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Abstract: In agriculture of the Republic of Kazalkhstan the wide application of subsurface technologies
mtroduce the main dose of fertilizers is slow due to the lack of necessary equipment. The cultivators tillers KPG
2.2 and the clusel-fertilizers VCO-4, designed for this purpose, sowing machines do not fully comply
with agro-requirements on the uniformity and stability of seed placement and closing the working bodies
distribution of fertilizers in soil. As a result, these machines have not found widespread use in manufacturing.
This directly affects the yield. To solve the problem of uniform distribution of fertilizers inside the soil, the
unification of machines for application of mmeral and organic fertilizers proposed sowing machine for making
the main dose of organic and mineral fertilizers. Obtaining uniform flow of the fertilizer 1s carried out by applying
the compensating chamber with vibrating plate installed under the sowing window. As a result of theoretical
studies, we have defined the frequency, amplitude, mode and studied forced oscillations in the case of actions
on the middle rod of the periodic disturbing forces without taking mto account the resistance. Thus, the

proposed sowing device distributes fertilizers evenly, destroys lumps and also excludes arches.
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INTRODUCTION

Climate change has an impact on food and
economic spheres of the state, especially in developing
countries that are dependent on the rural economy
(Rosenzweig ef al., 2014; Nelson et al., 201 4, Elliott ef al.,
2014). In tlus regard, there is a threat of a food crisis
(Gibson, 2016; Margulis, 2014).

It 18 known that for the last 40-50 years the content of
humus m the soils used m the production of grain in
Kazakhstan decreased by 20-30% (Kuribasev, 2003,
Eleshev, 2005; Baraev, 1975). The main reason I think wind
erosion and the low level of fertilizer application.
Therefore, in conditions of risky agriculture of Northem
Kazakhstan, important in the fight against soil erosion is
the application of mineral and organic fertilizers
(Khoroshilov, 1966, Gossen, 2004; Chernenok, 2009).

In the practice of agriculture of the Republic of
Kazakhstan  the  introduction of  production
technology-soil deposit of high dose of fertilizers before
sowing and at sowing 1s slow due to the lack of necessary
equipment, although, the viability and environmental
safety of this method are not controversial (Suleymenov,

1988; Vakhrameev, 1990). This supports soil fertility has
no toxic effect and increases the yield, which 1s significant
in food security of the country (Chernenck, 2009; Kaplan,
2004; Chernovolov, 2000).

The aim of this research 1s theoretical determination
of the natural frequencies, the amplitude of natural modes
of wvibration of the compensating chamber of the
dispenser of mineral fertilizers and without taking into
account the resistance of the medium.

MATERIALS AND METHODS

Sowing device comprises a hopper with bridge
breaking cone and damper. Have a sowing window of the
bunker on the master and driven rollers progressively
moving the flexible conveyor with the pins. The driven
roller includes a receiving pneumo-fertilizer funnel

The device operates as follows. Fertilizer by gravity
and with the help of bridge breaking cone fall into the
seed window and on to progressively moving conveyor.
Fertilizers involved by pins are distributed on the surface
of the conveyor and transported on the gathering. At the
gathering, the driven roller fertilizer from the conveyor are
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Fig. 1: Compensating chamber of a fertilizer distributing
device

moved to the receiver pneumo-fertilizer funnel and
distributed to the coulters. Seeding rate is adjusted by
changing the frequency of rotation of the leading roller
and changing the angle of attack of the pins on the
conveyor.

A preliminary exploratory study showed that fertilizer
sowing window fall on the forward moving conveyor
uneven layer. And this in tumn, leads to uneven
distribution of orgamc fertilizers in the soil.

To obtain an evenly distributed layer of fertilizer on
the conveyor of the proposed technical solution,
consisting in the establishment after sowing window for
compensaling camera.

Inside the compensating chamber 15 longitudinally
installed elastic plate 1, the center of which one end is
fixed to the rod 2 (Fig. 1). The other end of the rod 2 1s
connected to a vibrator (not shown as a known device)
mstalled outside of the compensating chamber.

