Tournal of Engineering and Applied Sciences 13 (10): 3358-3363, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Enhancement of Business Continuity Through Effective Database Integration and
Database Gateway Implementation

"Young-Ho Shin and “Jae-Cheol Ryou
'Department of Information System Operation,
Korea Institute of Science and Technology Information, 245 Daehak-ro,
34141 Yuseong-gu, Republic of Korea
*Department of Computer Science and Engineering, Chungnam National University,
99 Daehak-ro, 34134 Yuseong-gu, Republic of Korea

Abstract: This study seeks to develop optimal measures that enable organizations or institutions to quickly
resume web services after performing database mtegration and migration following the new establishment or
modification of systems. Database integration was performed for multiple databases and instances by avoiding
schema collision for each character set and the database connection information of various Java-based web
services was analyzed. Using the information of new databases integrated with existing databases, connection
mformation mapping tables were derived for each user account. The mapping tables were used to design and
implement a conversion gateway for connection to new databases and web service migration was carried out.
When multiple web services require migration due to a change in the target database, the corresponding
database connection information of application programs for each service must be analyzed and services can
undergo migration after connection mformation 1s modified. This involves significant time and costs. This study
performed service migration by implementing a driver-level conversion gateway corresponding to the
comnection process of databases without having to separately modify application programs for each service.
This method of migration allows organizations to resume web services in a shorter period of time. This quick
restoration of services contributes to service stability and busmess continuity, thereby greatly enhancing
business competitiveness. By implementing driver-level common functions for database connection resulting
from a change in the database server, fast and stable standard measures were presented for database
connection during migration.

Key words: Database integration, web service, migration, business continuity, Java database connectivity,

DBCP

INTRODUCTION

The Korea Institute of Science and Technology
Information (KISTI) is a government-funded research
mstitute launched to enhance national competitiveness
through systematic establishment of national research
and development infrastructure. As a leader of advance
R&D, KISTT provides local businesses and research
mstitutes with science and technology information
collected from around the world (Anonymous, 2016).

Based on its vast collection of data, KISTI offers a
science and technology information search service via a
professional search engine and various online services
delivering high-quality information. These information
services can be categorized mto services uutiated by
KISTI and services commissioned by government
agencies or private enterprises. Regardless of the service

type, KISTT seeks to pool its resources and establish a
joint system for integrated management, thereby ensuring
greater efficiency m its operations. To achieve the
aforementioned goal with mimimal mvestment, the mstitute
has established a system that enables computing
resources to be shared and jomtly utilized by each service
type.

The fundamental responsibility of the department in
charge of operating the information system is to manage
various hardware such as servers, storage system,
network and backup as well as key system software such
as the web, Web Application Servers (WAS) and
databases. The development of application programs to
provide web services, related operations and maintenance
15 performed by the department in charge of the
corresponding web services.

Corresponding Author: Jac-Cheol Ryou, Department of Computer Science and Engineering, Chungnam National University,
99 Dachak-ro, 34134 Yuseong-gu, Republic of Korea
3358

J. Eng. Applied Sci., 13 (10): 3358-3363, 2018

However, when establishing a new information
system or performing integration, the department in
charge of operating the information system assumes
responsibility for hardware and software (servers,
applications, etc.) and carries out system integration and
service migration. In this case, the most difficult process
15 service migration which is necessary with database
mtegration. This mvolves modification or redevelopment
of database linkages to process the business logic of each
service, so as to accommodate changes arising from
database integration. Fortunately, about 95% of KISTI's
web services have been developed using Java.

Java 15 a highly portable language as it 1is
independent of systems and platforms. Tt has gained
popularity as World Wide Web Software due to its
simplicity, reliability and stability (Chaudhary, 2014;
Kogent Kearning Solutions Inc., 2014; Ying Bai, 2011).

As mentioned earlier, this study presents methods for
database integration and efficient service migration m an
environment where various web services rely on
sharing-based database When migrating
various services, 1t 1s Important to ensure business
continuity by completing the migration m the shortest
possible time.

This study presents methods of migrating web
services in the shortest possible time by modifying
database linkages while maintaining the application
program environment.

instances.

MATERIALS AND METHODS

General migration process and procedures: For most
organizations operating information systems, large-scale
system reorganization and establishment occur at regular
mtervals as system enviromment demands have been
designed to meet rapidly changmg requirements. From
the perspective of information technology, migration
generally refers to the process of an operating
environment moving to a new, more optimal operating
environment. Migration covers a wide range of subjects,
including hardware, software, database, data, business
logic and application programs (Kazzaz and Rychly, 2015;
Hao et al., 2006, Kun ef ai., 2007).

