Tournal of Engineering and Applied Sciences 12 (9): 2396-2401, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Hybrid System Orchestration with TOSCA and Salt

Ales Komarek, Jakub Pavlik and Vladimir Sobeslav
Faculty of Informatics and Management, University of Hradec Kralove,
Hradec Kralove, Czech Republic

Abstract: As the cloud services and container based micro-services are starting to get the production workload
within enterprise 1T infrastructures the need for application portability and effective orchestration across

various virtualized, contamerized, hardware and legacy platforms 1s getting apparent. With application systems
spawning multiple platforms the network functions as routers, load balancers or firewalls are becoming integral

part of production application stacks. In this study, we provide a comparison of state-of-the-art orchestration
tools. The main goal of the work is to create PoC environment that can test execution of sample application

arclitecture model at various deployment scenarios: hybrid multi-cloud and cloud-contamer deployment

setups.

Key words: TOSCA, micro-service, cloud service, heat, OpenStack, docler, topology, worlflow, orchestration

INTRODUCTION

Orchestration 13 the automation of tasks mvolved
with managing and coordnating complex resources. The
ultimate goal of IT orchestration is to automate
configuration and coordinated management of all
resources n cloud service environments or container
platforms. This task involves mter-connecting processes

running across heterogeneous systems in multiple
locations, these service wusually have proprietary
mnterfaces.

There’s been a lot of efforts in cloud management
research (Binz et al, 2012, Antonescu et al, 2012,
Tuve and Deelman, 2011; Liu ef ai., 2011) but also the
mdustry started (IBM, 2013) orchestration tools and
specifications to describe service topologies. Some are
independent open source projects supported by only a
part of industry or academic organizations. There are
projects with support from large part of industry and they
become official standards (TC. O.T, 2012).

Orchestration tools often use model infrastructure to
define the application topology and deployment process.
The orchestration engine uses this definition as an input
and translates 1t mto a set of tasks that mteract with the
underlying infrastructure which allow it to create and
manage various resources: virtual machines, configure
and install application stacks, etc.

The model infrastructures can be saved in form of
simple code definition. Then, we have the ability to

design, implement and deploy complete infrastructures
from that model. The model infrastructures can be brought
to the known software best practices by collaboration of
software developers who deliver flexible application
code changes and IT infrastructure administrators who
deliver environment setup to create complete devops
environment. The ability to treat the mfrastructure model
as an application code and the use of the software
development tools allows developers to rapidly deploy
infrastructures in same pace as applications.

To emnsure mteroperability of the model
infrastructures several formal standards were devised to
provide model definition standards. These types of formal
language are called Domain Specific Languages (DSL).
HOT (Heat Orchestration Template) 1s standard language
to orchestrate resources i OpenStack cloud. It describes
a topology of OpenStack based resources and their
relationships. The TOSCA (Topology and Orchestration
Specification for Cloud Applications) 1s standard
language to describe a topology of cloud based
components their relationships and the processes to
manage them (TC, 2012). This effort is driven by OASIS
(Organization for the Advancement of Structured
Information Standards) and 1s speonsored by major
companies of the ICT sector such as IBM, CA
technologies, Hewlett-Packard, Red Hat, SAP and
others.

The orchestration methods can be either declarative
(functional) or imperative (procedural). The difference

Corresponding Author: Ales Komarek, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove,

Czech Republic

2396

J. Eng. Applied Sci., 12 (9): 2396-2401, 2017

between the declarative and imperative approach is
essentially “what” “how™. The
approach aims on what the target state should be on
other hand, the
infrastructure has to be changed to meet the target state
(TC, 2012).

The declarative approach defines the desired state
and the system executes what needs to happen to achieve
that desired state. Imperative defines specific commands

versus declarative

imperative focuses on how the

that need to be executed in the appropriate order to end
with the desired conclusion.

Within the service orchestration both approaches are
used. The declarative orchestration 1s good to enforce
desired system state over long periods of time. The
umperative approach enables process runs to be specified
i more complex and mtroduce task not directly related to
the actual service management.

Orchestration tools can be divided into several
categories according to the type of targeted service to
manage. The following list shows the mam focus areas of
configuration management tools.

Infrastructure centric orchestration: Orchestration tools
for management of [aaS cloud services along with several
SaaS services as database, message in declarative way
for example; OpenStack heat, AWS CloudFormation.

Platform centric orchestration: Orchestration tools for
management of PaaS cloud services in declarative way, for
example; CloudFoundry, OpensShift.

Container centric orchestration: Orchestration tools for
management container micro services for example; Mesos,
Kubemnetes.

