Tournal of Engineering and Applied Sciences 13 (1): 222-230, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Performance Evaluation of Tuple Timestamp Multiple Historical
Relation Data Model

Shailender Kumar
Department of Computer Science and Engineering, ATACTR, Delhi, India

Abstract: Most of the prevalent database applications in the contemporary environment maneuvers with the
temporal data. Temporal records characteristically vary over a due course of time while conventional databases
don’t facilitate any feature to manage multiple snapshots of these records captured at discrete intervals.
Consequently, it becomes difficult to cope up with this varying nature of temporal records by using traditional
database approach. This restraint has been resolved by various data models which are implemented as an
extension of the conventional database systems. This study presents a Tuple timestamp multiple huistorical
relation data model which possesses features like minimal storage and mimmimal query execution time unlike the
earlier historical relation data models. Tuple timestamp multiple historical relation data model lays emphasis
upon storage of the preceding instances of the records into multiple historical relations. B-Tree Indexing is
applied for scaling up the efficiency of the data model.

Key words: Indexing, open source database, temporal database, triggers, Tuple time-stamping, valid time

INTRODUCTION

A database management system 1s expected to record
and architect real world data in an organized format. The
data stored in these databases help in making crucial
decisions which in tum, formulates the long term
strategies. Time oriented database 13 a techmique in
database technology to store data that embrace time
aspects. Tt provides a seamless way to store, model and
query data which evolves over time. An mstance of time
1s represented as a point on a time line and the time
between any two mstances 1s called time peried.

Over the years, researchers (Edelweiss ez al., 2000,
Halawam et al, 2012, Pilev and Georgieva, 2012;
Kunmer and Petkovic, 201 5) have put extensive efforts to
advance novel methods for effectively managing temporal
data. The most of the developments in this field primarily
focuses on enforcement of the umique trades over the

orthodox databases. The contemporary studies focus

upon the employment of time-oriented architecture with
the help of openly available databases. Time oriented
applications provision numerous versions of time
(Galante et al., 2005; Petkovic, 2014; Atay, 2016) of
schemas: machine-oriented schemas, valid-time range
schemas and bi-temporal schemas. Machine-oriented
schemas follows machine time to seizure variations
applied to the data values. Valid-time range schemas
imprison the instant in which the data values
remains intact and legal in the materialistic applications. A
bi-temporal schema (Garani, 2012; Atay, 2016) exercises

222

the merger of legal and machine time to put a whole mark
of time upon its values. A temporal data type which can
be applied in the schemas is completely dependent over
implication grassland. The present and past instances of
the records put a restrain to the system time whereas the
future instances are decisive for the valid time. Usually
two different tactics are followed to attach the whole
mark of time in the schema: one is tuple-stamping
where normal form schema in its first form is applied while
the other one 1s attribute-stamping where normal form
schemas which are not in the first form are applied.
Although, there has been large inchination of
researchers towards this research area in recent time, yet
no standard temporal database have been developed tll
date. The existing tuple time-stamping models are not
capable enough to optimize the query execution time,
memory cost and circumlocution arisen due to
asynchronous update of the The
rescarchers present Tuple-stamped heterogeneous
archived schemas which addresses these problems here.

vibrant traits.

Tt uses valid time as one of the parameter to put a whole
mark of time over the values stored in the database. The
rational start-time and rational end-time of this varying
record is provided by the user. The imposition of
integrity constraints over thetime-oriented values ensures
and efficacy.
heterogeneous archived schemas, numerous time-oriented
schemas are created for each of the vibrant traits provided

its exactness In Tuple timestamp

their values static in nature. Else, the basic vibrant schema
will persist in their original form. All the changes made

J. Eng. Applied Sci., 13 (1): 222-230, 2018

within the temporal attributes are captured separately and
a log 1s created i the form of history relation. The
proposed temporal database model is implemented using
Postgres an open source database system. The temporal
relations used in this model are heterogeneous in
nature. The results in this paper show that the proposed
model is capable of optimizing the query execution time
and the memory cost as compared to the other existing
historical relation database models. The efficiency of the
proposed model increases with the increase in frequency
of update operations.