The establishment or reorgamization of
computing resources which are the primary infrastructure

new

Table 1: Migration procedures

needed to provide web services is accompanied by
web service migration. Service migration is performed
according to the procedures given in the Table 1.

Characteristics and advantages/disadvantages by JDBC
driver type: The Java Database Connectivity (JDBC)
API 15 the mdustry standard for database-independent
connectivity between the Java programming language and
a wide range of databases (JDBC driver, JDBC and UCP).
IDBC drivers are available for most database platforms,
from a number of vendors and in a number of different
flavors. JDBC driver can be largely categorized into four
types. The driver types differ in their method of
implementation, system independence and performance
(Crawford et al, 2002, Yang et al, 1998). The
characteristics of the four types are given below with a
review of their advantages and disadvantages.

Type 1 driver (JDBC-ODBC bridge): All commands
through the JDBC driver are converted to the ODBC-type
and sent to the ODBC driver. In this case, the application
used by IDBC and the ODBC driver comected to the
IDBC via. the IDBC-ODBC bridge must exist in the same
system (Anonymous, 2017).

Advantage: Since, the JDBC-ODBC driver has many
ODBC drivers, most can be used in the database system.
This type is especially useful if the ODBC driver is
installed on the client side in advance.

Disadvantage: There may be some delay caused by
converting a command received through JTDBC into
ODBC. This driver type is not suitable for applications
requiring fast performance.

Type 2 driver (Native-API): All commands through the
TDBC driver are converted and sent according to system
calls of DBMS systems such as Oracle and Sybase. The
DBMS linkage is written in a native code like C/CH+ and
the TDBC driver can be implemented by wrapping with
Tava.

Advantage: The database linkage 13 implemented using
native code and thus offers a faster speed than the
JDBC-ODBC bridge.

Evaluation and assessment Migration

Verification and application

Requirements analysis and scope determination
Analysis of existing environment

Generation of evaluation reports

Risk factors and technical analysis

Schema migration
Data migration
Business logic migration

Detailed design of migration measures and establishinent of strategies

Migration inspection and test
Optimization

Application program migration

3359

J. Eng. Applied Sci., 13 (10): 3358-3363, 2018

Disadvantage: Each client intending to use the JDBC
driver must have the database hbrary of the DBMS
vendor mstalled.

Type 3 driver (network-protocol (middleware driver): All
commands sent by the JTDBC driver are sent to the
middleware where they are converted into suitable
commands and sent to the database. The results are sent
back to the IDBC driver. This 1s a typical three-tiered
server-client model structure.

Advantage: Since, the database is approached through the
middleware there is no need to install a native library of
ODBC driver database on the client side. Database
comnection can be controlled through the middleware
thus enabling optimization of performance, expandability
and portability.

Disadvantage: A middleware server must be implemented
and linkages must be available for each database vendor.

Type 4 driver (database-protocol): This 15 the most
common JDBC driver, implemented 100% in Java.
Requests are sent directly to each DBMS via. the networl.
Most DBMS vendors provide type 4 drivers at no charge.

Advantage: The driver is easy to distribute as it does not
require any installation of DBMS native library or
middleware.

Disadvantage: Each DBMS must use a different JDBC
driver. Among the four types, type 2 and type 4 drivers
are often provided by vendors. Type 2 JDBC dnvers
require SQL*NET for use mn Oracle and are cormected
to the database through mnative modules 1n
hardware-dependent formats such as dll and so. In Oracle,
IDBC type 2 drivers are known as Oracle Call Interface
(OCI) drivers.

On the other hand, type 4 JDBC drivers can be
comected to the database using only Java packages. In
Oracle, these drivers are called thin drivers. They provide
faster performance than type 2 drivers which require
native modules like SQL*NET (for Oracle). Type 4 drivers
can commnect to the database using Java classes alone and
support database comnection for any hardware and
operating system. However, their performance 1s poor
than that of OCT drivers.

In Oracle, the libjdbc*. So, file is needed to use
OCT drivers and the corresponding directory must be
registered in the shared library path. That 1s, the Oracle
client product must be installed in the server.

