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Abstract: Unlike traditional Shewhart Chart, Cumulative Sum (CUSUM) chart is more sensitive to small and
moderate shifts. Nonetheless, its reliability in monitoring the mean shifts 1s usually hampered by the underlying
distribution of the data. Although, apparent cause of non-normality is owed to outliers, their presence may
simply be a genuine part of the process rather than attributing to the special causes. To set these occasional
outliers apart from the real distributional shifts, numerous extensions of the CUSUM charts have been
suggested. One possible way 1s via robust estimation. This paper proposes a simple, yet effective way to make
the chart highly effective for detecting small sustained shifts. A very robust scale estimator, namely Median
Absolute Deviation about the median (MADn) is used as an estimate for dispersion. The performance
evaluation of the proposed chart for momtoring mean shift is compared with the standard CUSUM chart using
several aspects of the run length distribution the Average Run Length (ARL), Standard Deviation of the Run
Length (SDRL) and percentile run length. The simulation results indicate the robust CUUSUM chart efficiency
in detecting small magnitude of shifts in both normal and outlier-prone data.
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INTRODUCTION

Several statistical techniques have been proposed to
identify varation due to special causes. One of them 1s
through Shewhart type chart. Though, simple and
relatively easy to construct the control structure, the
chart possesses some limitations. Termed as memoryless
chart, the design of Shewhart control structure only uses
current information of the process, thus loses its practical
use when small disturbances are of interest. In this plight,
control charts with more advanced scheme are compelled
to be used. Such control scheme i1s Cumulative Sum
(CUSUM) chart which incorporates historical data along
with the current one n setting up the control structure.
Due to this feature, CUSUM control chart 1s classed under
the memory-type chart and lend itself to small and
moderate shifts.

CUSUM control chart constructed from the sample
mean was first pioneered by Page (1954). However, this
chart is formed based on normality assumption. On that
note, computation of the Average Run Length (ARL) 1s
also hinged on the assumption. The ART. is used to gauge
how responsive 1s the chart towards special causes if

these variations occur in phase 2. When normality
assumption 1s violated, the chart 1s expected to signal
more frequently than its nominal ART, would suggest. In
general, this translated to umnecessary process
adjustment and loss of confidence in any chart as
monitoring tools (Chang and Bai, 2004). Thus, continual
efforts on the improvement of CUSUM control chart have
been seen about, since, it was first introduced. The 1dea
1s to ensure that its authoritative form m phase 2
process monitoring remain indubitable, reflected by a long
mn~control ARL and much smaller out-of-control ARL
even under disturbances to normality. One possible
approach is to employ some robust techniques into
CUSUM structure.

To exploit the functional use of CUUSUM design in the
presence of outliers, Rocke (1992) proposed to replace X
with trimmed-mean in the CUSUM statistic. The resultant
CUSUM chart aptly named as trimmed-mean CUSUM,
showed a promising result in the departure of normality.
Similar conclusion was arrived by Midi et al. (2004) under
Student-t distribution with varying degree of freedom
as well as Chi-square distributions. Following that,
Yang ef al (2010) used median to replace X in the
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CUSUM statistic. Subsequently, they studied the
performance of median-CUSUM chart in the presence of
outliers. Nazir ef al. (2013) extended Yang er al. (2010)
research by proposing another three additional location
estimators including two of the robust ones namely
Hodges-Lehmamm (HL) and trimean Testing against
various conditions such as contammated-normal and non
normal distributions, trimean-CUSUM chart was found to
produce the best ART. performance.

Concerns are bemg raised on some of the
abovementioned robust approaches. While able to retain
a long in-control ARL under non-normality median chart
1s also probable to experience detection delay when slufts
commence, irrespective of the data scenario. On top of
that, each and every one of the deliberated robust charts
(trimmed-mean, median, HI, and trimean) require that data
consist of rational subgroups an issue that was brought
up by Hawkins (1993) m his study. Considerng this
limitation, Hawkins (1993) as well as Lucas and Crosier
(1982) recommended a more general approach that could
be applied on either individual or grouped data. Their
proposals were made mn the context of unknown
parameters wherein the winsorization approach was
adopted to attain robust parameter values. Tt was claimed
to successfully maintain the ART, performance of the chart
as the effect of occasional outliers could now be curtailed.
Such outliers only affect individual reading and lead to a
transient shift in the process. By limiting their effect, the
functional use of CUSUM chart is safely reverted to
detect small sustained shifts only. Following the same
flow of thought we proposed an alternative way to
achieve similar favorable outcome in the ARL calculation.
This study mvestigates a new way to curb the effect of
occasional outliers if presence when CUSUM chart is
used to monitor a process mean. Ultmately, this 1s
attained by constructing a CUSUM chart using robust
estimate of the process standard deviation, known as the
average of the subgroup median absolute deviation about
the median (map)ln) rather than the average of the
subgroup standard deviations @). While keeping the
in-control ARL, relatively close to the nominal value, the
newly proposed chart also maintains sensitivity towards
shifts in the mean. This is shown by conditioning the data
on normal and mixed normal distributions. Although,
rational subgroup concept is exercised in this study, the
procedure can be easily implemented along the same line
for sample size 1.