The researcher have detailed the contribution of this
article as follows: in this study, the researcher seck to
minimize the query execution time and memory cost
associated with the data model by considering the
degree of heterogeneity of the time-varying attributes.
Specifically, the researcher have proposed a novel method
which involves mdexing as well as multiple relations for
the dynamic attributes to remove the existing redundancy,
so that, the performance of the proposed system
enhances significantly. The researcher have taken special
care in capturing the evolutions m the value of the
attributes in the separate relations. This is due to the fact
that value of all the attributes doesn’t necessarily change
at the same instant. Another significant feature of the
researchers work 1s that they have designed their system
in such a manner that it remains suitable even for the large
scale database applications. In fact when the data set 1s
very large then the probability of value of each attribute
being distinct increases steeply. As a consequence, the
window for overlapping region of values of different
attributes shrinks significantly which helps in enhancing
the efficiency of proposed system. To sum up this
discussion it can be stated that the overall cost of the
data model which 1s primarily dependent over the query
execution time and memory cost.

Literature review: Some of the former developments
provisioned the exploration of certain contemporary
time-oriented data schema (Edelweiss et al, 1993;
Kunzner and Petkovic, 2015; Kvet et al, 2015). A
numerous time-oriented data models are available which
have been implemented (Goralwalla et al., 1998; Tansel,
2004; Chau and Chittayasothorn, 2007, Yang ef al., 2015)
on the top of conventional databases. The logical
architecture of time-oriented schemas substantially
concentrates on the connotations (Jensen and Snodgrass,
1996, Anselma ef al., 2013), storage, query processing and
implementation.

A mumber of papers surveyed the performance aspect
of the existing time-oriented data models. The research by
Kunzner and Petkovic (2015) equated the utility of the
employments designed by applying in-built concepts

223

and the manually programed employments. Study by
Atay (2016) contrasted the attribute-stamping and
tuple-stamping tactics in bi-temporal data schemas. The
constramts regarding the utility of time-oriented data
schemas using afttribute-stamping and tuple-stamping
approach are analyzed too.

There are a number of time-oriented data models
which are based on the existing relational data models
(Tensen and Snodgrass, 1999, Safarik, 2011). The two
discrete approaches for associating the tumestamps are
tuple time-stamping and aftribute time-stamping. Tuple
time-stamping approach (Bohlen ef al., 1998; Safarik, 2011;
Halawani et i, 2012, Kumar and Rishi, 2016) was used in
abundance in the majority of earlier work. Now a days,
tuple time-stamping where first normal form relations are
applied 13 used to append the timestamp. The logical
architecture of time-oriented schemas substantially
concentrates on the connotations (Jensen and
Snodgrass, 1996; Anselma et al, 2013; Khatri et al.,
2014), storage, query processing and implementation.

Time dimension is an essential feature which is
considered while desigmng the tune oriented databases.
The primary classifications of time dimension are
application time, system time and bi-temporal
(Mahmood et al., 2012, Atay, 2016). The time dimension
which has been abundantly used in temporal research
papers is application time (Anselma et al., 2013). It
encompasses all of the current, archived and imminent
specimen of accounts while the machine time covers
solely current and archived specimen Methods have
been developed to implement the time-oriented logic in
the grassland of machine-learmng and cybernetics also.
Time-oriented data also plays a key role in these fields.
Study by Kaufimann et al. (2015) proposed an indexing
approach for executing the queries m bi-temporal
databases. Data models have also been proposed to
entertain the subjects related to indeterminacy
(Terenziam, 2016) in time-oriented relational databases.
Several studies (Halawani et al., 2012) explained that tuple
timestamp historical relational model applies customary
SQL for enforcement of the schema.

The researcher states that m this model they have
used heterogeneous contemporary and archived schema
for the temporal traits. They ehmmate the redundancy
caused by the bogus addition of temporal attributes while
updating the time-varying parameters. Query execution
time is optimized by further indexing of the non key
attributes. Research carried out in temporal database field
so far, rarely used the open source database. The
researcher proposed work applies the largely prevailing
openly available database PostgreSQL for employment of
the tuple timestamp multiple historical relation data
model.

J. Eng. Applied Sci., 13 (1): 222-230, 2018

Preliminiaries: A time oriented data model consists of
conceptual and logical aids for elaborating time-oriented
relation and its integrity constraints.

