Tournal of Engineering and Applied Sciences 13 (1): 38-42, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

On Balanced Deployment of Dynamic Objects in Distributed Environments

Lung Pin Chen and Hsin Ta Chiao
Department of Computer Science, Tunghai University, Taichung, Taiwan

Abstract: Typical modem internet applications rely on the collaboration of software components deploying
in networlk hosts to deliver application services. As the previous literatures considered the total deploying cost,
e.g., communication and computation costs of the service objects this researcher takes mto account that how
evenly the objects are distributed over the network. We demonstrate that evenly distributing the application
components over the network can prevent bottlenecks and therefore, improves both of fault tolerance and
system response time. In this study, we transform the mimmum cost balanced deployment problem to the well
known minimum cut problem and develop an efficient polynomial time deployment algorithm.

Key words: Distributed system, rich internet application, graph partition, deployment, polynomial, algorithm

INTRODUCTION

Modern internet applications rely on the
collaboration of computational objects that are distributed
in the network hosts to deliver the application services
(Chot et al., 2013; Lee et al., 2013; Ambursa et al., 201 7).
The application performance 1s bounded by the
network latency as well as the time required to
compute the computational objects (Labrinidis et al.,
2010; Viktorov, 2007; Samydurai and Shanmugam, 2014).
Many research efforts have been devoted to partitioning
and deploying a given set of computational objects over
the hosts in varies distributed environments. For example,
the hteratures (Chen et al., 2010; Tang and Chanson,
2004; Vyavahare et al, 2016) considered the total
deploying cost, e.g., communication and computation
costs of the distributed objects.

This researcher investigates the object partition and
deployment problem by considering not only the sum of
the deploying costs but also how balanced the objects are
distributed over the network. A balanced object
deployment strategy tries to partition the objects to the
network hosts evenly. The mam benefit of evenly
distributing the objects is that, we can enhance the
performance via high parallelism and concurrency using
multiple processors. Also, tlis strategy can prevent
network bottlenecks and therefore, ensure the users share
the networle bandwidth fairly. Balanced object deployment
also improves the degree of fault tolerance as there are no
host take most objects that can be crashed at a same
time.

In this study, we formally define the minimum cost
balanced deployment problem and develop an efficient
polynomial tume algorithm. This proposed algorithm 1s

I
." s,
H

Fig. 1: An example of deploying an object computation
graph on a 4-node mesh network

based on the transformation of the minimum cut problem
that has been extensively studied and efficiently solved
{Goldberg and Tarjan, 1988; Shah ef al., 2013).

Problem definition: An object computation graph 1s
represented as a DAG (Direct Acyclic Graph) G = (V, E),
V= {v,, v, ..., vt Where each v,V refers to a data object
and each link (v, v;)eE refers to the dependency relation
from object v; to object v;, 1<1, j<n.. We assume that G 1s
a connected and the dependency relation induced by E is
acyclic. Also, in the graph G those nodes without
predecessors are called imtial nodes (or mmtial objects)
and those nodes without successors are called final
nodes (or final objects).

In this study, an object deployment is a partition on
a set of objects with each part assigned to a different
network host. For example, Fig. 1 illustrates a deployment
of objects on a mesh network with four hosts.

For a directed graph G, a bisection (1., R) partitions G
into two parts L and R = VAL in terms of the precedence

Corresponding Author: Lung Pin Chen, Department of Computer Science, Tunghai University, Taichung, Taiwan

J. Eng. Applied Sci., 13 (1): 38-42, 2018

relation induced by E. Specifically, (I, R) is a valid
bisection if each object is partitioned along with all of its
predecessor objects, Le., (ueL)A((0’, u)eE)=uw £L. Let the
set of all bisections of G be denoted by B(G).

Let weight (0)cZ" be the weight of node u of graph G.
Also, let w(S) =Y _; weight (3) for node set S. A bisection
15 said balanced if it equally partitions the node set as
defined in definition 1.

Definition 1: For a mutually exclusive partition (I, R) on
Graph G, the balancing factor is defined as |w(L)-w(R)|.
The partition (L, R) 1s called a most balanced bisection if
its balancing factor is minimum among B(G).

MATERIALS AND METHODS

Basic most balanced algorithm: This study employs the
arithmetic and geometric means formulas to transform the
MBP problem to the well-known mimmum cut problem
that can be efficiently solved in polynomial time.