The standard cusum control chart: The standard CUSUM
control chart 13 based on the following statistics
(Nazir et al., 2013):

¢, = maxi0,C, (X4, s

(1

Cpi =min{0, C, i—1+(}_<1'“'0 )+K

Where:

I = Defines the subgroup number

X = The subgroup sample mean

o = The in-control process mean (or sometimes
talken as the target mean) and

K = The reference value

¢, mdc,, — The initial values typically setat O

Here, the subscripts U and L. denote the upper and
lower part of the CUSUM statistics, respectively. To
monitor the process mean, plots of both upper and lower
statistics will be compared against the decision limit, H.
These statistics measure the cumulative sums of deviation
of data from the in-control mean, indicating an upward
shift when C, >H and vice-versa when C | <-H. As the
procedure 1s highly sensitive to the selection of H as well
as K, extra care needs to be exercised while selecting the
parameters. K and H are defined as follows (Montgomery,
2009):

K=ko,, H=ho, (2)

Where:
. ©
OX = ——

Vi

1s the standard deviation of the sampling distribution of
the mean estimator (i.e., the standard error of the X
estimator) and n 1s the sample size. Let:

z, = St 3)

ovn

Thus, the standardized CUSUM 1s defined as follows.

C,,=max{0,C, _ +{Zk)}

u,i-1

C., =min{0, C_,+(Z,-k)

4

Where:
" )

and ois the magnitude of a shift where a quick detection
15 required. Following the standardized CUSUM, the
decision limit is now at h. When process parameters are
unknown and require to be computed from an m-control
phase 1 data set, then p, can be estimated in practice by
the average of the sample mean:
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and o can be estimated by S/c,, where is the average of
sample standard deviation defined as follows:

- lx
S=—Ys (7
mZ{ '
Where:
m = The total number of subgroups being
employed n the stud each with size
nandc, A constant which only depends on the

sample size n

A list of values for the factor ¢, , could be referred by
Montgomery (2009) for ne {2, ..., 25%.

The proposed cusum control chart: Analogous to the
standard CUSUM chart, the proposed method also
incorporates every observed sample mean into the
CUSUM statistics. Thus, Eq. 1-5 remain unchanged.
However, rather than assuming Phase 1 data set is truly
the representative of the process, we recogmze the
possibility of some contaminations in phase 1. This
situation 1s quite common in practice as alluded by
JTanacek and Meikle (1997). Under this quandary, the
standard estimates given n Eq. 6 and 7 can be easily
perturbed by outlying values and consequently, affect
the phase 2 performance of the chart. To cope with
outliers, step changes and other data anomalies
(Jensen et al., 2006) recommended studying robust or
alternative estimators for u, and o. This subject is being
addressed in our study. Rather than estimating o by the
most commonly used estimator 5. we propose an
altemative with the highest possible Breakdown Pomnt
(BP) known as MADn. Also, identified as Median
Absolute Deviation (MAD), the estimator has made a
mark in modern robust statistical methods due to its 50%
BP as well as its bounded mfluence function with the
sharpest possible bound among scale estimators
(Rousseeuw and Croux, 1993). These merits occasionally
outweigh a duo setback experienced by MAD 37%
efficiency at Gaussian data and less suitable for
asymmetric distributions. Therefore, the effect of outliers
could still be minimized on the scale estimates upon
application. MAD is defined by Rousseeuw and Croux
(1993):

MAD = med, ‘xi—medjxj‘ (8)

Common approach is to multiply some constants say
b with the output (Eq. 8) to make the estimator consistent
for the parameter of interest.

