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Abstract: Rotation mvariant texture classification 1s an important issue in image analysis. For more than a
decade Local Binary Pattern (LBP) variants have been proven to be successful methods in wide applications
of rotation invariant texture classification. However, these invariant patterns are not absolutely rotation
mvariant and some of these are noise sensitive/msensitive. Till date, no temary LBP variant 1s found as rotation
mvariant and noise in sensitive. This study proposes a rotation mvariant and noise nsensitive texture
descriptors called, Local Ternary Count (LTC) and Completed Local Ternary Count (CLTC). The two descriptors
characterize the textures using local ternary gray scale difference by avoiding the micro-structure. The proposed
CLTC 1s a set of three new operators defined for sign, magmtude and central pixel components. Experiments
are conducted on three well known benchmark databases Outex, UIUC and CUReT. The performance of the
proposed method 1s analysed by comparing with the various existing LBP variants. It 1s observed that, CLTC
exhibits significant improvement in classification accuracy and 1s more robust to noise when compared with LBP
variants at different Signal-to-Noise Ratio (SNR) values.
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INTRODUCTION

Texture classification plays a wvital role
computer vision and 1lmage processing applications
such as object recognition, mmage retrieval, remote
sensing and medical image analysis. As the real world
texture images have observable orientation variations, the
rotation invariant texture classification has became an
important issue in practice.

Many textural featiwe extraction methods are
proposed for rotation invariant texture classification.
These methods are categorized mto three classes
(Zhang and Tan, 2002), namely statistical, model based
and structural. Statistical methods represent texture by the
statistics of selected features. Haralick et al. (1973) have
used the co-occurrence matrix to extract the texture
features from texture unages. Fuzzy aura matrix
(Hammouche ef al., 2016) 15 used for extracting the texture
features from gray level and color images based on aura
set. [t extracts the features by involving neighborhood of
each pixel of the image. In model based methods, texture
15 a probability model or linear combination of a set of
basic functions. Zhao and Pietikainen (2007) proposed
Improved Gaussian Mearkov Random-Field (IGMREF)

method to extract texture features. Tlis method uses the
step by step least square method to extract GMRF
features. Markov random fields (Cao et al, 2010)
features are used to identify the spatial relationship
between the body parts. In structural methods, the
texture 1s represented by a hierarchy of spatial
arrangements (macro-texture) and with well-defined
primitives (micro-texture). Xu et al. (2016) developed a
multiple morphological component analysis to extract
multiple texture features from remote sensing mmages.
These features are used to classify remote sensing
images. Lam and L1 (1997) have determined an Improved
[terative Morphological Decomposition (IIMD) method
for texture classification.

The LBP brings together both statistical and
structural approaches to extract the texture features.
Among all these LBP i1s simple and became one of
the successful methods m wide applications of
texture classification. Ojala et af. (2002) proposed a
multi-resolution grayscale and rotation mvariant texture
feature extraction methods like conventional Local
Binary Pattern (LBP), Local Binary Pattern with rotation
invariant (LBP™), LBP rotation mvariant and uniform
(LBP™), variance (VAR) and LBP™*/V AR LBP™/VAR has
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achieved the best classification accuracy when compared
to others. LBP was used in many applications such as
dynamic texture recognition (Zhao and Pietikainen, 2007),
medical image analysis (Nanni et al., 2010), face detection
(Quamane et al., 2016), gender classification (Hadid et al.,
2015) and face recognition (Ahonen et al., 2006). It is
sensitive to noise and rotation invariant. Some of the work
related to LBP, invariant to rotation is explained in the
following lines. A noise insensitive, Dominant Local
Binary Pattern (DLBP) (Liao et al., 2009) is developed by
Liao et al. The DLBP features represent the most
frequently occurred patterns for texture images. Tt is
observed that the DLBP method has maximum
classification accuracy when compared to existing
methodologies. Khellah (2011) introduced a texture
descriptor method, Dominant Neighborhood Structure
(DNS) to extract global features of image. Tt is robust to
noise. It has achieved good classification accuracy when
compared to LBP, dominant LBP and completed LBP.
Further it 18 combined with LBP, achieved 99% of
classification accuracy. A rotation invariant sorted
consecutive Local Binary Pattern (scL.BP) (Ryu et al.,
2015) is used to extract the patterns regardless of
number of transitions. Guo et al. (2010) introduced a
texture descriptor, LBP variance with global matching for
rotation invariant texture classification. Median Binary
Pattern (MBP) (Hafiane et al, 2015) is proposed for
texture classification similar to LBP. It is used the median
value as the threshold instead of central pixel in
thresholding process. A noise insensitive Adaptive
Median Binary Pattern (AMBP) (Hafiane et al., 2015) is
used as a texture descriptor for texture classification. It
computes the patterns based on adaptive analysis
window and improves discriminative properties. Adjacent
Evaluation Completed Local Binary Pattern (AECLEP)
(Song et al., 2015) 18 used to extract texture features. It is
robust to noise by changing the threshold scheme of L.BP
with adjacent evaluation window. Completed Robust
Local Binary Pattern (CRLBP) is defined by Zhao et al.
(2013) for texture classification. Unlike L.BP, the method
has used a weighted local gray evel for comparing
neighboring pixel. Tt consists of three operators
Robust Local Binary Pattern (RLBP), RLBP-Magnitude
(RLBP-M) and RLBP-Center (RLBP-C). Tt is insensitive to
noise with good classification accuracy. Shrivastava and
Tvagi (2014) determined Completed TLocal Structure
Pattern (CL.SP) and Robust Local Structure Pattern (R1.SP)
for image texture classification. CL SP has three operators,
namely Local Structural Pattern (L.SP), Local Binary
Pattern (1.LBP) and Central Pixel (CP) pattern. These three
operators are combined using 3D joint histogram. Tt is
sensitive to noise. RLSP is built by combining the three
operators LSP, Robust Local Binary Pattern (RLBP) and
CP. Tt is robust to noise. Dan et al. (2014) proposed an
improved robust texture descriptor, the Joint Local Binary