Software configuration management: Orchestration
tools for management of software configurations in
declarative way for example; salt, puppet, ansible and chef
(Anonymous, 2015).

Platform agnostic orchestration: Orchestration tools
for management of any service mn declarative way and
enabling imperative workflows, for example;
TOSCA/cloudify, TOSCA/heat, terraform.

A team from tep cloud a.s. and University of Hradec
Kralove camried out a Proof of Concept (POC) project
to imvestigate the possibilities to deploy selected
infrastructure across various deployment environments.
The activities of this PoC included the state-of-the-art
analysis of orchestration tools and the selection of the
appropriate technologies for carrying out the use case
testing.

MATERIALS AND METHODS

State-of-the-art orchestration: The following study
provides details of selected orchestration tools. Due to
the scope of the study PaaS orchestrating solutions like
cloud foundry or openshift and software configuration
management tools like Salt, Puppet, Ansible and Chef
were excluded from the list of orchestration tools.
We have chosen a only selected sample for each
orchestration category representing the category concept.
The software configuration management is used only for
the configuration not the orchestration workload.
Infrastructure as service brought by simple model
enforced by an execution service and is tightly coupled to
particular cloud service provider. The first company to
provide mfrastructure orchestration 13 Amazon with
its CloudFormation declarative orchestration standard
(Wittig, 2015). The heat project is part of OpenStack
platform has basic compatibility with CloudFormation.

AWS CloudFormation: AWS CloudFormation provides
a declarative template-based infrastructure as Code model
for managing AWS infrastructure deployments. AWS
CloudFormation can work Amazon EC2, EBS, Amazon
SNS, ELB and auto scaling resources (Wittig, 2015). All
resources and dependencies are declared m a JSON
encoded template. A collection of resources is called a
stack. The service itself 15 closed source and internal
architecture is hidden.

OpenStack heat: Heat implements an orchestration
engine that can manage multiple composite cloud
applications using Y AML based resource templates. Heat
can work with any OpenStack based resources. It
implements just simple installation, update and delete
workflows (Fig. 1).

Managing container cluster is defined by simple
model enforced by management service at each container
host node. Provides limited options for integrating
advanced networking and storage functions. Containers
are separated software processes and have different
lifecycle management than virtualized or paravirtualized
virtual machines. Containers do not provide any

[Heat-API]—[Heat-engine]—[lleat—API-Cl’NJ

Managed resources

Fig. 1: Heat orchestrator architecture

2397

J. Eng. Applied Sci., 12 (9): 2396-2401, 2017

Scheduler

[ETCD

]—[Kube-API

Kubelet

Fig. 2: Kubernetes orchestrator architecture (Kubernetes,
2017)

Managed resources

persistent storage on its own, provide specific service
endpoints. The target software services are operated in
foreground blocking mode and if service stops, the entire
container stops as well.

Kubernetes: Kubemmnetes i1s an open source container
cluster manager that provides a “platform for automating
deployment, scaling and operations of application
containers across clusters of hosts” (Kubernetes, 2017).
Reuses Docker based LXC containers and adds level of
cluster management for containers (Fig. 2).

Platform agnostic orchestration: This family of
orchestration tools 1s not bound to any specific platform
or technology. It uses client libraries and services
APIs to enforce state on various software and hardware
resources. The orchestrators use plugin approach to
control various resources that can be managed by
application APL

Cloudify: Cloudify is an open source cloud
orchestration framework. Cloudify models complex
mfrastructires and automate thewr entire life cycle,
including deployment on any cloud or data center
environment, monitoring all aspects of the deployed
application, detecting issues and failure, manually or
automatically remediating them and handle ongoing
maintenance tasks. Cloudify uses DSL based on simplified
version of TOSCA simple profile. Cloudify executes
TOSCA blueprints by reading resources from templates
and mapping them to operations in cloudify plugins.
Cloudify uses asynchronous orchestrators to enforce
blueprint deployments and keep the state of deployed
systems separate (Fig. 3).

INDIGO DataCloud: Project INDIGO DataCloud aims at
developing a data and computing platform deployable
on multiple hardware and provisioned over hybrid
infrastructures (Anonymous, 2016). Tt uses TOSCA simple
profile to model compute, storage and network resources.
The management is realized by heat translator converting
TOSCA Model to HOT and heat service performing the
actual orchestration.