Temporal relational schema: Time-oriented schema is an
assemblage of keys along with time-oriented and
time-invariant traits. Tuple time-stamping is used in
temporal relations to imprison the validity of the attribute.
Temporal relational schema has been demonstrated
mathematically in Eq. 1:

R' = (K, K,, K, .. K.,8,.8,. 8, ...
S..D.D,. D,,..D,|T)

(1)

where, R' is a time-oriented relation with fixed range of
keys, mvariant-traits, variant-traits and timestamp (K, K,,
Ky o b KD, (8,5;:8,..,8),D,D,,D,...,D)and
variable T denotes the associated timestamp.

Temporal and non-temporal attributes: The value of
non-temporal attributes does not rely on time which
means their value does not changes with time. Therefore,
these attributes are said to be static m nature. On the
other hand, the value of temporal attributes evolves with
time and the timestamp is associated with them. Hence,
these attributes fall under the category of dynamic
attributes.

Temporal relational algebra: Temporal relational
algebraic expression contains temporal operators as well
as predicate symbols for querying time oriented database.
Time-oriented operators applied in this domain are differs
from the traditional algebra, since, they provision
time-dimension. The time-oriented algebra is employed in
a careful manner, so that, it does not breach certain
integrity constraints.

Memory cost of temporal relation attributes:

Kl’\
Cost of Keyattributes :E K, =Kbytes 2
1=1
Sx\
Cost of Static attributes = ZSl =3bytes (3)
i=1
Dx\
Cost of Dynamic attributes :Z D, =Dbytes 4
i=1
Cost of Timestamps (T) = T bytes (5)

Frequency of time varying attributes: Frequency of
dynamic attributes (time varying) at any mterval of time
say 1 day, 1 week, 1 month or 1 year:

224

Dy
=) (D), =f (6)
i=1
MATERIALS AND METHODS

Temporal data model: Tuple timestamp multiple
historical relation data model 1s designed over the
PostgreSQL database platform and it effectually manages
temporal data. The consumer may interoperate with the
time-oriented database through user interaction portal
designed under Java NetBeans TDE Version 8.0.2. This
developments empowers the consumer to modify current
and archived data. The catalogue is beheld as an
assemblage of contemporary table and the arcluved
table. The contemporary table stockpiles the up-to-date
snapshots of data.

Tuple time-stamping approach (Halawani and
Al-Romema, 201 0; Kumar and Rishi, 2017) is applied to
store all the currently valid tuples of the real world into
current table. New records are introduced into the
contemporary tables only. The archived table stores the
precedent varieties of the wvalues. On applying a
streamline assignment over the contemporary table, the
previous data of the schema gets mechanically insinuated
into archived table by the use of temporal functions. The
queries submitted for the retrieval of previous instances
will be replied by the history tables.

Whenever there is a need for carrying out update
operation over the present table, triggers are taken into
use and are evoked as per requirement. In above
mentioned scenarios, the archived data of the row to be
streamlmed are moved to the archived relation. The
maximum limit of the time-period traits of archived table 1s
set identical to the minimum limit of the contemporary
table streamlined time-oriented traits. In actual terms, data
1s never deleted from the temporal database on applying
delete operation, it just moves from the current relation to
the history relation.

The researcher have also implied tuple-stamping nto
the archived table. Tt applies time-range data structure for
capturing the validity period of an attribute. Upper bound
of the time-range section is identical to the minimum limit
of the time-range of the freshly streamlined table. The
primery key of archived relation 1s obtained by unification
of the primary key of contemporary table and the
time-range trait of the archived table. A timestamp is
associated with tuple and this is done through many ways
like by using single relation data model, historical relation
data model and multiple hustorical relation data model. A
tuple timestamp single relation data model holds both its
temporal attributes as well as non-temporal attributes.
Time stamp is represented by wsing two additional
temporal attributes named as valid from and valid to. A
complete new tuple is added whenever the value of any

J. Eng. Applied Sci., 13 (1): 222-230, 2018

attribute gets updated. During asynchronous update,
each new tuple may differ with the others in only one of
the attributes.

In historical relation data model, the relation that
captures time varying attributes is decomposed into two
relations. First of them represent the current values of an
attributes and it is also known as snapshot relation as it
contains only current aspects of an object while the
second one records the changes made in all of the time
varying attributes. This relation can be grouped mto four
subsets: key, static attributes, dynamic aftributes and
timestamp attributes.