Pattern with Weber-like responses (JLBPW) for texture
classification. The ILBPW determines the local intensity
differences based on Weber’s law to make robust to
noise. Tan and Triggs (2010) have proposed TLocal
Ternary Pattern (LTP) which is an extension to LBP.
Tt is noise insensitive. Guo et al. (2010) proposed the
Completed Local Binary Pattern (CLBP) by combining
conventional LBP with the measures of local gray scale
difference, magnitude and central gray level. Zhao et al.
(2012) have proposed a Completed Local Binary Count
(CLBC). Unlike LBP, CLBC counts the number of one’s of
binary pattern after thresholding and thus became
rotation invariant. The summarization of strengths of
various LBP variant methods, so far 1s reported in
Table 1. Though these methods are proposed as invariant
but these are not absolutely invariant in practice except
CLBC and scL.LBP. The demonstration is shown in Fig. 1.
As a solution this study proposes a two rotation invariant
and noise insensitive texture descriptors, Local Ternary
Count (ILTC) and Completed TLocal Termary Count
(CLTC).

Rationale for the new proposed rotation invariance
method: From the literature, so far the rotation invariance
and noise insensitive/sensitive L BP variants are very few.
These also may vary after rotation and interpolation. For
example, LBP" and Median Binary Pattern (MBP) are
rotation invariants as shown in Table 1. But these
patterns may vary after rotation and interpolation as
demonstrated in the following figures from Fig. la, b.
Since, the methods CLBP, JLBP, DLBP, AMBP, LTP,
AECLEP, RLSP, CRLBP and CLSP follow the same
rotation invariant process as in LBP", these are also not
absolutely invariant patterns. LBP" forms the LBP™. So,
it sufters with rotation variance. These observations show
that all the noise nsensitive LBP rotation invariant
patterns may vary after rotation and interpolation. This
disadvantage can be overcome by counting the
mumber of one’s in the binary code instead of
encoding. So, we proposes rotation invariant and
noise insensitive texture descriptors Local Ternary Count
(LTC) and Completed Tocal Ternary Count (CLTC).

The contributions:

+ Two rotation invariant and noise insensitive
local texture descriptors LTC and CLTC are
proposed

¢+  CLTC has been defined with a set of three operators

¢+ The two new descriptors are proposed to represent
macrostructure

¢+  More discriminating capability is assigned through
temary pattern

»  Sigmificant improvement is observed with noise over
all the existing methods in terms of classification
accuracy
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Table 1: Strengths of various LBP variants

Rotation Noise Texture features
Years L.BP variant Variant Invariant Sensitive Tnsensitive Local Global
2002 Conventional LBP v v v v
2002 LBP* v v v
2002 LBp™2 v v v v
2002 VAR v v
2009 DLBP v v v
2011 DNS+LBP v v
2015 MBP v v
2015 scLBP v v
2010 LBPV v
2010 LBPV+Global matching v v
2015 AMBP v v v
2010 CLBP v v
2013 CRLBP v v v
2014 CLSP v v v
2014 RLSP v v v
2014 JLBP v v
2010 LTP v v v
2015 AECLBP v v v
2012 CLBC v
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Fig. 1: Rotation mvariant patterns may vary after rotation:
a) LBP® and b) MBP

MATERIALS AND METHODS

Local ternary count and completed local ternary count:
From literature review, noise insensitive LBP varants
suffered from rotation variant. We have proposed a new
rotation invariant and noise insensitive texture descriptor
namely LTC and CLTC. It provides the discrete patterns
using threshold t.