In this case the technological process of seeding is
carried out as follows. A continuous flow of fertilizer is
supplied in the sowing window 3 and then the flow takes
place in the compensating chamber where under the
mfluence of the plate 1 1s vibrating i the range of audio
frequencies, receives a fluidized condition and evenly falls
on a steadily moving conveyor. Conducted search
experiments showed that the use of vibrating plates in the
environment of granulated mineral and organic fertilizers
allows breaking the lumps of fertilizer and eliminates

bridging.
RESULTS AND DISCUSSION

Previously, we have considered the oscillations of
the hopper of the machine for fertilizer. Created a dynamic
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Fig. 2: Scheme of installation of the rods

model of the dispenser by means of matrix mechanics as
a system with seven degrees of freedom. The obtained
numerical and graphical results of determination of natural
frequencies and damped and forced vibrations of a
system consisting of a hopper body and a vibrating
plate.

In the present research deals with the flexural
vibrations of vibrating plate as a one-dimensional
contmuum system. Model vibrating the plates are in the
form of construction, consisting of two rods AB and DC
(Fig. 2).

The ends of the thin elastic rod AB 1s fixed. The DC
rod end attached to the middle of the rod AB and can
move perpendicular to the rod AB. The rod AB can
perform transverse vibrations. It via. the terminal CD acts
the exciting force R.

In the beginning, consider the free flexural vibrations
of the rod AB assuming that the ends of the rod is rigidly
fixed. The case hinged fastening both ends is given in the
literature (Biderman, 1972).

Based on the Bernoulli hypothesis and neglecting
the inertia forces of the particles of the rod to move along
the axis of the differential equation of flexural vibrations
of the rod m the case of a beam of constant cross section
without taking into account the resistance of the external
environment (Vasilenko, 1992) can be written as:

ox . m, Fx_ . 1)
9z' EI o’

Where:

x(z,t) = The dynamic function of the displacement

El = The bending stiffness m the plane of

oscillation
my = The mass per unit length of the rod
.o [EL = The speed of propagation of the wave front in
m;  the rod
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Consistent with their fluctuations the solution of the
motion Eq. 1 represented m the form:

x(z,t):u(z)cos(pt+cp) (2)
Where:
u(z) = The amplitude function
p = The angular frequency
0 The itial phase

Substituting Eq. 2 into Eq. 1, we have:

4
ﬂ_a4uzo (3)
dz*
Where:
o = p'm, :i
El a’
The roots of the characteristic equation

corresponding to Eq. 3 is equal to Lt and+u1. Tn
accordance with this solution of the homogeneous Eq. 3
are expressed via trigonometric and exponential functions
of argument (¢z). However, considerable convenience 1is
the use of introduced by Krylov combinations of these
functions. Labeling Krylov functions with symbols K,-K,
can represent the solution of Eq. 3 in the form:

u(z) =C,K, (0z)+C,K, (0z)+C K, (0z)+C,K, (0z) (D
where, C,, ..., C, is the constant of integration:

Kl(az):%(chotzﬁ-cosotz)
1 .

K, {oz)=—{shoztsinoz

o= ) 5

K, (oz)= %(ch 012-C08 0z )

K,{oz)= %(sh 0uz-sin oz

Successive derivatives of the Kiylov functions are

linked by dependencies:
d
£K1 (0tz) = oK, {0z}
d
—K =gk
- ,(0z) = oK, (az) ©

LK, (07) =k 07)

£ K, o) ~ak, (az)

7

Fig. 3: Rod with clamped ends

Then, the derivative of the function (Eq. 4) can be
written in the form:

du
i CaK, (az)+C,aK, (oz)+ )

CoK, (0z) +C,oK ; (0z)

At each end of the beam there are two boundary
conditions that depend on the method of binding Fig. 3.
In the case of fixing the ends of the rod the boundary
conditions for the left end can be written as:

u(0)=0-,d—u =0 (8)
de:U
and on the right end of the bar:
u(l)zo;d—u =0 9
de:I

We apply the boundary conditions (Eq. 8) subject to
Eq. 5and 6. We get:

u(0)=CxC1=0>C, =0

ds
A —cu=0-0C, =0
deZD
In this case, the solution to Eq. 4 of the

differential Eq. 3 simplifies to:
u(z)= CK,{az)+C,K, (0z) (10)
We now apply the boundary conditions (Eq. 9):

u(l)= K, (o) +C K, () =0

QI K, () +C, 0K, (o) = 0
dZ z=1
From this:
K, (ol
C, =-C,x () (11)
K (o)

then:
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Fig. 4: Graphical selution of the frequency (Eq. 13)
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Given that C,c#0, we have equation of frequencies,
expressed through Krylov functions in the form:

du
dz

K, (o)