In multiple historical relation data model, the relation
which has to capture time-varying time aspects is
decomposed mto a number of relations which are
equivalent to a munber of dynamic attributes. An identical
history relation for every dynamic attribute is maintained
automatically by the use of triggers. A snapshot relation
of dynamic attribute captures only current values of an
attribute and the past values are automatically transferred
mnto a history relation of that attribute. Temporal relations
are represented by key attributes, static attributes,
dynamic attributes and timestamp:

Rikey,.,static_, dynamic_ . ts_ } (7)
Where:
Key. =KL KL KL LK
Static,,, =1{8.8,.5, ... K}

Dynamic,, =1{D,,D;, D, ... D}
Timestamp = {T}

Tuple timestamp historical relation data model: A current
relation 1s used to capture the existing aspects of an
object and a history relation is used to capture the
previous values of an object. The previous values show
the temporal evolution of an object. The value of a
dynamic attribute varies with time as the state or role of an
entity varies but the magnitude of an invariant trait
remains same. S0, we need to capture these changes in
the value of an object. Here, we use a separate function
named as history relation for capturing the past values of
an object. We just need to capture these time varying
attributes as it is beneficial from the memory storage point
of view. The amount of memory needed is less as
compared to single relation data model in which static
attributes as well as dynamic attributes are stored m a
single relation. Complexity of this hustorical data model 1s
a little bit high as compared to single relation data model
due to the involvement of various triggers and integrity
constraints.

A current relation or smapshot relation have four
fields: key attributes, static attributes, dynamic attributes
and timestamps. Snapshot relation of historical data
model:

225

Key

Static atiributes
Dynamic attributes
Timestamps

Tt possesses only current aspects of an object and
rest of the past values are automatically transferred into
a history relation by the use of triggers. A trigger executes
automatically on the occurring of any event like insert,
delete or update. Here, triggers are used for managing
transfer of data between current and history relation. A
history relation have three fields: key attributes, dynamic
attributes (time varying) and timestamps. History relation
of historical data model:

Key
Dynamic attributes
Timestamps

These timestamps reflect the validity of instance of an
object by using two fields “valid from” and “valid to”.

Tuple Timestamp Multiple Historical Relation data model
(TTMHRY): In this data model, multiple current or history
relations are used for capturing the values of an object. A
current or snapshot relation 1s used to capture current
aspects of an object where a history relation is used to
capture the previous values of an object which shows the
temporal evolution of an object. The value of a temporal
attributes vary with time as the state or role of an object
will change where the value of a static attributes remain
same. Here, we need to capture the changes occurred in
the attribute value of an object. Thus, we use a separate
relation named history relation for storing the previous
values of an object and we just need to capture time
varying attributes which is beneficial as we are thinking in
terms of memory storage. An identical history relation for
every dynamic attribute 1s mamtained automatically by the
use of triggers. A snapshot relation of dynamic attribute
captures only current values of an attribute and the
previous values are automatically transferred mnto a
history relation of that attribute. By doing this, we will
eliminate the redundancy caused by the bogus addition
of temporal attributes while updating the time-varying
parameters. So, the memory cost of tuple timestamp
multiple historical relation data model is low as compared
to historical relation data model. Query execution time 1s
also optimized by further indexing of the non key
attributes. A non-temporal relation have two fields: key
attributes and static attributes. Non-temporal relation of
TTMHR data model:

* Key

Static attributes

J. Eng. Applied Sci., 13 (1): 222-230, 2018

Tt holds only static aspects of an object and rest of
the temporal values captured in the separate relations. A
trigger execute automatically on the occurrence of any
temporal operations like insert or update.

More than one current or history relations are formed
for capturing the evolution of time varying attributes
where time varying attributes are distributed over multiple
relations. A separate relation 1s formed for every time
varying attribute for optimizing the memory cost of data
model. Tt is done by removing redundancy from the data
model. Current or history relation have three fields: key
attributes, dynamic attributes (time varymg) and
timestamps. Current or history relation of TTMIIR data
model:

+ Key
+ Dynamic attribute
¢ Timestamps

The validity period of an object instance 1s shown by
using time-range which shows the validity start time and
validity end time.