Local Ternary Count (LTC): We have defined the LTC
with a ternary code as opposed to LBP which contains a
binary pattern. It 13 experimentally proved that in LTP the
ternary code improves noise insensitivity. Unlike LTP we
have framed LTC without encoding step to make rotation
invariant. It is described in detail as follows: In LTC, each
pixel n the local neighbor set turned to one of the ternary
values (-1, 0, 1) after comparison with its central pixel. This
temary pattern 1s divided mto two patterns. One pattern
is lower and other is upper. The lower pattern is built by
placing 1 at -1 and remaining zeros and upper pattern 1s
built by placing 1 at 1 and remaining zeros. Tt counts the

frequency of ones in lower and upper patterns as shown
in Fig. 2. Then, histograms are built for each and
concatenated into one histogram. LTC 13 defined as
follows:

Pl
LTG g = Zs(gp 'g.:)a
p=10

L x=t (1)
S(x) =40, t<x=t
-l x<4

LrepE is defined as:

Pl
LTCE = Y 8(g,-(g. 1)),

e (2)
S(X)= L x=0
0, otherwise

Lreyy is defined as:
p-1
LT = X 8(8(8t))
p=0

) 3)
5(x) - {1’ X =0

0, otherwise
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Where:

8. = Qray value of central pixel

g, (p =0, .., P-1)= Gray value of neighbering pixel on a
circle of radius

R, P = The number of neighborhood pixels
t = Threshold

Tt is defined by user. Further, we have enhanced LTC
to Completed Local Ternary Count (CL.TC) to improve
performance of texture classification.

Completed Local Ternary Count (CLTC): Tt extracts the
completed local texture wmformation. It contains
CLTC Sign(CLTC 8),CLTC Magmtude (CLTC M)and
CLTC Center (CLTC C). CLTC_ S 1s same as LTC.
CLTCyp g 1s built with concatenation of the histograms
of cLTey™ and CLTCEY. CLTC, ™ is defined as

)

follows:

P-1
CLTC, % = ¥ Mg, (2. )
p=0

1, xzau

M(x)={

0, otherwise

where, au 1s average of |g-(g+)] of whole image.
CLTCpw 18 defined as:

)

P-1
CLTC, 2 = 3 Mg, (e, 4)
p=0

1, x=za

0, otherwise

il

M(x) ={

where, al 1s average of [g,-(g,+1)] of whole image. g.. g,. P,
R and t are described as in Eq. 1. CLRC-C is constructed
with the histograms of cLTC®%" and cLTCLF.

CLTC %" 15 defined as:

CLTC g% = C(g, ),
XZg (6)

L
otherwise

Cix)= {0,

CLTCy5 15 defined as follows:

CLTC 5% =C(g,t),

-

X2g ()

otherwise

>

where, ¢ is mean gray values of whole image. g, P,
Rand t are described as in Eq. 1. The final operator

CLTC histogram is built by merging the proposed
CLTC operators mto hybrid or jomt distributions.

RESULTS AND DISCUSSION

The experiments are conducted to evaluate the
efficiency of CLTC with and without noise. The
performance of CLTC in the presence of noise 1s studied
by adding Gaussian noise with different Signal-to-Noise
Ratio (SNR = 60, 50, 40 and 30 dB) values to the mput
images. The noise in the texture is increased while
decreasing the SNR value. The performance of the
proposed Completed Local Ternary Count (CLTC) is
evaluated by conducting experiments on 11 different case
studies from three huge databases. The results of
proposed CLTC are compared with existing LBP varants
results. The details of bench mark databases and various
case studies are provided as follows:

Outex database and case studies: Outex database
(Ojala et al., 2002) contains Outex-TC-0010 (TC10) and
Outex-TC-0012 (TC12) test suit. The TC10 and TC12 have
24 classes of texture images. These were collected under
three illuminations (horizon, mca and t184) and nine
various rotation angles (0°, 37, 10°,15°, 30°, 45°, 60°, 75°
and 90°). Each class has 20 non overlapping 128*128
texture images under each situation. The Outex database
images are distributed into three different sets of case
studies. Each set contains a set of trained and test data
images. Experiments are conducted on each case study
and the detailed description is as follow:

Case study 1: The 480 images of TC10are used as training
data. These are the images of each class under inca
llurmination with 0° rotation of angle. The 3840 mmages are
used for testing. These are images of each class under
same illumination with remaining rotation of angles
(5°,10°,15°, 307, 45°, 60°, 75° and 90%).