Runtime data

Blueprint-data

Policy engine
Event engine
| S

V\"orkﬂow-engine]—[Task-broker]

Managed resources

Fig. 3: Cloudify orchestration architecture

Terraform.io: Terraform 1s an open source orchestration
tool made by Hashicorp that can manage low-level
components such as compute instances, storage and
networking as well as high-level components such as
DNS entries, SaaS features, etc. [t uses single service for
orchestration execution.

Fundamental technologies: The deployment
infrastructure consists of several key components. The
orchestration tool prepare hardware resources and
configuration management perform the software
configuration. The virtual server based resources are
handled by OpenStack cloud platform and container
resources are handled by Kubemetes cluster
management.

The cloudify platform was chosen for the testbed
orchestrator as the cloudify has the support for all
platforms needed for the use-case tests. It has official
pluging for OpenStack and Kubernetes resource
management. We have added resources describing
the application services. Configuration management
and software orchestration is handled by salt stack
(Salt Stack, 2016). Tt provides necessary software
compoenents called formulas for service configuration. We
use client-master execution model for managing virtual
servers and local execution model for container
management.

OpenStack provides all IaaS resources needed.
All application stacks need a network with SNAT routing
and public entry point realized by floating IP resource.
When virtual hardware resources are set up, SaltStack
does the software configuration. Configuration is
enforced by applying model state on virtual servers. The
model 1s stored at salt master server and all new servers
have salt minion service created and configured to
comect the shared salt master. After all, nodes are
created an orchestration process is run to orchestrate
services across all nodes m system in correct order
(Fig. 4). Kubernetes provides container based
IMICTOSEIVICes.

2398

J. Eng. Applied Sci., 12 (9): 2396-2401, 2017

Change

Run/test

Configure Reports

Managed VM I

Fig. 4: Virtual machine service configuration cycle

Change

Deploy

Fig. 5: Contamer microservice configuration cycle

Managed containerl

Containers are clustered in pods. Container
configuration is used to build base images that are stored
in local image registry. There are several ways to create
docker based contamers out of salt formulas: substituting
Docker file with parsed formula states (Flyingeloud, 201 7).
Flying cloud runs Salt in masterless mode, applying Salt
states for each Docker layer. The other way 1s to setup
salt minion on the node and run the state enforcement.
We have chosen the second way as several services
require certain resources be created at container start time,
for example; MySQL database definitions, Rabbitmq

virtual hosts, etc. (Fig. 5).

RESULTS AND DISCUSSION

Use-case scenarios: For the realization of this proof of
concept project a specific multi-tier application service
topology had been selected as the use case on which we
would evaluate the related teclmologies.

Tested application 1s standard 3-tier web application
in Python programming language, comprising a Load
Balancer component implemented through Nginx open
source software package and scaling cluster of
applications implemented with Leonardo CMS runming on
Gunicorn web server. Data layer is realized by a Postgre
SQIL database server implementation. The graphical
representation of the application topology 1s presented in
Fig. 3 “tier Application Topology™.

Nginx balancer

(Gunicorn app (Memcached cache

(Memcached cache

(Gunicorn app

. Memcached cache
Gunicorn app

PSQI database)

PSQI database \]

PSQI database

Fig. 6: Service topology of multi-cloud architecture

Deployment cases: For the description of the use case
topology following the TOSCA specification, a series of
node types, relationship types and artifact types have
been defined in order to capture all the entities of the
application and their interrelation.

Multi-cloud architecture: While those types are actually
re-usable definitions, they could populate a pool of
resowrces that could be used by application developers
for other service topology descriptions. The node types
definitions of the use case application are presented in
Fig. 6-8.

Service architecture defines the relationships
between the nodes and all instances of node type. The
topology template of the multi-cloud use case
application showing the software components
(Nginx, Leonardo CMS, Memcached and Postgre SQL
server) to be hosted on an operating system that is
hosted on an OpenStack server and Amazon EC2
instances.

Cloud to containers architecture: The node types
definitions of the “Cloud to Containers” use caseconsist
of selected software components (Nginx, Gunicorn,
Memcached are in form of microservice hosted on
Kubernetes cluster. Postgre SQL server remamns hosted
on an operating system that 13 hosted on an OpenStack
server.