MAD, = bMAD o)

In this study, b is set at 1/0.6745 to make MAD
consistent for 0 at normally distributed data. To 1solate
the effect of using an alternate dispersion measurement
on CUSUM chart performance, we retain the application
of sample mean for the location parameter. Thus, i, is still
estimated by X as Eq. 6 but ¢ 1s now computed as
follows:

Il
MAD, = %E(MQ (10)

I=1

Performanceevaluation and simulation: The performance
of the proposed and standard control charts 1s evaluated
using ARI., defined as the average number of points
plotted on the chart until an out-of-control condition is
signaled. This criterion 1s used to assess an m-control and
an out-of-control state of the process. The in-control
ARL is denoted by ARTL,, and the out-of-control ARL is
referred by ARL,. A high value of ARL,, accompanied by
low values of ARL, 1s always desirable as they signmify a
good control chart. To improve the overall assessment,
we also incorporate additional criterion to supplement the
ARIL. This approach has been recommended by many
researchers. For an example, Woodall (2000), Jensen ef al.
(2006) and Chakraborti (2007). The suggestion was
brought up due to the extreme right-skewness frequently
observed in the run length distribution when process
parameters are being estimated. From this standpomt,
statistical meaning of the ARL would be undermined.
Thus, we compute and examine SDRT along with 10, 50,75
and 90th percentiles of both states of the run length
distribution in addition to the ARL.

The ARIL values are estimated by means of
simulation using SAS Version 9.4 Software. The
procedures are taken as follows. First, samples of 50
in-control phase 1 of size ne{5, 7, 10, 15} are generated
from the chosen distribution (Table 1). Then,  and & are
computed from the data. Note that in this study, we
assume data are independent and identically distributed.
We further generate 15,000 phase 2 samples of size n from
the selected distribution (which is the same as phase 1
distribution) under in-control state and apply them on the
charts. The chart statistics are computed and recorded
whether they are within decision himits or not. The
respective sample number (when either C, pror C; ;<-h ) 1s
noted as the in-control run length. The process is
repeated for 10,000 simulation runs. With that, the ART,
1s attained by averaging the value over the total runs.
Ultimately, a shift 13 commenced. A shift in the process
mean is referred by p, = u+00 where & is the magnitude
of the shift and n, is the shifted mean value. We set
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Table 1: Distributions applied in the study

Variables Distribution Percentage of outliers Description

Normal N (g, %) 0 Ideal

CN1 (0. 95N(p 0%)H0.05 )N (g, 99%) 5 Mild contamination (Inflated variance)
CN2 (0.95)N(py o) H0.05)N(pg, 40%) 5 Mild contamnination (Inflated mean)

& for {0.1,0.15,0.2,0.25,0.3,04,0.5,0.75,1,1.5,2.0,2.5,
3.01. Analogous to ARL,, identical steps are taken to
procure ARL, with respect to the 8.

In this study, the ideal condition 1s assumed to be N
(Mg, 05). Also, a duo of contaminated normal distribution
is used to illustrate the presence of outliers in the process.
The distributions are described m Table 1 where we
set Wy = 0 and 0 = 1 without loss of generality.

To compare the performance of the charts, both
standard and robust charts are designed to attain the
same nominal ARL, Following that, a chart with the
smaller value of ARL, for a specific size of shuft outweighs
its competitor. Occasionally called as the optimal shift, we
denote this shift as 8,,,.
Design and derivation of limits of the standard and robust
CUSUM control charts: The design of the standard and
the proposed CUSUM control charts involves a
derivation of optimal pair of parameters, k and h. This
optimal pair 18 derived mn such way that we obtain the
nominal ARL,under normality. A step by step approach
to get them is explained as follows:

* Fixedn

¢ Fixed ARL, when the process ~ N (i, 07)

* Setd,,

+ Set the optimal constant, k accordingly where k = 3,,/2

+ Based on the designated value of k, determine h such
that the CUSUM chart produces the nominal ARL,

RESULTS AND DISCUSSION

The results of our simulation study are summarized in
Table 2-5. We first give the ARL, followed by their
respective SDRL i the parentheses. Table 6 illustrates the
outcome for the percentile. To accomplish that, we set the
nominal ARL, = 370 and 8, = 1.0. The associated factor
(h) can be referred in Table 2.