Case study 2: The mmages of TC12 with 0° rotation angle
and inca illumination are taken for training and images of
TC12 under illumination t184 has taken as for testing.

Case study 3: The mmages of TC12 with mca illummation
and 0° rotation angle are taken as tramned data and the
images of TC12 under the illumination horizon are
considered as test data.

Columbia-Utrecht Reflection and Texture (CUReT)
Database and case studies: The CUReT database
(Dana et al., 1999) has 61 classes of textures captured at
various viewpoints and illumination orientations. Each
class has 92 images. N mmages for each class are randomly
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selected as train data and remaining (92-N) images for
each class are selected as test data for classification
where N = 6, 12, 23 and 46. The case studies of CUReT
database are as follows:

Case study 1: From each class 6 images are randomly
selected as train data and remaining images of each class
are taken as test data.

Case study 2: The 12 images from each class are randomly
selected for train data and the remaining (92-12) images of
each class as test data.

Case study 3: The 23 images of each class are randomly
selected for training and testing is conducted on
remaining images.

Case study 4: From each class 46 images are randomly
selected for traming and the remaimng images of each
class are taken for testing.

UIUC database and case studies: UIUC database
(Lazebnik et al., 2005) contains 25 classes. Bach class has
40 images with resolution of 640x480. These images are
retrieved under sigmficant viewpoint variations. N images
of each class are randomly selected as tramn data and
remaining (40-N) images of each class are selected as test
data for classification. The details of UIUC database are
as follows.

Case study 1: From each class, 5 images are randomly
selected as train data and remaining 1mages of each class
are taken as test data.

Case study 2: The 10 images from each class are randomly
selected for training and the left out images of each class
are taken as test data.

Case study 3: The 15 images are randomly selected from
each class for traming and the remaining images of each
class considered for testing.

Case study 4: From each class, 20 images are randomly
selected for traming and the left out images of each class
are taken as test data. Different classification accuracy
values are observed in different independent executions
of the methods with noise. The range of variability and
average classification accuracy is noted by rnmning each
method including the proposed method 20 times on each
case study. Classification accuracy 1s measured based on
the dissimilarity of distance between two histograms.
Chi-square statistics 1s used for measuring dissimilarity of
the two histograms. The formula is as follows:

2

Dissimilarity, (HK) = )" (1;'1;) (8)

171

where, H=h and K =k where (1=1, 2, 3, ..., B) represents
histograms. The nearest neighborhood classifier is used
for classification. The classification performance is
measured using following equation:

N
Classification performance = %XIOO (9)

Where:
Nis = Thenumber of right classifications
M = Number of images in test data

Experiments are conducted with radius R = 1, 2 and 3,
neighboring pixels P =18, 16 and 24, threshold t = 0.5. The
experiments are conducted on Intel (R) Core (TM) 2.4 GHz,
8GB RAM, Windows 10 Operating System machine using
MATLAB 2008b.The results from the experuments on
TC10, TC12 (t184), TC12 (horizon) without noise are
presented i Table 2. The experimental results for N = 6,
12, 23, 46 on CUReT database without noise is shown in
Table 3. The experimental results on UIUC without noise
when N =5, 10, 15 and 20 are tabulated in the Table 4. The
results from the experiments on TC10, TC12 (t184) with
noise are tabulated in Table 5 and 6. The experimental
results for N = 6 and 46 of CUReT with noise are
presented in Table 7 and 8. The experimental results of
UILUC for N = 5 and 20 with noise are shown in Table 9
and 10.

Expeniments are aimed to evaluate the performance of
CLTC with and without noise. When the experiments are
conducted with noise, the results of CL.TC compared with
LBP™, CLBF, CLBC and LTP. Whereas the experiments
conducted without noise the CLTC performance is
evaluated based on efficiency of LTP, LBP*™, LBP", VAR,
LBP™VAR, CLBP and CLBC. Brief discussions on these
results are as follows:

Without noise: From Table 2, it is found that the
proposed CLTC S M C has aclieved average
classification accuracies 93.31, 95.76, 95.76% at radius
R =1, 2 and 3 on Outex. From the Table 3, 1t 1s observed
that, it has achieved mean classification accuracies 86.16,
87.41,86.72 forradius R = 1, 2 and 3 on CUReT. Table 4
demonstrated that, CLTC S M C achieved average
classification accuracies m order 84.65, 87.29, 87.45%
on UTUC. We observed that, it performed better
when compared to LTP, LBP™, LBP", VAR and
LBP™/VAR. When compared to CLBP S M C, the
CLTC S M C 1is rotation mvariant and performed
equally well, even though it avoids the representation of
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Table 2: Classification accuracy (%) on TC10 and TC12 of various LBP variants