2399

J. Eng. Applied Sci., 12 (9): 2396-2401, 2017

Node types

[Software | [os | | Virtual maching
(Gunicorn service J(Load balancer)(Cache | Database | Linux _J(OpenStack VM][Amazon EC2]
((Leonardo cMs][Nenix] [Memcache] [SQL] [Ubuntu 16.04) [MLmedium][2-small]

Postgre SQL

Fig. 7: Node type definitions for cloud to containers architecture

Memcached I Postgres SQL

‘ Leonardo CMS I

Nginx |
Ubuntu 16.04 ‘ Ubuntu 16.04 I
MI1.medium { M1.medium l

Fig. 8: Service topology of cloud to containers architecture

CONCLUSION

The capability of reusable application modeling for
cloud enables the reusability and portability and 1s an
important precondition to truly realize benefits of
virtualized services in cloud environment. Different
requirements lead to different approaches. Kubernetes
may be the right choice for container micro-services based
applications. OpenStack heat or Amazon CloudFormation
are viable options for orchestration of specific cloud
infrastructure.

But if target application uses combination of
servers and containers or multiple cloud platforms
then orchestration tool that isn’t bound to a specific
techmology 1s needed. This requires well-defined standard
that 13 generally adopted by the mdustry. TOSCA based
infrastructure models provide such a standard language
for description of topology, processes and policies of
governed systems. TOSCA specification 1s an inportant
mitiative that bring a holistic approach to cloud
application portability and orchestration.

This PoC shows how single model can provide
metadata for both virtual server services and container
microservices. Execution layer 1s realized by cloudify
orchestrator combined with SaltStack configuration
management platform. The container image building

Ubuntu 16.04

M1.medium

process reuses existing SaltStack formulas and introduces
reasonable size. The cloudify provisioner plugin design
supports VM ware, Hyper-V, CloudStack, Azure.

ACKNOWLEDGEMENT

This research and the contribution were also
supported by project “Smart Solutions for Ubiquitous
Computing Environments” FIM, University of Hradec
Kralove, Czech Republic (under ID: UHK-FIM-SP-2016
2102).

REFERENCES

Anonymous, 2015. Building docker containers using salt.
Loglib.org, Rome, Italy. https://www.logilab.org/
blogentry/290489.

Anonymous, 2016. INDIGO-datacloud: Foundations and
architectural description of a platform as a Service
oriented to scientific computing. INDIGO, Gurgaon,
India. https: /farxiv.org/pdf/1603.09536v3 . pdf.

Antonescu, AF., P. Robmmson and T. Braun, 2012.
Dynamic topology orchestration for distributed
cloud-based applications. Proceedings of the 2012
2nd Symposium on Network Cloud Computing and
Applications (NCCA), December 3-4, 2012, IEEE,
Switzerland, Europe, ISBN:978-1-4673-5581-0, pp:
116-123.

2400

J. Eng. Applied Sci., 12 (9): 2396-2401, 2017

Binz, T., G. Breiter, F. Leyman and T. Spatzier, 2012.
Portable cloud services using tosca. ITEEE. Internet
Comput., 16: 80-85.

Flyingeloud, 2017. Build docker umages using saltstack.
Flymgcloud, UK. https://github. com/cookbrite/flying
cloud.

IBM., 2013. IBM cloud orchestrator cloud management for
your it services that allows you to manage public,
private and hybrid clouds with an easy-to-use
mterface. IBM Computer manufacturing comparny,
Armonk, North Castle. http://www-03.1bm.com/soft
ware/products/us/en/smartcloud-orchestrator/.

Juve, G. and E. Deelman, 2011. Automating application
deployment in mfrastructure clouds. Proceedings of
the 2011 IEEE 3rd International Conference on Cloud
Computing Technology and Science (CloudCom),
29 November-1 December, 2011, IEEE, Califorma,
USA., ISBN:978-1-4673-0090-2, pp: 658-665.

2401

Kubernetes, 2017. What is Kubernetes. Kubernetes,
Phoenix, Arizona. http://kubemetes.io/vl.0/docs/
whatisk8s. html.

Liu, C., Y. Mao, V.D.J. Merwe and M. Fernandez, 2011.
Cloud A data-centric
approach. Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), Tanuary
9-12, 2011, Asilomar, California, USA., pp: 1-8.

Salt Stack, 2016. SaltStack documentation. Salt Stack,
Phoenix, https://docs.saltstack.com/en/
latest/.

TC, O.T., 2012. Topology and orchestration specification
for cloud applications version 1.0. Oasis,
Manchester?, England.

Wittig, A., 2015. Amazon Web Services in Action.
Manning Publications Company, Greenwich,
Commecticut, ISBN: 9781617292880, Pages: 397.

resource orchestration:

Arizona.

	2396-2401 - Copy_Page_1
	2396-2401 - Copy_Page_2
	2396-2401 - Copy_Page_3
	2396-2401 - Copy_Page_4
	2396-2401 - Copy_Page_5
	2396-2401 - Copy_Page_6