First, consider the situation where the distribution of
the data 1s assumed ideal (Table 3). We see that, the ARL,
of the robust CTUUSUM chart are significantly smaller than
the standard chart for <04 and n = 5, 7. Although, the
performance of the standard chart seems to improve when
=7 the robust CUSUM chart stll maintains a faster
detection ability for particularly small shifts resulting in a
powerful control chart when small shifts are of interest. In
addition, the proposed method can be considered as an

Table 2: Factor (h) of CUSUM charts under N (0, 1) at ART; =370

n Standard CUSUM Robust CUSUM
5 4.994 6.996
7 5.048 6.266
10 5.072 5.917
15 5.098 5.588

alternative to the standard chart m the presence of large
shifts. For &>1.5, the out-of-control performance of
the robust chart trails closely behind the standard
chart.

The strength of the proposed CUSUM chart 15 further
enlightened when there are contaminations m phase 1
data. From Table 4, we observe the best performance for
relatively small magmtude of shifts 13 achieved by the
robust CUSUM chart. This confirms that it 1s advisable to
use a robust scale estimator 1if there are special causes n
Phase I. The robust estimation results in a powerful chart
for monitoring the mean shift. The CUSUM chart based
on MAD, possesses much smaller ARIL, than its
competitor when §<0.5. We discover the recurring pattern
for the ARL, similar to the N(0, 1) distribution when both
CUSUM charts are conditioned on large magnitude of
shifts. On a different note, the in-control performance for
both charts 1s quite unpredictable. Studied against
different n, the ARLfluctuates to a certain degree, greater
than the nominal value (370). The standard CUSUM chart
demonstrates a slightly better m-control robustness than
its competitor for a small sample size (n = 5). But the
outcome 1s reverted when n increases. In particular, the
CUSUM chart based on MAD, possesses a remarkable
in-control robustness when n = 10 whereby the
ART,=370. Since, the comparison between Table 4 and 5
shows a similar trend, it 18 sufficed to discuss and draw
conclusion based on the preceding comparison.

The tabulated result for the SDRL 1s quite
conspicuous wherein all the in-control SDRL 18 noticeably
larger than the ARL,. This clearly indicates that an extra
variability 1s mtroduced mto the CUSUM statistics when
both mean and standard deviation are being estimated.
However, the impact 13 predominantly dwindled as large
n is used to compute §; and & Both normal and mixed
normal data scenarios show smaller values of the
in-control SDRL whenn =10, 15 in contrast ton=15. On
a side note, more variability is captured when CTUSUM
chart is constructed using MAD. rather than S/c,.n. This
is particularly evident when n = 5, conditioned on CNT1.
Confined under this setting, the proposed method
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Table 3: ARL (8DRL) values for the standard and robust CUSUM charts under N(0, 1) based onm =50 and 6., =1