RESULTS AND DISCUSSION

The proposed tuple timestamp multiple historical
relation data model primarily consists of these elements:
time-oriented data structure and range of time-oriented
algebraic operators which are applied to provide the
time-oriented feasibility to the model. In postgres
“tsrange” of time-range data structure 1s applied for
putting a whole mark of time over the values stored
in the database. Tt shows the validity period during
which the attribute value of the tuple 1s valid mn the real
world.

System pre-requisites: The experiments are performed on
the system configured with features like 2 GB of RAM and
Intel(R) Core(TM)13-3217U 1.8 GHz The proposed model
15 1mplemented on an open source platform named as
PostgreSQL of Version 9.5 and the database application
interface is created by using Java NetBeans IDE Version
8.0.2.

Memory cost
Historical relation data model
Current or snapshot relation:
[(K].(K,. K,,....K_.58,8,.8,...5,.,D,,D,,

D,,...D, . Timestamp)

History relation:

[(K].K,.K,....K_.D,, D,, D,,..., D_Timestamp)

In current or smapshot relation, there are so, many
attributes like static (non-temporal) attributes, dynamic
(temporal) attributes, key attributes and timestamp. In
history relation only dynamic attributes, key attributes
and timestamps are present. A timestamp in current
relation shows the beginning of validity of an attribute. Tt
doesn’t show the end of validity time because a current or
snapshot relation holds an aftribute value which is
presently valid in the real world. Recording of changes in
attribute value 18 sigrificant in many ways like for analysis
purpose, graphical representation and decision making
process. Memory required to represent a single row can
be calculated as:

Cost(R) = Cost(keyattributes)+ Cost({Static attributes) +
Cost(Dynamic attributes) + Cost(Times tamps)

(8)
= (K+S+D+T)bytes 9)

Memory required to represent history data of a single
row having time-varying attributes of frequency f is:

= (K+D+T)xf (10)

History data doesn’t involve any static attributes and
for every changes m dynamic attribute value msertion of
a new tuple m the history relation 1s required. In terms of
memory cost, this techmque 1s more efficient as compared
to simngle relation techmque for capturing changes in
attributes.

Tuple timestamp multiple historical relation data model
Non-temporal relation:

[(%,]%. K50 5,085, 850008,)

Current temporal relations: D, relation (time varying
attribute):
|[(KJ],K2, K,,...K,,D,, Timestamp)

D, relation (time varying attribute):
[(x]&..K,...K,. D, Timestamp)
Djrelation (time varying attribute):

(K1=K2=K3=---=Kn> DB,Timestamp)

J. Eng. Applied Sci., 13 (1): 222-230, 2018

D, relation (time varying attribute):

(KK, K, ... K , D, Timestamp)

Memory required to represent a single row in
temporal relation can be calculated as:

Cost(R)= Cost(keyattributes)+
Cost(Static attributes) =K +8S bytes

(1

Memory required to represent a single row in
temporal relation can be calculated as:

Cost(R) = Cost(keyattributes)+
Cost(Dynamic attributes) +
Cost(Times tamps) = (K+D, +T)
bytes wherel=1<n

(12)

Total cost of temporal relation can be calculated as:

Cost(R) = (Number of Dynamic attributes)x
Cost(key attributes) + Number of Dynamic attributes =
(K + T)*j+ Dbytes where j represents the number
of dynamic attributes
(13)
Memory required to represent history data of a single
row having time-varying attributes of frequency f 1s:

=(K+D,+ T)xf wherel<i<n (14)

Improvement: Cost of historical relation data model with
frequency (f) = (K+D+K)* fas in Eq. 10. Cost of TTMHR
with frequency (f) = (KR+D+T)xf as in Eq. 14:

_ cos t(historical relation) —cos t{ TTMHR)

(15)
cost(historical relation)
=(K+D+T)xf —{K+D, +T)xf (16)
(K+D+THxf
__ b-D (17)
K+D+T

Improvement in memory cost lies on many parameters
of time varymng attributes like frequency, number of
attributes and size of each attribute.