Despite the constraints involved in using OCI drivers
they are considered easier to maintain on the client side,
since, connection UURLs do not have to be changed in

application programs of client machines and the only
modification required 1s for the Tnsnames.ora file mstalled
in client machmes.

DBCP (Database Connection Pool): Creating a new
connection for each user can be time consuming (often
requiring multiple seconds of clock time), in order to
perform a database transaction that might take
milliseconds. Opening a connection per user can be
unfeasible in a publicly-hosted mternet application where
the number of simultaneous users can be very large.

Accordingly, developers often wish to share a “pool”
of open connections between all of the application’s
current users. The number of users actually performing a
request at any given time 1s usually a very small
percentage of the total number active users and the only
time that a database connection is required is during
request processing. The application itself logs into the
DBMS and handles any user account issues internally
(the DBCP component).

While DBCP can place a burden on the WAS server,
it 1s able to provide rapid database comnection to users
upon recquest. When targeting services at multiple users
this method is effective as the relevant connections can
be reused.

Analysis of database connection type: The method of
comnecting to an Oracle database through Java can vary
depending on the use of thin drivers or OCT drivers as
shown in Table 2.

Driver formats as well as driver types can be
described m wvarious forms for each application. Out of
more than 200 science and technology information
services, about 95% of web services are using Oracle
databases. The compositions of the two connection types
are given in Table 3 based on an analysis of the existing
environmert.

Table 2: IDBC driver fonmats

Thin driver formats

Oracle JDBC thin using a service name:
jdbeoracle:thin@//<host=:
<port>/<service_narme>
Example;jdbc:oracle:thin@/
203.cooootaocl:1521:srvnl

Oracle JDBC Thin using an STD:
jdbeoracle:thin@=host>:<port>:<SID>
Exarmnple;jdbc:oracle:thin@
203.000.x000.xx2: 151 1:inst 2

Oracle JDBC Thin using a TNS narne:
jdbeoraclethin@<TNS_name>
Example:jdbc:oracle:thin:{@tns1

OCI driver formats
Oracle JDBC OCI
driver format
jdbe:oracle:oci(@
<database name>
especially ocif
Jdbe:oracle:oci8: @
<database_string>

Table 3: Connection type and composition

Variables JDRC DBCP
Type 2 (OCT) 34 50
Type 4 (Thin) 104 2
Tatal 138 52

3360

J. Eng. Applied Sci., 13 (10): 3358-3363, 2018

ServiceName, a new function offered in Oracle 81 and
later, allows databases to be registered with listeners.
Once databases are registered, Service Name can be used
as a parameter in Tnsnames.ora. SID 1s the unique name
of the database and ServiceName is the alias used
when connecting to database. TN'S (Transparent Networlk
Substrate) 1s a computer networking technology umique
to Oracle and supports homogeneous peer-to-peer
connectivity on top of other networking technologies
such as TCP/AP, SDP and named piped. TNS is
usually operated for comnection to Oracle databases
(Transparent Network Stustrate). A TNS name 1s the name
of the entry in tnsnames. ora file which is kept in
$ORACLE HOME/metwork/admin directory. This file
contains the information that 18 used by the system to
comnect to the Oracle database. Using this, a client can
fetch server associated information transparently.
tnsnames.ora file contains information such as protocol,
host IP address, Port number, SID and server.
Preconditions and related tasks: The point of
establishing preconditions and related tasks is the point
at which physical migration of the web and WAS server
15 complete and the linkage between the database server
and WAS server is being modified. The required
preconditions are as follows:

+ Database mtegration

¢ No change in database user ID and password

¢+ No modification of source code for applications of
the WAS server

* Same character set as existing schema

+ Integration into new instance is case of any duplicate
schema

When using OCI drivers, the alias information
corresponding to connection UJRT, in the Tnsnames. ora
file found inthe TNS ADMIN directory on the client side
1s modified according to mformation n the mapping table.
When using thin drivers, the IP address and port of the
database server and SID information of the corresponding
database must be described. As such, a function must be
added to the gateway library to convert relevant mapping
mformation to the IP address, port and SID (Table 4).

Design of database connection conversion gateway: In
oracle, IDBC type 2 connection and type 4 connection are
comected to the database server through Oracle JDBC
drivers. Web services that rely on OCT driver connections
can be easily migrated by modifying the service alias.
However, those that invelve thin drivers must have
all connections of the source code mdividually modified.