n=15 n=7 n=10 n=>5
Standard Robust Standard Robust Standard Robust Standard Robust
Variables CUSUM CUSUM CUSUM CUSUM CUSUM CUSUM CUSUM CUSUM
0.00 370.04(511.06) 370.09(640.35)  370.25(484.19) 369.69(570.58) 370.10(441.38) 369.92(514.86) 370.29(441.83) 370.07(483.4T)
0.10 217.72(343.31)  210.07(415.97)% 184.37(287.48) 177.44(320.18)* 140.06(213.86) 132.11(227.90)* 96.28(15747)  O1.84(154.94)*
0.15 126.94(221.25) 117.50(280.05)% 93.44(173.67) 86.69(162.50)* 59.53(95.15)  SS.91(93.60)*  37.06(51.98)  35.21(48.22)0.2*
6847(111.61)  61.22(115.59)*  44.95(66.99)  4224(70.01)*  2921(34.78)  27.83(32.73*  1847(16.16)  17.98(15.25)*
0.25 39.74(56.56)  34.95(57.95)*  26.08(20.58)  24.13(27.66)*  17.37(15.55)  17.10(15.16)*  11.81(7.99) 11.77(7.55)*
0.30 25.13(27.83)  22.76(23.789)*  17.33(15.80)  16.57(14.57)*  12.35(3.98) 12.04(837) 8.68(4.74) 8.67(4.61)0.4%
13.77(10.89)  13.16(%.01)* 10.06(6.19) 9.94(5.75)* 7.57(3.78)* 7.65(3.75) 5.68(231) 5.73(2.27)
0.50 9.17(5.39)* 9.22(4.97)* 7.11(3.47)* 7.22(3.36) 5.54(2.24)% 5.642.21) 4.25(1.45)* 4.34(1.50)
0.75 5.02(1.96)* 5.33(1.94)* 4.12(1.40)* 4.27(1.39) 3.33(0.99)* 3.45(1.00) 2.70(0.72)* 2.76(0.73)
1.00 3.55(1.13)* 3.80(1.16) 2.97(0.085)*  3.13(0.8T) 2.48(0.63)* 2.56(0.64) 2.09(0.42)* 2.12(0.43)1.5
2.32(0.36)* 2.50(0.61) 2.04(0.41)* 2.13(0.43) 1.80(0.43)* 1.87(0.38) 1.41(0.49)* 1.49(0.50)
2.00 1.85(0.41)* 1.99(0.36) 1.59(0.49) 1.72(0.46) 1.23(0.42)* 1.32(0.47) 1.02(0.13) 1.03(0.16)
2.30 1.47(0.50)* 1.70(0.48) 1.15(0.36)* 1.26(0.44) 1.01(0.11) 1.03(0.16) 1.00(0.01) 1.00(0.01)3
1.12¢0.33)* 1.31(0.46) 1.01(0.10) 1.03(0.18) 1.00¢0.01) 1.00¢0.01) 1.00(0.00) 1.00¢0.00)
Table 4: ARL (SDRL) values for the standard and robust CUSUM charts under CN1 distribution based onm = 50 and &, =1
n=15 n=7 n=10 n=>5
Standard Robust Standard Robust Standard Robust Standard Robust
Variables CUSUM CUSUM CUSUM CUSUM CUSUM CUSUM CUSUM CUSUM
0.00 377.59(530.22) 391.51(705.41) 377.75(459.84) 379.75(576.51) 374.47(457.55) 369.35(493.95) 381.88(443.37) 378.27(484.67)
0.10 237.48(362.01) 236.35(444.90)* 203.83(310.51) 200.76(373.60)* 167.19(266.72) 157.72(262.36)%* 119.00(183.99) 116.01(193.32)*
0.15 152.83(250.35) 142.55(328.300* 111.26(177.69) 105.74(199.2D)* 77.26(121.67)* 7TL.58(117.19)* 47.61(70.57)  47.41(78.99)*
0.20 83.87(141.52)  77.73(165.93)%  3879(92.01)  S323(87.92)%  37.58(48.68)  34.94(44.00)*  2345(2440)  22.50(22.89)*
0.25 30.64(84.89)  4451(76.75)*  32.94(4240)  3L19(4TA6)*  2237(23.70)  21.23(22.08%  14.39(11.26)  14.09(10.67)*
0.30 33.03(44.54)  2946(41.97)*  2140(21.60)  20.03(2LAT)*  15.06(12.13)  14.65(1L.5T*  10.41(6.58) 10.37(6.39)*