R=1,P=8 R=2P=16 R=3P=24

Variables TC10 TCl12t184 Horizon Average TCI10t184 TCi12 Horizon  Average TCI10t184 TCl2  Horizon Average
LTP 94.14 75.88 73.96 81.33 96.95 90.16 86.94 91.35 98.20 93.59 89.42 93.74
LBP®2 84.81 65.46 63.68 71.32 89.40 82.27 75.21 82.29 95.08 85.05 80.79 86.97
LBP# 78.80 71.97 69.98 73.58 91.72 88.26 88.47 89.48 - - - -
VAR 88.39 61.48 62.34 70.74 86.61 63.26 68.94 72.94 - - - -
LBP*/ VAR  95.63 75.93 74.91 82.16 97.08 84.40 83.19 88.22 - - - -
CLBP_S 84.81 65.46 63.68 71.32 89.40 82.26 75.21 82.29 95.07 85.04 80.78 86.96
CLBC_S 82.94 65.02 63.17 70.38 88.67 82.57 77.41 82.88 91.35 83.82 82.75 85.97
CLTC_S 87.79 73.99 73.77 78.52 91.25 86.96 82.22 86.81 92.19 86.11 85.21 87.84
CLBP_M 81.74 59.30 62.77 67.94 93.67 73.79 72.40 79.95 95.52 81.18 78.65 8512
CLBC_M 78.96 53.63 58.01 63.53 92.45 70.35 72.64 78.48 91.85 72.59 74.58 79.67
CLTC_ M 92.19 73.94 69.95 78.69 96.38 83.84 83.54 87.92 96.41 85.10 86.02 89.18
CLBP_S_ M 94.66 82.75 83.14 86.85 97.89 90.55 91.11 93.18 99,32 93.58 93.35 9542
CLBC S M 95,23 8212 83.59 86.98 98.10 89.95 90.42 92.82 98.70 91.41 90.25 93.45
CLTC S M 96.22 83.43 83.91 87.85 97.94 89.93 89.88 92.58 98.80 20.67 89.40 92.96
CLBP 8 M C 96.56 90.30 92.29 93.05 98.72 93.54 93.91 95.39 98.93 95.32 94.53 96.26
CLBC 8 M C 97.16 89.79 92.92 93.29 98.54 93.26 94.07 95.29 98.78 94.00 93.24 95.34
CLTC 8§ M C 97.29 89.91 92.73 93.31 98.88  9403.00 94.38 95.76 98.98 94.54 93.75 95.76
Table 3: Classification accuracy (%6) on CUReT of various LBP variants

R=1,P=8 R=2,P=16 R=3P=24
Variables 6 12 23 46 6 12 23 46 6 12 23 46
LTP 55.28 63.87 73.75 80.47 55.91 64.18 71.25 79.86 50.51 58.65 66.50 72.24
LBP®2 60.36 69.05 74.64 81.32 63.38 72.70 79.28 84.53 67.86 75.51 81.65 86.35
LBP# 66.60 75.10 80.47 86.06 68.34 75.27 80.61 85.21 - - - -
VAR 43.27 49.63 55.55 61.72 41.16 45.31 50.61 55.95 - - - -
LBP™/ VAR 71.56 80.90 86.96 92,91 73.20 81.60 88.19 94,23 - - -
CLBP_S 60.36 69.05 74.64 81.32 63.38 72.70 79.28 84.53 67.86 75.51 81.65 86.35
CLBC_S 58.81 66.76 72.61 77.76 60.24 67.79 73.63 79.00 61.95 68.05 73.79 77.69
CLTC_S 61.38 71.37 77.95 86.03 64.85 74.75 80.49 89.77 66.93 74.67 79.78 89.84
CLBP_M 54.19 60.77 67.21 75.73 59.60 68.25 76.52 81.32 64.86 71.43 80.42 87.31
CLBC_M 45.06 50.98 56.33 64.33 50.27 59.49 65.91 71.53 52.23 59.26 69.11 75.20
CLTC M 65.54 74.71 81.04 85.89 68.99 77.00 84.01 90.02 68.36 76.00 85.06 89.52
CLBP S M 74.41 82.9 88.9 92.62 76.47 84.32 89.92 93.30 77.90 84.73 90.99 93.97
CLBC S M 7217 80.82 87.00 91.59 73.79 81.78 89.36 93.30 72.84 80.76 88.29 93.01
CLTC S M 72.91 81.05 87.74 93.26 74.78 82.66 89.76 95.01 73.37 81.25 89.50 94.73
CLBP S M C 76.82 84.96 91.54 95.33 78.07 86.45 92.30 95.40 78.99 86.37 92.51 95.90
CLBC_S_ M _C 75.09 83.32 90.66 94,23 76.65 84.12 92.42 95.15 76.00 83.38 91.35 95.01
CLTC S M C 75.09 84.08 91.14 94.33 76.71 84.36 92.73 95.83 76.00 84.04 91.33 95.51
Table 4: Classification accuracy (%) on UTUC of various LBP variants