Table 4: Schema mapping table

Schema Old-instance New-instance
User1 0O-INST1 N-INST1
User 2 O-INST2 N-INST2
O-INST2 N-INST3
User N O-INST12 N-INST2

The moedification of commection information from all
web applications involves significant time, manpower
and costs. This study proposes a database connection
gateway that provides connection information of the new
database before database connection. In the ojdbe driver,
the Java.sql. Driver class 1s the mnplementation of the
OracleDriver class. All connections using JDBC are
generated through the public connection connect (String
s, properties properties) method of the oracle.jdbe.driver.
Oracle Drver class. This cormection method was used
to implement a conversion gateway method based on
mapping information from the existing database target to
the new database target. The gateway method returns a
new connection URL which supports connections to the
new integrated database. This is the key to successfully
establishing connections to the new integrated database.

Implementation, test and distribution: Based on the
analytical results, a database conversion gateway was
designed This gateway was integrated into the JDBC
driver package for optimized gateway application. The
implementation procedures are as follows:

¢+ Download the appropriate version of the JDBC
library package for each service

¢ Unzip the downloaded IDBC library package

» Download two other decompile programs and
decompile the package

+ Double-check the decompile results

* Qenerate a project in the development platform (1e.
Eclipse) and import the decompiled source

» As the Java compiler, use a Java Development Kit
(JIDK) compatible with the TDBC driver

¢+ Summon the conversion gateway method in the
connect method of the OracleDriver.java file (Fig. 1)

o TImplement the database conversion gateway
method

¢+ Compile the modified package and replace the
unzipped files in step 2 with the compiled
OracleDriver.class and Oracle jdbe.driver.
OracleDriver.class

* Re-compress the modified JDBC library package

» Test the JDBC library package and check the
connection to the modified database

¢ Distribute to the corresponding WAS server if no
problems are found in test results

3361

J. Eng. Applied Sci., 13 (10): 3358-3363, 2018
@

.MI'W_!JWWMMWH.
fin e S Meheoy Negi Gah s W Vs ek

el e e -0 Gra-n-mns-mipBewi & curt o | 1| 18 8 o @ 9
If it pkrw 71 =B oo o g
Bale - L]
o oot -
. Wiverr | de
e i | public Connect len connect (String s, Praperties propert|es)
B ke o e I ihrows SOLFxcept lon
ok e | |
8 iz
A Tl e e 5 = changeURL (=) 44 Call ihe database connectlan caversloen meihod
kI Syglam, ouf print In(*conhact §1r="+a): A Tu teal thae conneciLohn convers|on resull
e i il
B I||{s.mmunlm:nes:u. ®Jdbc:detauliconnect ion®, 0, 23))
&m..::" Siring &1 = "jdociorac|e:kprb®:
Pl "IEI' - sll:uornn
Amipeiahtie
:m.mm::" | “; = ul.concat (5. subsiring{23, =, length(})}!
g
pramin ol B = gl coneat {*:*);
1§ o]
1§ e g g1 = nulli
e I ! ;
i DR o Int 1 e el ver Ex pane ot Tiperr onlBL (8]
] i == -2} [
Al SRR, COUBLE el i return nulli
L
gt e = <3)
um_;mumm. [
ol GRUARy_ FLOATCpyglincs | SOLExceptlon sqlexcepilon = DatabaseError. creafess/Excen /ool gel Connect lonbur |ngExcept |
gmiﬁ::;““" adlvzcont an, 11 IngtackTrace):
iy e thiow salexcept jon;
Ak Brun Dot jo
:wmm’mu“r“' OraclelriverExtension oracledriverexienslon = null;
i S sarce OracIadr ivarpxanaion = driverextanaional il
i Sy Fucincr e P {oracody [veaioxtons|on == fill)
.qmsn:mnumm try

GranFeatibing

aynihran| zed{thia)

iH{oraciedriverextension == null)

arac | e ivarasieng ian = (OFac | a0r IvarFEtana lan G| &aa . ff dasel 87 fwar Fxtansi =

b b i “Be-pv=n

i i b gy 1194 i

| Yenlatle | Smartbuet 1401

(b)