0.40 16.69(15.13)  1575(12.67)*  11.99(8.39) 1L.77(7.72)* 8.83(4.82)* 8.90(4.66) 6.51(2.91)* 6.63(2.93)
0.50 10.65(679%  10.74(6.29) 8.19(4.35)* 8.21(4.06)* 6.31(2.81)* 6.42(2.78) 4.87(1.80)* 4.90(1.75)
0.75 5.71(2.43)* 5.97(230) 4.66(1.72)* 4.82(1.71) 3.78(1.22)* 3.88(1.20) 3.01(0.85)* 3.08(0.85)1
4,00(1.36)* 4.30(1.39) 3.31(0.99)* 3.47(1.01) 2.75(0.75)* 2.84(0.75) 2.26(0.51)* 2.31(0.53)
1.50 2.55(0.66)* 2.78(0.71) 2.21(0.50)* 2.30(0.52) 1.93(0.38)* 1.99(0.36) 1.63(0.49)* 1.69(0.46)
2.0000.41)* 2.14(0.43) 1.78(0.43)* 1.88(0.38) 1.44{0.50)* 1.56(0.50) 1.08(0.28)* 1.12(0.32)
2.30 L.67(0.47)* 1.86(0.39) 1.35(0.48)* 1.49(0.50) 1.06(0.24)* 1.11(0.31) 1.00(0.03) 1.00(0.05)
3.00 1.30(0.46) 1.53(0.50) S1.O6(0.20)*  1.13(0.33) 1.00(0.05) 1.01(0.07) 1.00(0.00) 1.00(0.00)
Table 5: ARL (SDRL) values for the standard and robust CUSUM charts under CN2 distribution based onm = 50 and 1
n=15 n=7 n=10 n=>5
Standard Robust Standard Robust Standard Robust Standard Robust
Variables CUSUM CUSUM CUSUM CUSUM CUSUM CUSUM CUSUM CUSUM
0.00 386.42(538.61) 388.48(685.86) 378.80(486.69) 370.68(573.70) 371.42(452.45) 358.64(488.13) 380.42(446.25) 1378.14(481.75)
0.10 215.61(328.84) 210.55(441.85)* 180.95(288.23) 178.59(334.92)* 138.09(214.94) 133.94(241.61)* 97.62(163.28)  96.40(185.48)
0.15 127.02(216.53)  118.79(245.92)* 0043(154.68) 8349(158.26)* 62.51(95.65)  SS.IS(10L.13)* 37.39(57.17)  36.36(56.94)
0.20 68.45(117.22)  SL16(117.77*%  45.98(73.10)  42.15(71.32)%  2023(34.19)  27.84(35.26%  18.65(18.17)  18.18(16.43)
0.25 39.05(57.42)  35.14(56.59)*  26.69(33.18)  2439(29.51)*  17.92(1628)  17.42(15.400*  11.91(8.70) 11.82(7.59)*
0.30 25.38(30.63)  22.90(25.44) 17.36(15.42)  16.54(13.32) 12.25(3.96) 1212817 8.68(4.76) 8.63(4.55)
0.40 13.58(10.73)  13.11(89D* 10.01(6.04) 9.93(5.68)* 7.58(3.81)* 7.60(3.69) 5.71(2.38)* 5.78(2.36)
0.50 9.07(5.14)* 9.17(4.70) 7.13(3.48)* 7.16(3.2T) 5.50(2.24)* 5.63(2.22) 4.29(1.50)* 4.32(1.49)
0.75 5.06(1.97)* 5.38(2.00) 4.14(1.43)* 4.27(1.42) 3.34(0.99)* 3.45(1.01) 2.71(0.72)* 2.77(0.73)
1.00 3.54(1.11) 3.83(1.16) 2.97(0.84) 3.11(0.86) 2.49(0.63) 2.57(0.66) 2.09(0.42) 2.12(0.43)
1.50 2.32(0.36)* 2.52(0.61) 2.04(0.41)* 2.12(0.42) 1.80(0.42)* 1.87(0.38) 1.42(0.45)* 1.49(0.50)
2.00 1.86(0.41)* 1.99(0.37) 1.61(0.49)* 1.73(0.45) 1.23(0.42)* 1.33(0.47) 1.02(0.13) 1.03(0.17)
2.30 1.46(0.50) 1.69(0.48) 1.15(0.36) 1.27(0.45) 1.01(0.11) 1.03(0.16) 1.00(0.00) 1.00(0.00)
3.00 1.13(0.33)* 1.32(047) 1.01(0.10) 1.03(0.18) 1.00{0.00) L.00{0.02) 1.00(0.00) 1.00{0.00)