R=1,P=8 R=2,P=16 R=3P=24
Variables 5 10 15 20 5 10 15 20 5 10 15 20
LTP 50.06 58.27 64.64 67.80 61.26 71.33 74.40 78.20 60.91 74.53 78.72 83.40
LBP®2 41.02 49.20 52.16 56.40 41.25 52.00 58.08 57.20 45.25 56.26 59.84 64.60
LBP# 43.89 50.80 57.12 63.20 49.26 60.67 66.56 71.80 - - - -
VAR 36.34 43.73 47.84 49.80 39.20 47.33 50.40 51.00 - - - -
LBP™/ VAR 51.77 63.07 67.84 67.80 58.86 67.33 71.04 73.80 - - - -
CLBP_S 41.02 49.20 52.16 56.40 41.25 52.00 58.08 57.20 45.25 56.26 50.84 64.60
CLBC_S 40.00 48.80 51.36 56.80 42.17 54.27 58.56 62.00 48.34 59.87 62.72 67.80
CLTC_S 43.77 50.67 55.36 59.20 49.71 58.93 64.00 68.20 52.69 66.13 68.64 74.40
CLBP_M 40.45 52.26 55.84 57.40 5817 66.00 69.92 72.40 5840 67.33 71.52 76.40
CLBC M 40.57 46.26 49.60 53.40 51.09 60.00 65.92 69.80 5417 61.07 67.84 70.00
CLTC M 50.06 61.07 66.88 71.00 60.23 71.47 73.60 80.00 63.66 74.00 75.20 82.40
CLBP S M 66.05 75.86 80.48 83.80 73.14 82.00 85.76 88.60 75.08 84.26 86.40 90.00
CLBC S M 66.17 7547 80.00 82.80 76.11 82.67 86.24 89.80 76.46 86.67 87.36 89.80
CLTC S M 68.11 76.27 80.64 84.80 76.46 84.40 86.24 90.40 77.03 86.67 87.52 89.80
CLBP S M C 7520 84.93 86.08 88.20 81.26 86.40 89.12 92.20 79.65 87.06 87.52 93.00
CLBC_S_ M _C 7543 8547 86.88 88.60 80.69 87.20 88.16 92.60 81.02 86.80 89.28 92.40
CLTC S M C 76.69 85.60 87.52 38.80 80.91 87.33 88.32 92.60 81.37 86.80 89.44 92.20
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Table 5: The classification accuracy (%9) and range of variability in classification of accuracy on TC10