Result 1: Freezing the frequency parameter at 20 value of
dynamic attributes vary from 12-44 bytes. We got the

227

80
70 " -- -
~ 60 Hee15 70.66 69.26
£ 50
40
:,5230
20
10
OI 1 L] T) L] T T T L] 1
0 5 10 15 20 25 30 35 40 45 50
Cost of dynamic attributes

Fig. 1: Percentage of memory saved with 20 frequency

90
20 e — . —
270 L) 77.94 7629
3 60
50
g4
@ 3
20
10
0 T T L] T T T T T 1 1 1
Q 5 10 15 20 25 30 35 40 45 50
Cost of dynamic attributes

Fig. 2: Percentage of memory saved with frequency 55

90
80
g @
£ 5

40
30
20
10
0+ T T

0 5 10

.~ _ - -
804 7479 7843 76.76

Savi

15 20 25 30 35 40 45 50
Cost of dynamic attributes

Fig. 3: Percentage of memory saved with frequency 78

results as shown m Fig. 1. We did the experiment by
freezing the frequency parameter at 20 and varying cost of
dynamic attribute from 12-44 bytes.

Result 2: Freezing the frequency parameter at 55 value of
dynamic attributes vary from 12-44 bytes. Figure 2 shows
the experiment carried by freezing the frequency parameter
at 55 and varying cost of dynamic attribute from 12-44
bytes.

Result 3: Freezing the frequency parameter at 78 value of
dynamic attributes vary from 12-44 bytes. Figure 3 shows
the experiment carried by freezing the frequency parameter
at 78 and varying cost of dynamic attribute from 12-44
bytes.

Net cost of the data model: In this sub-segment, the
researchers have analogized the TTMHR data model with
the archived relation data model. The archived relation
data model applies a single relation for holding the value
of previous specimen of data. The analogy between the
two models 18 derived with respect to the time elapsed

J. Eng. Applied Sci., 13 (1): 222-230, 2018

Table 1: Efficiency of the data model

M, of historical M, of proposed Qg of historical Qg of proposed N, of historical N, of proposed Efficiency
Frequency () Query model model model model model model (saveo)
20 Q1 1435 381 0.366 0.280 525.21 106.68 T9.68
20 Q2 1435 457 0.351 0.286 503.68 130.70 T4.05
20 Q3 1435 421 0.228 0.212 327.18 89.25 T2.72
20 Q4 1435 441 0.322 0.309 462.07 136.26 T0.50
55 Q5 3885 801 0.384 0.342 1491.84 273.94 81.63
55 Qo 3885 1017 0.398 0.377 1546.23 383.40 75.20
55 Q7 3885 857 0.360 0.344 1398.60 204.80 78.92
55 Q8 3885 921 0.385 0.362 1495.72 33340 77.70
78 Q9 5495 1077 0.408 0.380 2241.96 409.26 81.74
78 Q10 5495 1385 0.344 0.332 1890.28 459.82 75.67
78 Q11 5495 1185 0.389 0.374 2137.55 44319 79.26
78 Q12 5495 1277 0.428 0.396 2351.86 505.69 78.49
Table 2: Frequency with 20 values N, (Historical mod el) _
Cost of Cost of historical Cost of (1 9)
dynamic relation data TTMHR Percentage . N_{ Proposed model
Frequency () atiribute maodel () with (f) save i Efﬁmency(save%) - E(-p -) ©100
N, (Historicalmodel)
20 12.00 16.00 28.00 44.00
20 1435.00 1435.00 1435.00 1435.00
20 :
20 381.00 457.00 421.00 441.00 The querles_ Ql’ Q6’ QS’ and.Q12 are 1:156d for
20 73.44 68.15 20,66 6926 equi-join operation on current or hlstory relation. For
inner join operation Q2, Q5, Q7, Q9 queries are used
Table 3: Frequency with 50 values and queries Q3, Q4, Q10 and Q11 are used for union
Costof — Costof historical — Cost of operation. It 1s clearly visible from the outcomes that
dynarnic relation data TTMHR Percentage p ’ ¥)
Frequency () attribute model (B) with () save the net cost of the proposed data model 1s less as
55 12 16.00 28.00 44,00 compared to the historical relation data model and
33 3885 3885.00 3885.00 3885.00 these results shows that the proposed model is efficient
55 801 1017.00 857.00 921.00 . . .
55 2038 73.82 7794 76,29 in terms of query execution tune and memory cost.

while executing a query (Kunzner and Petkovic, 2015;
Atay, 2016) or storage cost. The query execution time
may be defined as the time involved m executing the
query processing plan. The range queries are applied to
compare the data models. Hach query is enforced
exactly ten times and the mean value of the results
obtained is weighed for comparison. The query execution
time 1s calculated with the help of pgAdmin tool of
Postgres.