ARL value *indicates a better out-of-control performance between the two charts for a specific sample size n and shift &

captures a substantial amount of varability, far more than

the standard method (Table 4: 750.41:>530.22). The effect
18 1dentical on CN2 (Table 5). Overall, the out-of-control
SDRL is larger than ARL, for 8<0.2 though the gap is
drastically reduced as & and n increase. This 1s noted for

both charts.

Next, we provide a brief explanation on the percentile

of the run length. Here, we limit our discussion ton =7,
based on the ideal data condition. This sample size 1s
regarded as an intermediate between small and large n,
which gives a fair evaluation when we contrast the

behavior between the two charts. Considering the result
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Table 6: Percentile min length values for the CUSUM chart under N (0.1) distribution with n=7 and &, =1 at ART,=370

3
Variales/Percentile 0 0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2 2.5 3
Standard CUSUM chart
Py 35 17 9 6 5 4 3 2 2 1 1 1
Py 85 35 14 8 4] 5 3 2 2 1 1 1
Ps 213 87 26 13 9 6 4 3 2 2 1 1
Pys 465 212 50 21 12 9 5 3 2 2 1 1
Py 879 443 96 33 17 12 6 4 2 2 2 1
Robust CUSUM chart
Py 32 16 9 6 5 4 3 2 2 1 1 1
Py 4 32 14 9 4] 5 3 3 2 1 1 1
Ps 189 77 24 13 8 6 4 3 2 2 1 1
Pys 434 189 46 20 12 9 5 4 2 2 2 1
Pu 892 421 87 30 17 11 6 4 3 2 2 1
5009 (a) 5007 0 (b)
O Robust CUSUM ,
4007 B Standard CUSUM 4004
300 3004
2 g
200 200 4
1004 |_|.| 100 |‘|-|
0 ! ITI |T|II1'I M m mem ;g o 0 ! ! : . ; :
5007 (c)
400-
22300
12l
<
200-
100 m
0 m Mg mp e oo
0 015 025 04 075 15 25
Shift
Fig. 1. Comparison between the robust CUSUM and the standard CUSUM chart in terms of ARL values; a) Output for

N (0.1) distribution with n = 7; b) Output for CN1 distribution with n = 7 and ¢) Qutput for CN2 distribution with

n=7

provided m Table 6, we observe that the run length
distribution of both CTISUM charts is influenced by shift
in the process mean. It is highly right skewed when the
process 1s mn-control. The pattern follows through when
the shift starts to commence. As the magnitude becomes
significently large, the shape of the run length distribution
changes to nearly symmetrical. The analysis could be
easily extended to the CNI and CN2 distributions.
Although, the results are not showing here, the shape is
still skewed to the right especially for & = 0, comparable to
Table 6. Additionally, the percentile can be used to assess
Median Run Length (MRI). Equitable to the 50th
percentile (P;), MRL is an altermative measure to compare
performance of CUSUM charts.

The tabulated ARL validates the sensitivity of the
proposed robust CUSUM chart under the mnfluence of
exceptionally small sustained shifts with respect to neither

the data distributions nor the sample sizes. However, it
remains to be shown that similar outcome could be
achieved for a different fixed m-control ARL. To do so, we
design both charts (the standard and the robust) for a
nominal ART., =500 but keeping the 8. at 1.0. Form =50
and n = 7, the resulting factors (h) are equal to 5.364 for
the standard CTISUM chart and 6.656 for the robust chart.
(Fig. la-c) illustrates the results.

Under normality, both charts behave as expected the
ARL;=500. For small magnitude of shifts (0<8<0.4), the
performance of our CUSUM chart triumphs the standard
one. From there onwards, nor charts hold power over the
other as their ARL are comparatively equivalent. This 1s
demonstrated in Fig. 1a.

Both charts are expected to encounter detection
delay when we mflate the variance of the process. When
small shifts commence, the ARL, of both charts are
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noticeably larger than the normal case. A case in point of
8 =0.1 for CN1 data, yields ARL>250. For the same value
of & and under the ideal condition, the robust and the
standard charts acquire ARL, of 220 and 230, respectively.
Yet, as value of 8 rises, the disparity in ARL, between the
normal data (Fig. la) and CN1 data (Fig. 1b) slowly
diminish. Bven so, the robust chart is still potentially more
efficient than the standard chart. This is further reinforced
when we conditioned both charts on the CN2 distribution.
We do note, however, that the standard chart seems to
own a robust in-control performance, comparable to the
robust CUUSUM chart when outliers are presence. This
seems to negate the prior sunulation outcome based on
the designated chart for ARL; 370. However, bear in mind
that this section of analysis is conducted on a solitary
sample size (n = 7). Thus, rather than generalizing this
result as a whole, we speculate that the performance of
CUSUM may very well depend on the designated
constants. This includes several factors such as the

nominal value of in-control ARL, &_, and n.

opt
CONCLUSION

In this study, we proposed a new robust CUSUM
control chart for monitorimg the prosess
constructed using MAD,. It 1s a new way to robustify a
CUSUM chart, so that, it is less sensitive to occasional
outliers while at the same time, still able to discern
sustammed distributional shifts. A highly robust scale
estimator with 50% breakdown pomt 13 not easily
perturbed by the outlying values in Phase I. Thus, it
becomes a superior alternative to the Ste,.n if outliers are
presence. The application of MaD, with CUSUM
structure allows the chart to be reliable when a rather
small magnitude of shifts is of interest. This concurs in
both normal and outlier-prone data. To examine the
m-control robustness of the CUSUM chart, the process 1s
calibrated using contaminant data of the same type as are
subsequently monitored. The goal is to keep the ARL
relatively close to the nominal level. Tt was shown that for
moderate n, this target can be met, quite well by the
proposed robust method.

meann,
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