Accuracy with noise

R=1 R=2 R=3
Variables SNR =60 SNR =350 SNR =40 SNR =30 SNR=60 SNR=150 SNR =40 SNR=30 SNR=60 SNR=350 SNR=40 SNR=30
LBP™ 36.7940.21 36.07£0.23 31314030 13844025 8§7.59+0.14 8§7.00£0.36 64444040 42384022 94.14+0.13 94.11+0.18 92.75+0.25 35827+038
CLBPS_
M_C 92.8140.1 92.47+0.26 91.0540.12 32374021 98.48+0.09 98.45+0.12 98154013 65.03+036 98.96+0.05 99.00+0.09 98.83+0.13 80.66+0.26
CLBC
S_M_C  92.10+0.25 91.78+0.22 90.89+0.10 36.76+0.14 97.77+0.17 97.77+0.20 96.85+0.16 8§7.25+027 98.65+0.1 98.62+0.13 98.49+0.13 96.42+0.14
CLTC
S M_C 97441007 96.74+0.17 94961016 39.77+0.18 98.88+0.10 98.86+0.09 97.78+0.16 8§9.82+0.31 98.99+0.08 99.01+0.09 98.91+0.10 97224022
LTP 92.5540.1  92.16£0.1 §9.0£0.30 21.5040.25 96.88+0.05 96.88£0.13 96.08+0.14 54.26+0.17 98.16+£0.09 98.15+£0.08 97.45+0.16 66.29+0.20
Table 6: The classification accuracy (%e) and range of variability in classification of accuracy on TC12 (1184)
Accuracy with noise
R=1 R=2 R=3
Variables SNR =60 SNR =30 SNR=40 SNR =30 SNR =60 SNR=50 SNR=40 SNR=30 SNR=60_SNR=30 SNR =40 SNR =30
LBP 39.03£0.19 38.83+0.13 32.85£0.28 14.39+0.15 80.44+0.37  §0.10+£0.24 76.62+£0.39 37.88+0.36 84.5£0.24 §4.32+£0.34 82.03+0.24 55781022
CLEP_
SMC 83.99+0.15 83.89+0.23 81.12+0.20 28.46+0.24 9325+0.15 93.30+£0.17 92.88+0.15 52.66+0.25 95.07+0.09 95.05+0.13 94.92+0.19 7050+041
CLBC_
SMC 8§2.95+0.10 82.53+x0.15 80.59+0.27 31.89+0.28 92.70£0.09 92.80+0.16 91.98+0.15 75.71+0.27 93.77+0.21 93.73+£0.09 93.52+0.28 8756031
CLTC_
SMC §9.72+0.10 90.12+0.14 8593+0.25 3538+0.20 9410+0.09 94.11+0.13 92.85+0.16 76.26+0.42 93.72+0.08 93.47+0.14 94.43+£0.09 8848024
LTP 77574019 77594032 68.1140.45 17.6440.19 90.80£0.10 90.67£0.12 8§6.77+0.17 48.99+0.31 93.94+0.14 93.81+0.08 92.49+0.17 60574036
Table 7: The classification accuracy and range of variability in classification of accuracy on CUReT (N = 6§)
Accuracy with noise
R=1 R=12 R=3
Variables SNR =60 SNR =50 SNR=40 SNR =30 SNR =60 SNR=50 SNR=40 SNR=30 SNR=60 SNR=30 SNR =40 SNR=30
LBP™ 3168+0.15 31.7740.16 31.87+025 26.58+0.30 56534028 56.2940.23 55.87+29 48.58+031 66.09+0.29 65.74+0.20 65.1140.26 56731021
CLBP
S M_C 7116006 70.88+0.10 70.40+0.13 60.97+0.31 7749£010 77.324£0.25 76.8240.11 70.39+0.29 78.75+0.10 78.87+0.16 78.09+0.16 72541024
CLBC
S M_C 69724012 69.79+0.17 69.03+0.16 61.45+0.16 76.02+0.13 76.16+0.14 75.60+0.21 71.51+0.28 75.72+0.07 75.54+0.15 75.10+0.20 7241024
CLTC
S M C 75114007 73.60£0.14 71.36+0.13  61.48+0.15 76.92+£0.10 76.67£0.06 76.13£0.09 71.77£0.15 75.97£0.08 75.91£0.11 75.33£0.11 7255:0.11
LTP 65.06+0.10 65.09+0.12 63.5040.15 52.42+0.23 68.70+0.13 68.96+0.08 68.27+0.07 61.18+0.18 7340.1 72.95+0.11 72.56+0.18 6579+0.28
Table &: The classification accuracy and range of variability in classification of accuracy on CUReT (N = 46)
Accuracy with noise
R=1 R=2 R=3
Variables SNR =60 SNR =50 SNR =40 SNR. =30 SNR =60 SNR=50 SNR=40 SNR=30 SNR=60_SNR=30 SNR =40 SNR=30
LBP 32774027 32.8240.50 32.18+0.53 25361030 73594029 73.40+0.55 72.27+0.29 60.81+0.48 82.63+0.23 §2.82+0.43 §1.75+£0.57 71104043
CLEP_
S M C 85.82+£0.14 8531+0.18 84524020 73.75£0.23 94742016 94.55£0.25 94.03£0.23 85.80+0.20 95.88+0.20 96+0.23 95.38+£0.20 88851025
CLBC
SMC 84.98+0.12 B84.57+021 83.71£0.18 74.2940.23 94551014 94.65+0.21 94.35+£0.16 90.00+£0.30 94.83+£0.14 95.01+£0.18 94.57+0.27 9168:0.37
CLTC
SMC 9433+0.11 92.00+£0.16 89.16+£0.16 75.46+0.23 9563+0.14 95.19+0.12 95.09+0.14 90.94+0.12 95.50+0.06 95.32+0.11 94.91+£0.14 9199+0.11
LTP §7.83+0.2 §6.96+0.21 §3.59+030 67.50+0.39 9139+0.12 91.2040.18 90.24+0.18 8§0.65+0.29 91.73+0.25 91.75+0.30 91.18+0.23 8318032

microstructure information. Tt shows the superiority in
classification accuracy when compared to CLBC S M C.