Recursive bisection: Recursively bisecting an object
computation graph to adapt to wvarious network
topologies 1s an approach commonly employed for
partitioning and deploying objects. The recursive
bisecting is a divide-and-conquer procedure. Tt first
bisects a partition of objects P into two balanced parts P,
and Py and then solves the smaller problems on P; and Py,
recursively until k partitions are obtained where k is the
number of network hosts.

Figure 2 presents the divide and conquer procedure
performed on three typical network topologies. In the
linear structure shown in Fig. 2a, P, is assigned to hosts
1 to k/2 and Py, 1s assigned to hosts k/2+1 to k. In the tree
structure shown in Fig. 2b, P, and P; are assigned to the
left and right subtrees, respectively. Also, in the mesh
structure shown in Fig. 2¢, P, and Py are assigned to the
left (or upper) and right (or lower)
respectively.

submeshes,

Partition using arithmetic and geometric means: Given
X, the arithmetic mean and
geometric mean are defined as (x,+x,+.+x,/d and
dyx, x,d , respectively. The fundamental Arithmetic and

Geometric Mean iequality (AM-GM inequality) states
that the arithmetic mean must greater than or equal to the

a list of real numbers x,, x5, ...,

geometric mean and further the equal case occurs at
K =K T . T Xy

A simple application of the AM-GM inequality is that
among all the rectangles of perimeter 2n (we assume that,
n 1s an mnteger and 18 even), the rectangle with width

equals to height (1.e., the square shape) has the greatest

39

(a) ©)

S| S,

O

Sl

e
L4

SS

(b)
Sl

L

4 bl b

Fig. 2: Hierarchical object deployment: a) Linear
structure; b) Tree structure and ¢) Grid structure

o Objects
o Hosts

3x3
x5 24
1
¢;)§ Q
d) d oA
») /]
J 9y ok
‘ 9
(©) (©) ©
1x5 2x4 3x3
Fig. 3: The 2-dimensional rectangles and their

corresponding partitions

area. For a rectangle of height x; and width x, satisfying
X+x, = 1, the AM-GM inequality states that:
(x4x,)/22 ()

XX,

Taking the square root of both sides of Eg 1
obtains:

((Xl +X2)/2)2 2XIXZ (2)

Further, the equal case occurs at x;, = x,. We transform
the balanced bisection problem using this AM-GM
property as follows. Figure 3 demonstrates the relation
between AM-GM property and balanced bisection. For a
bisection (I, R) those edges across 1. and R are termed
cross edges while the others (1.¢., the edges with their end
points both in L or both in R) are termed non-cross edges.
As Fig. 3 illustrates, the rectangle of area corresponds to

J. Eng. Applied Sci., 13 (1): 38-42, 2018

the bisection (I, R) with |I.| = %, and |R| = x, In this
example, x,+x, = 6. According to in Eq. 2 and AM-GM
property, the largest rectangle area x,*x, occurs at x; = x,
= 3, the bisection (L, R) with maximum number of cross
edges must have |L| = |R| = 3.

For mathematical convenient, we assume that the
number of nodes n 1s even which 1s divisible by 2. Given
an object computation graph G, we construct a
transformation graph H as follows.

Given G = (V, B), the transformation graph H= (V. E)
15 a complete graph where B’ 1s the set of n(n-1) edges
that connect every pair of nodes. Theorem 3 proves the
correctness of the above transformation based on
AM-GM mequality.

Theorem 3: For an object computation graph G and its
transformation graph H. Assume that weight (u) = 1 for all
node u. The pair (L, R) 1s a balanced bisection of G if and
only if (L, R) meurs maximum number of cross edges m H.

Proof: Clearly, since, H is a complete graph, each
bisection (L, R) of H incurs |L|*|R| cross edges. Based
on AM-GM inequality, since, |L|+|R| =n where n is the
number of nodes and is even, the maximum value of
|L.|%|R| occurs at |I.| = |R|. That is the bisection with
maxmmum number of cross edges comresponds to the
balanced bisection.

Weighted MBP: Theorem 3 discusses the unweighted
balanced bisection. For the weighted MBP problem, each
node can have different weight and the partition is said
balanced if the total weights of the partitions are as equal
as possible. For example, in Fig. 4, partition (a) 1s balanced
since, both sides incur total weight 4 while partition (b) is
unbalanced as the left and right side mecur unequal
weights 5 and 3, respectively.

Although, the AM-GM inequation is defined on real
numbers, it can be applied to the discretized case that the
node weights cannot be fully equally divided. Lemma 4
shows that for two bisections, more balanced partition will
incur a greater multiplication value of the weights of the
two partitions.

Lemma 4: For an object computation graph G and its
transformation graph G. The pair (I, R) is the weighted
MBP of G if and only if w(L)*w(R) = w(L")*w({R’) for all
(L", RHeB(G).