K, (al) -

<K, (od)+E (o)

K: (12)

(Od)'Kz ((Il)XK4(()L1) 0
where we have mtroduced the notation A = ¢l or «@ = A/1.
Substituting here the expression of the function K {cl),
K, (al), K(al) according to Eq. 5, we obtain equation of
frequencies, expressed via. trigonometric and hyperbolic
functions:

2
[%(chl-cosl)} —{%(shlﬁinl)}{%(shl-sinl)} =0
Using expressions of Krylov fimctions (Eq. 5), we get:

cosh = (13)
oL

Cl

A graphical solution of this equation 1s shown in
Fig. 4. The point of mtersection of the two lines give the
values of . Tt follows from figure that the roots of Eq. 13
is infinite. A zero value of & corresponds to translational
or rotational motion of the beam as a rigid body. The roots
of Eq. 13: 4, =4.694; A, =7 and if k>2, the solution can be
represented as:

2k
Ay = —2 T (14)
k=1,2.3, .
The oscillation frequency is determined by Eq. 15:
(15)

M /7 M
by T, T
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The amplitude functions are determined by Eq. 16,
Fig. 5

u, ()= K, (lk)XK{kkzj—Kj(kk)x
! (16)
Kl[xk ﬂ k=1,23,...

Normal frequencies and forms of natural oscillations
of a rod with fixed ends defined above. Applies the results
obtained to solve the problem of forced oscillations of a
rod with clamped ends, when the middle rod is applied
perturbing periodic force (Fig. 6):

P(t)= P sinemt

forced oscillations expanding m eigenfunctions of the
system and expressing the solution as an infinite series.
The advantage of this method is its generality.

According to the method of principal coordnates
displacement of any pomnt of the beam can be represented
as:

x(z1)= X (1) () an

Where:

u(z) = The deflection durng normal
{(amplitude fimetion)

qk(t) = The time function (main coordinate) determined
from equation:

oscillation

d, +Ppd = Qu () /900, (18)
Where
Pk = The natural frequency defined by
expression (Eq. 14)
Qy = The generalized force, equal to the sum

of the products of the disturbing forces
onmoving their applications are le-normal
volume fluctuations

= The generalized mass
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Fig. 5: a, b) Amplitude function oscillations of a rod with rigidly clamped ends according to Eq. 16 in a dimensionless

form for A, = 4.694 and A, = 7.854

P(t)

Fig. 6: Rod with clamped ends with driving force applied
in the middle

For beams of constant cross-section on elastic
supports hard line when lk-oscillation, is a line
corresponding to the expression (Eq. 16) (Table 1). Thus,
the generalized mass is:

-,

shh, -sink, +

cosh,

(2, )01

2 }
cosh, +
sinh,

where the constant value 1s marked with:
1
——sh

o s,

h,-sink, ) -
(shi,-sin, ) ich}uk
2 ;\Jk

+

o

(chh, -cosh, )
2

shh, -sinh, +
chh, -cosh,

1 .
——sin
4h,

(2?Lk)+;]

(20)
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Table 1: Results of calculation
Parametr Ay =4.694
By 8997.400

Ay =7.854
4.265

A;=10.995
2.138

Ay =14.137
1.102

Table 2: Generalized coordinate
Parameter A =4694 A =7.854 A;=10.995 A, =14.137

4Py/myl>Bypl<o?)  -0.000084 -0.18 -0.368 -0.737
We present the results of calculations. The
generalized force:
K4 (A‘k)XKa[;\; }'
= 1/ = i
Q, P(t)uk(é) P, . sin ot
Ko (7K, e
(21)
Equation that determines the functions takes the
q(t) form:
L 4P
4 TP, = — st (22)
oty
The solution of this equation has the form:
q (t) 4k sin ot (23)

i mulek (plzg -0 )

Below shows the calculated amplitude of forced
oscillations for some generalized coordinates when
P, 50 N, o 50 Hz, m,l 0.1068 kg
(Table 2). The displacement at any cross section of
the rod under forced wvibration 1s determined by
Eq. 24:
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K, (M)XK{Kkﬂ-Kj(M K, (?\k ﬂ
B, (pi-o5)

4B, . o
zt) =Eismm2(:1

(24)

The infinite when the
frequency w of the perturbation coincides with one of
natural frequencies of the beam.