Fe G S ARTY NegRe Seh e un windoe b

MG ea g s:0+Q -+ i PMeBET LGB oo oo {9 AN @ o
o [roguet bnglewe 1 B8 et 3 =il
Bhle = 21 .u
; =) fald ¥ II??' private Sering changeURL(String url){ J1 Convert the connection URL] 3
B 0 i 124 stringl] arrUrl = url.split{*8*):
n B s coreivt 124 It (arrliri. lengthe2){
=] il st I?? return uri;
o sndndbei 12
:a::;:xw :52 It { .-'a'n”l|l|||| lnLEwrEguii]mnnlnui;—vhlr kistl re.ke®)
4 ; 1, toloserCase() containg
:mﬂ::ﬂw‘ﬂ 130 nrrurl 1 .lu\nlerc?se[] canlalns["dﬁ:{:l 1
. o LN (F1) srrUrl[1]. containg("2XX, 20X X
R bt i 132 arrUri] 1] contains[*2XX. 2X%. KKK %16)
e 134 ST (1| Contatnal-Bnx ok Xk ¥10"
o arrlri|1] . contains(®2XK. 2X%. XXX X187
& mmniramietion ||| [ENE arrUr | [1] contains(206, 200 XK K19%
el (| | arellr 111 contains{*2XH, 2KX KKK k20"
o 137 arrlr i1] containg(® 20X, 2a W X21"
it i 138 arcUri] contains 200, 200, KH6. K22")
T 130 arrurift .cmlaim{ 2XK. 2K0K . K00 X23°)
e 140 arrUri| 1] contains(*2XK. 2XK. 000 k24")
- i e 141 arrUri|1] . contains("2XX. 2X%. KEX %25*)
- il Wb 142 arrUri| 1] . contains("2XK, 2XX XXX X26"
e || UL Contatnaf-ex.sux. Xk sén-
& TPuRY DOUBLE e arelle containg]® 20K, 2EK, W00 26"
il ths DosLECeging | B1AG arrlri| 1] containg(*2XK, X8, X0X X28"
+ @ sy otz N1 46 arrUri[1]. containg(*2XK, XX, X0X.X30%)
o, TPuRY FLCATEN S 147 arrUri[1] contains(*2Xx. 2XX. 000 X31")
ol spim puowicapyngtiedss | () 68 areuri]1]. contains '2])(.2::.](::.132'}
o Inr ALovusnd i)40 arrUri|1] . contains("2XK. 200 KNX_X35°
ﬁ‘mmﬂ“ IIEO arrlr i1] contains("2KK, 208, 00X X347)
o 1
_ﬂiMMMWMN 162
g“m“"‘”“;l" 153 it (arrur (1], tobppercase(), containg(*0IN5T01%) 11 WERINGAG
6§ . 154 || arruri[1]. tolppercase() . contains(*01NsTO2")
B thFosming 155 || arruri[1].toUppercase() . contalne(*01NSTOI")

| arrUri[1]. toUppercaze().contalng ‘IHIISNH')

j:_w —— 157 arrlri[1]. tolpperCase() .contalns(" 01RS105"
T 168 arrri|1]. tolipperCase() contalns(*0|NSTOE"
o§, Hosbiscuejava 169 arrlieif1]. tollppertasel) contalns(*0INSTO7"
B T — 160 arreif1]. touppercasel) . contalns(*0INSTO8")
Ll BB e 161 arrlet[1], tatppercase() contalns(*0IRETI1")
1§ tectambinget 162]
i Jteache g 163 [M Ur-B
] fuiddsie 164 arriri[1) = *{DESCAIFTION_LIST= (LOAD_BALAMCE=0f |} (FAILOYER=0n) (DESCHIFTION= ((
& ipmamyery 168 talse I iarrurl[!l.tollmrtm!l.cnrltalm;l'nlllsw
o feande 166 arrlri[1]. tolppertasel) contains(*0INSTI0")
o4 pecomprglinse ina 167
o4 o 168
ac . 163 arrlir 1[1] = *(OESCRIPTION_LIST= (LOAD_BALAKCE=off)(FAILOYER=0n) (DESCRIPTION= (0
mhcrnmjeet 170 I
ChanCOMmEnACILY i 171
4 Sartoppnginde 12 |
&l Onshet g 113
g:m{" 174 return arclirl [0]+ @ #arrUri[1]:
i clsbemminctiineins = (W76} *
. £ ' . i d '

wrtable T e | 122770

Fig. 1: a, b) Implementation of database connection URL conversion function

3362

J. Eng. Applied Sci., 13 (10): 3358-3363, 2018

The above database conversion gateway replaces
existing files in the JTava library package path of the WAS
server. For changes to TNS information used by OCT and
DBCP, the tnsnames.ora file in the Oracle client
wstallation directory or TNS_ADMIN path 13 modified
with the updated database nformation.

