42 0.65
or selected by the algorithm) was measured, obtaining the 160+
results of Table 1 where it is possible to visualize the MW\
. . 140
relative error percentage for both the X and Y coordinates
of the theoretical and experimental data and for the 1200 g
. . . . arip
distance between the gripping point and the coordinate ’é ~+ Yerip
. . . . E 100{ -Xraal
axis of the manipulator (d) that is obtained from the X and 7 100 oo
o
Y coordinates by Eq. 11 and an average error for X, Y and £ g0
d at the bottom of Table 1: =
60+
d =X+ (11) 404
) ) ) ZC T T T T T T 1
From Table 1, it is possible to observe that the 145 150 155 160 165 170 175 180

highest percentage of position error was obtained on the
X axis of the manipulator with an average of 3.23% while
in the Y axis there was an average error of 0.42% where
the lghest error in Y for all tests was 1.1 and 10.28% for
X. In the case of distance, an average relative error of
0.65% was obtained where the highest error was found in
the third test of the scalpel with 1.11%.

Based on Table 1, the data with respect to the
distance (d) calculated by Eq. 11 were sorted in ascending
order and the X and Y coordinates were plotted for each
test with respect to distance d as shown in the graph of
Fig. 27 where the horizontal axis represents the distance
between the grip point and the coordinate center of
the manipulator, the vertical is the distance in millimeters
for each coordinate of the grip, the coordinates for the
theoretical grip (X Grip, Y Grip) are marked with squares
and asterisks and the coordinates for the experimental grip
(Real X, Real Y) are marked with circles and diamonds,
respectively.

As shown m the chart, the experimental grip imitates
the behavior of the theoretical grip, however, its distance
is smaller than desired by no more than 3 mm. This margin
of error allows for cases such as the gripping of Fig. 25,
that the position error does not greatly affect the actual
holding of the given element, so that, the dimensions of

Distance (mm)

Fig. 27: Position error chart

(a)

Fig. 28: Unstable grip

the object allow it to be held slightly lower or higher,
however in a grip very close to the tool end as in the
example of Fig. 28, may fail or be very unstable if it does
not reach the desired position.

From the average relative error of the distance, it is
determined that the grip accuracy has a margin of error of
0.65% which means that for grip points located at 150 mm
and 200 mm distance from the robot, it can have
tolerances of +0.975 and +1.3 mm, respectively.
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CONCLUSION

Accuracy errors 1n the grip are influenced by the
angle correction of the servomotors, since, it 1s not
possible to take an actual measure of the number of
degrees to be added or subtracted from the angles of the
mverse kinematics to ensure that the position of the end
effector exactly matches the calculated endpoint. They
also depend on the resolution of the motors and the
measures taken from the links which may differ by a few
millimeters with the actual ones.

On the other hand, the location of the camera and
work area in turmn affect the coordinates of the
manipulator, since, it must be ensured that the location of
each element of the working environment is correctly
positioned according to the measurements taken for the
calculation of the actual grip positions. Any deviation
from the camera, change of height of the table or change
of positon of the manipulator can cause that the
coordmates change and the desired point is not reached.
The tools, instead can freely change location and rotation
as long as they can be captured by the camera.

In addition, the conversion of pixels to millimeters 1s
not accurate which adds error to the calculation of the
final position, especially, when the camera is not located
on the center of the table but to the side which makes the
capture of the image has perspective, 1.e., the elements
closer to the camera are larger while the more distant view
is smaller, altering the actual measurements of each
tool.

In spite of the various sources of error presented
during the development of the algorithm, the robotic
agent was able to perform an autonomous task through
the algorithm when selecting and moving each type of
tool as desired in the initial parameter, therefore,
validating its functionality as a robotic assistance agent
in the supply of tools.

The algorithm is able to recognhize objects on
backgrounds of different shades, however, very marked
shadows as well as areas of the surface too illuminated,
can affect the segmentation of the work area, even
recognizing false objects, so, it is necessary to maintain a
not very intense illumination to avoid the effect of
shadows and shine.
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