With noise: From Table 5 and 6, it is observed that, the
proposed method CLTC S M C is more robust to
noise when compared to LBP and TL.TP at different SNR

values. In average CLLTC S M C is insensitive to noise
when compared to CLBP S M Cand CLBC S M C. It

has achieved 39.77, 89.82 and 97.22 at radius 1, 2 and

3639

3 when SNR 1s 30 dB on TC10. Sunilar observations are
obtained by conducting the experiments on TCI12
(horizon). Table 7 and 8 demonstrates that, CLTC S M C
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Table 9: The classification accuracy and range of variability in classification of accuracy on UTUC (N = 5)

Accuracy with noise

R=1 R=2 R=3

Viariables SNR=60 SNR=50 SNR=40 SNR=30 SNR=60 SNR=30 SNR=40 SNR=30 SNR=60 SNR=30 SNR=40 SNR=30
LBP™ 21313017 21.0940.17 2314%0.14 184034 3844034 38461029 37.71+0.46 31.14+0.4 44.69:0.23 44.46+0.23 4537023 3660+046
CLBP

S_M C  75.03t006 75094011 71774022 4691+0.17 8124017  §1.09+0.17 §0.4+0.17 65.37£0.46 79.6+006 B0.06+0.06 78.91+0.17 6817:029
CLBC

S M_C 7486011 75.2:0.11 72.63+0.17 51.03+0.04 80.86x0.06 80.63x0.17 79.83:0.17 71.26:+0.29 §1.43:0.06 8§1.43+0.06 81.09+0.17 7503029
CLTC

S M_C 76412014 7661009 74064012 51.04+0.11 80.8+0 80.7+006 79.22+0.23 71.85+0.29 81.44+0.06 81.57+0.17 80.99+0.17 7573011
LTP 50058005 49.77:006 49.26+0.23  20.6:0.23  60.74:017  60.29:0.20 61.09+0.20 49.43:0.20 61.03x0.11 60.690.23 61.37+0.11 5474:0.23

Table 10: The classification accuracy and range of variability in clagsification of accuracy on UIUC (N = 20)

Accuracy with noise

R=1 R=2 R=3

Variables SNE=60 SNR=50 SNR=40 SNR=30 SNR=60 SNR=50 SNR=40 SNR=30 SNR=60 SNR=50 SNR=40 SNR=30
LBP™ 26503  259:03  262+06 22.8:0.4  355:0.5 556104  35:0.8 38206 63.0:03 641205 45806 63.3:0.3
CLBP_

$M C 863:03 864202 849103 63.0:03  91.5:0.1 91.7:01  91.5:0.1 80+0.4 93.1:0.1 931203 92202 83.3£0.3
CLBC_

$M C 861:01 864202  85.0:0.3 65.7:0.3 9244002 924x02 927303  B6.2:0.6 92101 922:02  92:0.2 80.4+0.2
CLTC_

$ M C  89.02+0.06 89.12:0.14 8642:018 673040 02620  9262:0.15 9246:0.13 86.38:0.26 91.8:0.09 91.86:0.10 92.120.11 8966:0.19
LTP 68.50+0.1  69+0.2 66.50:030  30.50+0.50 78600  79.1=0.1 7890030 60.40+0.60 83.5%0.1 83.60.2 82404  70:0.4

outperforms over all other LBP variants using CUReT
database. Table 9 and 10 provides the similar
observations on UIUC. Tt is also noticed that
CLTC S M_Cachieved better results when compared to
LBP and LTP and good results when compared to
CLBP S M C and CLBC S M C for N =12, 23 on
CUReT and N = 10, 15 on UIUC. CLTC S M C has
obtained mimimum range of variability m classification
accuracy which is observed when compared to existing
LBP variants cn all case studies.

CONCLUSION

A texture descriptor plays a significant role in texture
classification. Most of the LBP variants are well known
methods in characterizing texture of the image. Apart from
the successes in various applications, these are suffered
from noise sensitivity and rotation variance. This study
proposed with dual capability, a rotation invariance and
noise msensitivity texture descriptor Completed Local
Ternary Count (CLTC) based on ternary count. The
performance of CLTC is studied by comparing with
various LBP wvariants using 11 case studies. The
experimental results have shown the rotation invariance
and increased noise insensitive capability of CL.TC with
mnproved classification accuracy over all the other
existing L.BP variants.

Though the CL.TC is more robust to noise when
compared to the existing methods, a reduced performance
is observed when SNR = 20 dB. This limitation can be

overcome by changing the thresholding process. The
computational time of CLTC 1s more when compared to
CLBC. This drawback can be eliminated by reducing the
size of feature set. Hence, further research should be
directed towards developing a more robust rotation
invariant texture descriptor at any SNR with less
computation time. This research can be further extended
to extract the texture features from color images. These
efforts are strongly believed to improve the performance
in texture classification and its applications.
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