RESULTS AND DISCUSSION

The assessment of database accounts, schemas and
database comnection types for more than 200 web
services was time consuming and manpower intensive.
The database connection types of web services exist in
diverse forms with one service having one to four
connections. Some connections comprised different
drivers such as OCI, thin drivers and DBCP drivers.
These diverse forms are seen as the result of adding
new functions over time ombined with ndividual
preferences.

This study performed service migration using a
database conversion gateway implemented and tested
based on analytical results. The key 1s to reflect the
comnection information to the new integration database
server for web service components such as the web,
WAS and database server.

To reflect the connection information to the new
integration database server, a database conversion
gateway was mnplemented at the driver level. In the WAS
server, service migration becomes complete by modifying
the information mn the TNS NAMES ora file and replacing
the corresponding TDBC driver.

The proposed method allowed migration to be
completed in a few hours which is a significant
umprovement compared to the lengthy migration process
for individual services.

CONCLUSION

KISTI collects a vast amount of science and
technology information and provides extensive services.
Orgamzations responsible for establishing large
databases and offering various related services are
burdened by database integration and migration which
result from the new establishment or modification of
systems.

When following the regular service migration
process, it 18 almost mmpossible to resume web services
within a few hours of database integration or migration.
As such, the proposed method is expected to serve as an
effective solution in circumstances where database
integration or service migration must be performed in the
shortest possible time.

While this study limited database integration and
gateway implementation to Oracle databases they can be
applied similarly to other databases operating under a

Tava-based TDBC environment such as MS-SQIL and
DB2. Factors to be considered are security risks and
management issues related to the exposure of information
in old and new databases for modification to connection
URL in ojdbe drivers. Further research 1s needed to
address security weaknesses. The results of this study
were utilized in the quick migration of more than 200 web
services being offered by KISTI. This helped to maintain
the institute’s business continuity and web service
competitiveness.

REFERENCES

Anonymous, 2016, Transparent network substrate.
Wikimedia Foundation Inc, San Francisco, California.

Anonymous, 2017. What's new m JDBC and UCP in
Oracle database 12¢ release 2 (12.2)?. Oracle,
Redwood City, Califorma. http://www.oracle.
com/technetwork/database/features/jdbe/index html.

Bai, Y., 2011. Practical Database Programming with Java.
Wiley/IEEE Press, Hoboken, New Jersey, USA,
[SBN:978-0-470-88940-4, Pages: 952,

Chaudhary, HH., 2014. Core Java Professional: Advanced
Features (Core Series) Updated to Java 8. 2nd Edn,,
CreateSpace, New York, USA., ISBN: 9781502370525,
Pages: 582.

Crawford, W., J. Farley and D. Flanagn, 2002. TJava
Enterprise in a Nutshell: A Desktop Quick Reference.
2nd Edn, O'reilly Media, Sebastopol, California,
Pages: 935.

Hao, W., T. Gao, L. Yen, Y. Chen and R. Paul, 2006. An
infrastructure for web services migration for real-time
applications. Proceedings of the 2nd TEEE
International Workshop on Service-Oriented System
Engineering (SOSE'06), October 25-26, 2006, TEEE,
Shanghai, China, pp: 41-48.

Kazzaz, M.M. and M. Rychly, 2015, Web service
migration using the analytic hierarchy process.
Proceedings of the TEEE International Conference on
Mobile Services (MS), June 27-Tuly 2, 2015, IEEE,
New York, USA., ISBN:978-1-4673-7284-8, pp: 423-
430.

Kogent Learning Solutions Inc., 2014. Java Server
Programming JavaEE7 (J2EE 1.7), Black Book. Wiley,
New Delhi, India, ISBN-13:9789351194170, Pages:
1304,

Kun, H., L. Chaohua, Z. Hua and H. Jun, 2007. Efficient
web service migration algonthm. J. Comput. Appl., 24:
64-67.

Yang, A., J. Linn and D. Quadrato, 1998. Developing
integrated web and database applications using
TAVA applets and IDBC drivers. Proceedings of the
ACM 29th Techmical Symposium on Computer
Science Education Vol. 30, February 26-March 01,
1998, ACM, Atlanta, Georgia, pp: 302-306.

3363

	3358-3363_Page_1
	3358-3363_Page_2
	3358-3363_Page_3
	3358-3363_Page_4
	3358-3363_Page_5
	3358-3363_Page_6