Now consider a problem of flexural vibrations of a
rod with a rigid fastening of both ends in the presence of
viscous friction when the coefficients of viscous friction
1s proportional to the mass or stiffness elements of the
system. The differential equation of motion of a rod
subject to external and internal friction 1s written as:

deflection become

4 5 2
Bl g, OF i X, R 29)
az 8248t ot’
Where:
¢, = The factor of external friction

¢, = The coefficient taking into account internal friction

Equation 25 has a selution of the form Eq. 17:
x(z,t)=q,(t)u,(z)

where, u(z)-k-form of natural vibrations of the beam
without friction (Eq. 16). Substituting the expression
(Eq. 17) into Eq. 25 and taking into account that the
funetion u(Z) satisfies the differential Eq. 3, we obtain the
differential equation that determines the generalized
coordinate qt):
q (o e, ) g, tpig, =0,k =1,23, .. (20)
Let us represent 2n, = o, +p, c,. The values of the
coefficient n, take on the basis of experimental data. For
example, when a harmonic perturbation of frequency,
given that no losses on internal friction for most materials
or structural hysteresis of the frequency do not depend,
I suppose n_k mversely proportional to the frequency of
disturbance. The differential Eq. 26 can be written in the
form:
4, +2n, 4, +piq, =0,k =1,2,3, ... (27)
The solution of the differential Eq. 27 subject to
initial conditions t = 0, q(0) = gy % (9) = ;

q, = ‘/Axke'msin(p;t-ﬁ-fU ) (28)
Where:
P, =P’
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~ 2
+11
A, = g, (qkuz qzku)
P2
2 2
(o, = arctg q_ku‘\/pk n
Qg T

The differential equation of forced oscillations under
the action of the periodic perturbation forces with
damping in principal coordinates can be written as:

g, +2n,§, +p: =Q/
Gy T G TPy m,

where, the generalized force and generalized mass are
determined according to the expression (Eq. 19-21):

—L sinmt (29)

0+ -k

G, 20,4, +piq, =

when n<p, the general solution of Hg. 29 takes the
form:

C,cos (plt) +

. h, .
qQ,=¢e* ] . + 31n(03t—€)
Czsm(pkt) (Pi —af )2 +4ntey
Where: (30)
h, = 4P/m,IB,
£ = arctg 2nw/p, -
C,and C, = The constants of integration

Equation 30 shows that the body performs a complex
oscillatory motion and it consists of two harmonic
oscillations. The first term e (c,cos(p;t)+C,sin (pjt )) expresses
the Self—oscillations of the rod and the second member

0 sintet-e) determines the forced oscillations.
ﬁaﬁlra)fosm llations are damped due to the factor e™ and
after some time they disappear. Therefore, almost (since,
the presence of resistance is inevitable), we can assume
that after a certain period of time, called the period of
establishment, the body will make only forced oscillations.
Below shows the calculated amplitude of forced
oscillations for some generalized coordinates when
P,= 50N, o = 50 Hz, m,l = 0.1068 kg (Table 3).

Table 3: n,<p, the general solution of equation

Ar=4.694 A, =7854 A;=10995 A,=14.137
Parameters n; =0.9 n; =0.8 n; = 0.6 n, =0.4
h, -0.000084 -0.178 -0.368 -0.739
(pi ) thlnkw2
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Thus, the use of mineral fertilizers can significantly
increase the yield However, the lack of necessary
equipment leads to an irrational distribution of fertilizers
and consequently to an mcrease in financial costs. The
proposed method makes it possible to determine the
amplitude oscillations and evenly distribute the fertilizers.

CONCLUSION

We solved the problem of the flexural vibrations of a
rod with a rigid fixing of both ends as a one-dimensional
model of vibrating plate of the hopper of the fertilizer
machine. Use the method of principal coordinates gave
the opportunity to define their own frequency, amplitude,
mode shapes and without taking inte account the
resistance of the medium and to study forced oscillations
in the case of actions on the middle rod of the periodic
distwrbing forces. The natural frequencies of the rod
approximately coincided with the results of the model
calculation of the bunker that had been done before.

RECOMMENDATION

The result can be used for further analysis of the
influence of the characteristics of vibrations on uneven
and fragile sowing of mineral fertilizers.
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