Table 1-3 reflects the mean query execution-time of
both the models under varying frequency of dynamic
attributes. The time involved in executing most of the
queries 1s optimized in the proposed tuple time-stamped
multiple historical relation data model. The net cost of
the data model depends on the parameters like query
execution time or memory cost of the data models:

N, =Q, *xM, (18)
Where,
N, = The Net cost of the data model,
Qr = The mean Query execution time
M, = The Memory cost of the data models

228

Query execution time of the proposed model 1s
outperforms the conventional model when only the
contemporary or archived table is considered for

executing the query.
CONCLUSION

We proposed a data model which 1s proficient in
handling time varying data for the time-oriented database.
Multiple relations are used for the dynamic attributes that
varies at different instants. This is
redundancy from the database. The quintessential aspect
as described by the authors in thus study 15 ‘mdexing’
which is applied on the frequently accessed non key
attributes. The performance of the proposed temporal data

done to remove

model purely depends on the degree of heterogeneity of
the tume-varying attributes. The final outcome achieved
after the empirical evaluation indicates that the proposed
data model outperforms the historical relation data model
as 1t diminishes the memory cost up to 81% as compared
to the latter. The results prove that m the proposed
model, there is substantial improvement of about 69-82%
in the net cost of the data model. Moreover, it is also
suitable for the large scale temporal databases. In fact,

J. Eng. Applied Sci., 13 (1): 222-230, 2018

when the data set is very large then the probability of
value of each attribute being distinet increases steeply.
As a consequence, the window for overlapping region
of wvalues of different attributes shrinks sigmficantly
which helps in enhancing the efficiency of proposed
systerm.

RECOMMENDATION

As a future direction, temporal aggregate functions
may be applied to enhance the performance of the model.

REFERENCES

Anselma, T.., P. Terenziani and R.T. Snodgrass, 2013.
Valid-time mndeterminacy in temporal relational
databases: Semantics and representations. TEEE.
Trans. Knowl Data Eng., 25: 2880-2894.

Atay, C., 2016, An attribute or Tuple Timestamping in
Bitemporal relational databases. Turk. J. Electr. Eng.
Comput. Sci., 24: 4305-4321.

Bohlen, MH., R. Busattc and C.S. Jensen, 199%.
Point-versus interval-based temporal data models.
Proceedings of the 14th International Conference on
Data Engineering, February 23-27, 1998, ITEEE,
Orlando, Flonda, pp: 192-200.

Chau, V.TN. and 5. Chittayasothorn, 2007. A temporal
compatible object relational database system.
Proceedings of the 2007 TEEE SoutheastCon,
March 22-25, 2007, IEEE, Richmond, Virgmia, pp:
93-98.

Edelweiss, N.,] P.MD. Oliveira and B. Permici, 1993. An
Object-Oriented Temporal Model. Tn: Advanced
Information Systems Engineering, Rolland, C., F.
Bodart and C. Cauvet (Eds.). Springer, Berlin,
Germany, ISBN:978-3-540-56777-6, pp: 397-415.

Edelweiss, N., P.N. Hubler, M.M. Moro and G. Demartini,
2000. A temporal database management system
implemented on top of a conventional database.
Proceedings of the 20th International Conference on
Chilean Computer Science Society (SCCC'00),
November 16-18, 2000, IEEE, Santiago, Chile, pp:
58-67.

Galante, DMR., C.SD. Santos, N. Edelweiss and
AF. Moreira, 2005. Temporal and versioning model
for schema evolution 1 object-oriented databases.
Data Knowl. Eng., 53: 99-128.

Garani, G., 2012. An algebra for the bitemporal nested data
model. Proceedings of the 3rd International
Conference on Advances in Information and
Communication Technologies (ICT’12), November
23-25, 2012, ACEEE, Amsterdam, Netherlands, pp:
22-23,

229

Goralwalla, TA., M.T. Ozsu and D. Szafron, 1998. A
framework for temporal data models: Exploiting
object-oriented technology. Proceedings of the 1998
Conference on Technology of Object-Oriented
Languages and Systems, August 1, 1997, IEEE, Santa
Barbara, Califorma, pp: 16-30.