Proof: This property can be proved by reducing the
weighted MBP problem to the unweighted MBP problem.
Given an object computation graph G with weight (v,) = k;

40

@ Cut ®) Cut

Weight =3

Weight =3

OS2 0,

4x4 (Most MBP) 5x3

Fig. 4: Partitioning the weighted nodes: all nodes have
welght of 1 except that weight node 1 = 3; a)
Balanced partition and b) Unbalanced partition

for each node v,. We construct a graph G’ by duplicating
k; nodes in G° (with weight 1) for each node v, in G.
Formally, for each node n G with weight k, add k cloned
nodes d;,, d;;, ..., d, to G’. Also, for each edge (v, v} in G,
add (d,, d,,) edges in G’ for all p,q, 1<p<k, 1<qz<k,.
Therefore, for an edge (v, v;) in G there are kxk
edges m G’

Applying AM-GM inequality on G°, the most
balanced partition (I.”, R”) must satisfy |1.”| = |R’|. Now
reducing from G’ to G, the weighted maximum number of
cross edges of G corresponds to the weighted most
balanced partition G. Note that in order to reducing G’ to
G correctly we restrict a group of cloned nodes in G* must
be partitioned in a bundle manner. The proof is ignored in

thus study.
RESULTS AND DISCUSSION

Transformation algorithm: This subsection discusses
the weighted MBP algorithm which solves the problem by
reducing to the well-known minimum cut problem. Unlike
the MBP problem which deals with weights on nodes, the
minimum cut problem 1s to find the bisection with
minimum weights on edges. Let cap denote a capacity
function mapping edges to integer values. A cut of a
graph 1s a bisection (L, R) of the graph and the cost of the
cut 18 defined as the sum of capacity values of edges
across L and R.

A similar problem is the maximum cut problem which
1s ntend to find a cut with maximum cut cost among all
cuts. Finding maximum cut 15 known an NP-complete
problem. Tn this subsection, we first transform the MBP
problem to the maximum cut problem. Since, an object
computation graph 1s acyclic and we restrict the graph
must be partitioned wnder the precedence relation, we

J. Eng. Applied Sci., 13 (1): 38-42, 2018

than further transform the minimum cut to the minimum
cut which can be solved in polynomial time. The main
algorithm most balanced bisection 15 listed in
Algorithm 1.

Algorithm 1; Most balanced bisection:

: let G=(V, E) be the input object computation graph

M construct transtormation graph H = (V*, E)

: for each node ue'V do

let k; = weight(v)

add a group of clonenodes di;,, P=1,2, ..., k, to V*

add an ==-capacity edge between every pair of clone nodes of 1;
: end for

: for each pair of d,gV*, d,,eV* do

add (d;, d) to E

10 let cap (u, u) =1

11: end for

12: /transfer max-cut to min-cut

13: let (L°, R*) = max-cut(H)

14: /ireduce to the most balanced partition

15: let (L, R) be the original node of the clone nodes in (L°, R*)
16: return (L, R)

b

According to the AM-GM property, the most
balanced partition has the greatest value of multiplication
of the number of nodes on the left and right sides. In
Algorithm most balanced bisection, given an object
computation graph G with weight (v,) = k; for each node v,.
Tt constructs a group of clone nodes in G for each node
v, in G. In algorithm most balanced bisection line 6 there
are co-capacity edge between each pair of clone nodes.
Since, an ee-capacity edge cannot be cut by a mmimum
cut, a group of clone nodes must be aggregated in one
side of the bisection.

In algorithm most balanced bisection line 12-13, it
mvokes the maximum cut procedure to find the partition
with maximum total capacity of the cross edges. For the
special application of object computation graph, the
maximum cut can be transformed to the minimum cut and
solved in polynomial time (Chen ef al., 2010).

In algorithm most balanced bisection line 4-5, each
object v; with weight k; in G is mapped to a set of k; clone
nodes in G°. Thus, for a bisection (L, R) of G, the
correspending bisection of G” will have w(L) clone nodes
in the left side and w(R) clone nodes in the right side.
Further, the corresponding bisection of G must have
w(L)*w(R) cross edges. According to the AM-GM
property, the most balanced partition has the greatest
value of w(lL)xw(R). Thus, algorithm most balanced
finds balanced partition

bisection such most

correctly.

Enhanced transformation algorithm: In the above MBP
algorithm, one object in G of weight I is mapped to k clone
nodes in the transformation graph H. Furthermore, in
graph H it meurs all-to-all edges connecting the nodes.