Halawani, SM. and N.A. Al-Romema, 2010. Memory
storage issues of temporal database applications on
relational database management systems. J. Comput.
Sci., 6: 296-304.

Halawam, S.M., I. Al-Bidew1, AR. Ahmad and N.A.
Al-Romema, 2012. Retrieval optimization technique
for TUPLE timestamp historical relation temporal data
model. . Comput. Sci., 8: 243-250.

Tensen, C.8. and R.T. Snodgrass, 1996. Semantics of
time-varying mformation. Inf. Syst., 21: 311-352.
Jensen, C.3. and R.T. Snodgrass, 1999. Temporal data
management. Knowledge Data Eng., 11: 36-44.
Kaufmann, M., P.M. Fischer, N. May, C. Ge and A K. Goel
et al, 2015. Bi-temporal timeline index: A data
structure for processing queries on bi-temporal data.
Proceedings of the 2015 IEEE 31st International
Conference on Data Engineering (ICDE’15), April
13-17, 2015, IEEE, Seoul, South Korea,

ISBN:978-1-4799-7965-3, pp: 471-482.

Khatri, V., S. Ram, R.T. Snodgrass and P. Terenziani, 201 4.
Capturing telic/atelic temporal data semantics:
Generalizing conventional conceptual models. IEEE.
Trans. Knowl Data Eng., 26: 528-548.

Kumar, 3. and R. Rishi, 2016. Retrieval of meteorological
data using temporal data modeling. Indian J. Sci.
Technel., 9: 1-10.

Kumar, S. and R. Rishi, 2017. A new optimized model to
handle temporal data using open source database.
Adv. Electr. Comput. Eng., 17: 55-61.

Kunzner, F. and D. Petkovic, 2015. A Comparison of
Different Forms of Temporal Data Management. In:
Beyond Databases, Architectures and Structures,
Kozielski, S., D. Mrozek, P. Kasprowski, B.
Malysiale-Mrozek and D. Kostrzewa (Eds.). Springer,
Cham, Switzerland, ISBN:978-3-319-18421-0, pp:
92-106.

Kvet, M., K. Matiasko and M. Vajsova, 2015. Sensor
based transaction temporal database architecture.
Proceedings of the 2015 TEEE World Conference on
Factory Communication Systems (WFCS'15), May
27-29,2015, IEEE, Palma de Mallorca, Spain, [SBN:
978-1-4799-8244-8, pp: 1-8.

Mahmood, N., S.A. Bumey, S.A. Ali, K. Rizwan and
S.A K. Bari, 2012. Fuzzy-temporal database ontology
and relational database model. Proceedings of the Sth
International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD’12), May 29-31, 2012,
IEEE, Sichuan, China, ISBN:978-1-4673-0025-4, pp:
573-577.

J. Eng. Applied Sci., 13 (1): 222-230, 2018

Petkovic, D., 2014. Performance issues concerning storage
of time-variant data. Egyptian Comput. Sci. T., 38:
1-11.

Pilev, D. and A. Georgieva, 2012. Effective time temporal
database model. Intl. T. Inf. Technel. Secur. N, 2:
33-4ds.

Safarik, I., 2011. Transformation of relational databases to
transaction-time temporal databases. Proceedings of
the 2nd Fastern Furopean Regional Conference on
Engineering of Computer Based Systems
(ECBS-EERC’11), September 5-6, 2011, IEEE,
Bratislava, Slovakia, ISBN:978-1-4577-0683-7, pp:
27-34.

230

Tansel, A.U., 2004. On handling time-varying data in the
relational data model. Inf. Software Technol., 46:
119-126.

Terenziam, P., 2016. Iiregular indeterminate repeated facts
in temporal relational databases. TEEE. Trans. Knowl.
Data Eng., 28: 1075-1079.

Yang, C., X. Wang, M. Zhang, R. Zheng and W. We1
et al, 2015 Standardization on bitemporal
information representation in BCDM. Proceedings of
the 2015 IEEE International Conference on
Information and Automation, August 8-10, 2015,
IEEE, Lijiang, China, ISBN:978-1-4673-9103-0, pp:
2052-2057.

	222-230_Page_1
	222-230_Page_2
	222-230_Page_3
	222-230_Page_4
	222-230_Page_5
	222-230_Page_6
	222-230_Page_7
	222-230_Page_8
	222-230_Page_9