41

) — Object computation graph edge

@ ®)

------- > Transformed graph edge

Fig. 5. a) Original object computation graph, b)
Transformation graph, ¢) Merge the
transformation edge (1, 4) along path (1-4) and d)
Enhanced transformation graph

Both these properties lead to a transformation graph
with large number of edges. This subsection discusses an
approach to reduce the number of edges n H.

Recall that in study problem and defimtion, the object
computation graph is a DAG and its nodes must be
partitioned under the constraints of the precedence
relation. Let us first consider a simple case that all nodes
are arranged in a sequence of precedence relation as
shown in Fig. 5a. In Fig. 5, the precedence relation is
represented as bold arcs while the transformed graph
edges are represented as thin arcs. The munbers beside
arcs represent the capacity value of the arcs. Since, the
predecessor nodes of a node v, must be partitioned along
with v, in Fig. 5a there are only three valid bisections:
({1}1,42.3,4}), (41, 2},{3, 4 and ({1, 2, 3}, {4}).

Now, let us examine the transformed edge (1, 4) with
capacity 3 in Fig. 5b. Every bisection cuts edge (1, 4) must
also cut the path (1-4) exactly once. Thus, we can
propagate the capacity value 3 along path (1-4) as shown
in in Fig. 5¢. Through this propagation procedure, the
capacity of edge (1,4) is transferred to the edges on path
(1-4) without changing the total cut cost of the wvalid
bisection. Figure 5d shows the result of merging all the
transformation graph edges to the precedence relation
edges.

CONCLUSION

This researcher presented the minimum cost balanced
deployment problem and develop an efficient polynomial
time algorithm. This proposed algorithm is based on the
transformation of the mmimum cut problem that has been
extensively studied and efficiently solved. This researcher
presented the enhanced algorithm to significantly reduce
the number of edges m the transformation graph by
merging the transformation edges.

J. Eng. Applied Sci., 13 (1): 38-42, 2018

ACKNOWLEDGEMENT

This researcher was supported m part by the
Mimstry of Science and Technology of the Republic
of China (Taiwan) under Contract MOST-105-2221-E-
029-018.

REFERENCES

Ambursa, F U, R. Latip, A. Abdullah and S. Subramaniam,
2017. Probabilistic reliability prediction models for
task scheduling in distributed systems: A review. J.
Eng. Appl. Sci., 12: 644-652.

Chen, L.P., 1.C. Wu, W. Chu, J.Y. Hong and M.Y. Ho,
2010. Incremental digital content object delivering in
distributed systems. IEICE. Trans. Inf. Syst, 93:
1512-1520.

Choi, 1., C. Choi, B. Ko, D. Choi and P. Kim, 2013.
Detecting web based DDoS attack using MaPreduce
operations m cloud computing environment. .
Internet Serv. Inf. Secur., 3: 28-37.

Goldberg, A. V. and R.E. Tarjan, 1988. A new approach to
the maximum-flow problem. I. ACM. JACM., 35
921-940.

42

Labrinidis, A., Q. Luo, I. Xuand W. Xue, 2010. Caching
and materialization for web databases. Found. Trends
Databases, 2: 169-266.

Lee, T., H Kim, KH Rhee and S.U. Shin, 2013.
Implementation and performance of distributed text
processing system using hadoop for E-discovery
cloud service. J. Internet Serv. Inf. Secur. JISIS., 4: 12-
24,

Samydurai, A. and A. Shanmugam, 2014. Fault tolerant
middleware framework to improve QoS in distributed
systems. Res. J. Appl. Sci., 9: 154-159.

Shah, V., BK. Dey and D. Manjunath, 2013. Network
flows for function computation. IEEE. J. Sel. Areas
Commun., 31: 714-730.

Tang, X. and 5.T. Chanson, 2004, Mimimal cost replication
of dynamic web contents under flat update delivery.
TEEE. Trans. Parallel Distrib. Syst., 15: 431-439.

Viktorov, O., 2007. Providing fault-tolerance of distributed
systems by process-to-processor reassignment. J.
Eng. Applied Sciences, 2: 1563-1564.

Vyavahare, P., N. Limaye and D. Manjunath, 2016. Optimal
embedding of functions for in-network computation:
Complexity analysis and algorithms. IEEE. ACM.
Trans. Networking, 24: 2019-2032.

	38-42 - Copy_Page_1
	38-42 - Copy_Page_2
	38-42 - Copy_Page_3
	38-42 - Copy_Page_4
	38-42 - Copy_Page_5

