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Abstract: In applications such as population dynamics, the environment is often assumed constant despite the
fact that fluctuating environments may fundamentally affect the dynamics. In particular, environmerntal
periodicity can enhance or diminish population sizes. In this study discrete non-autonomous Ricker population
model 15 considered. Specifically the dynamics of the Ricker Model are mvestigated when subjected to
environmental variability. This is achieved by periodically modulating the carrying capacity which is congidered
as a proxy variable for the state of the enviromment. We analyze a population whose growth 1s subject to an
alternating environment. The parameter space is explored both periodic and chaotic behaviour including abrupt

change of chaotic attractors are observed.
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INTRODUCTION

Ecological modellng has a wide variety of
applications and it is an important tool in environmental
and resource management. It may be used to assess the
survival or possible extinction of a species or ecosystem
by evaluating the potential impact of changes to the
environment. For example, chemical exposure from the use
of pesticides or fertilizers in the environment, either by
direct application in an ecosystem or due to drift, run-off
or spillage has significant ramifications for an ecosystem
and its biodiversity. Other possible sources of chemical
exposure are mdustrial operations and oil spills n the
ocean. Such exposure may have a negative impact on a
specie’s habitat, possibly threatening the survival of the
species.

Invasive species of both flora and fauna are other
well-known factors that can change an environment and
provide competition for resources with endemic species.
A similar situation may also occur in agriculture where
native ammals may be considered pests because they
compete with stock for feed. The introduction of disease
mnto an enviromment may also have negative impact on the
survival of a given species. Another source of change in
the environment that impacts both the survival and
distribution of species is climate change with research on
its potential mmpacts having increased sigmficantly in

recent years (Chapman et af., 2014). Using a contimuous
model, one option to mncorporate a periodically changing
environment is to utilize a periodic time-dependent
carrying capacity (Swart and Murrell, 2008). Tt was
observed that periodicity in the environment caused the
population to exhibit a periodic behavior with all solutions
having the same period as the carrying capacity. In this
study, a discrete periodic form of carrying capacity is
presented. Tt is applied to the Ricker Model (May, 1974)
and the resulting population dynamics are analyzed.

Ricker Model: The periodically fluctuating environment
can be used in a number of different models, according to
that which best suits the population mn question. While
some analysis of the effect of periodic forcmg on the
Ricker Model has been performed (Henson, 1999,
Zhou and Zou, 2003; Li and Chen, 2009, Morena and
Franke, 2012) the method of forcing is varied and the
analysis remains incomplete. Here, a similar analysis to
that performed using the logistic map is performed.
The model for a population of size N, coupled to a
periodic environment described via its carrying capacity
K, is:
r—ay

Nn+1 :Nne e 2 (1)
K., -K+e(-1),nez
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Where:
K, = The average value of the carrying capacity
€ = Determines the amplitude of the oscillations

In this model, the carrying capacity has an mfluence
on the population but the population has no impact on its
environment. The changes induced in the environment
can be thought of as describing seasonal effects. Tt is well
recognized that interactions occwr in which a species will
have an mmpact on its environment. However, if the
population size is small then its effect on the environment
may be considered negligible. An example of such a
scenario is the well known Tillson (1980) experiment on the
response of a population of flour beetles, Tribolium
castaneum to environmental fluctuations. Thus, the
simple model described by the system of Eq. 1 forms a
first step in the development of better discrete population
models. Iteration plots, bifurcation diagrams and typical
attractor regions can give insight into the population
dynamics predicted in a periodic environment.

MATERIALS AND METHODS

Constant environment (€ = 0): Let us consider first the
case of a constant environment that is K, = K, for all neZ".
The solutions to (la) are given by the sequence N;, N,,
N,, ..., called the trajectory of N. When the sequence
reaches some point for which consecutive values are the
same 1t 1s said to have reached a fixed pomnt (Groff, 2013)
denoted N*. For the Ricker Model there are two fixed
points, N* = 0 and N* = K.

Let f (N,) be the right-hand side of Eq. 1a. A fixed
point is stable if [f (N*)}| <1, unstable otherwise. Using this
criterion, N* = 0 is unstable for r==0 all while N* = K is
stable for all O<r<2. An iteration plot of the Ricker Model

with growth rate r+ = 1 (Fig. la) demonstrates that the
population reaches this fixed point. A similar plot
may be shown when the value of r is increased above 2
(the threshold value for the stability of N* = K;). Consider
Fig. 1b where r = 2.4. The iteration plot clearly shows that
after mitial transient behavior, the population settles to
oscillate between two values-a cycle of period 2 has
formed around what was previously a stable fixed point
N* =K,

A Z-cyele 13 when every second iteration gives the
same result N_,, = £ (N ) = N, = N** with N_,,#N, where
the two solutions N,** and N,** map onto each other. A
2-cycle is stable if and only if |[f{N**) f(N,**)|<1. At
r = 2 the fixed pomt, N* = K, becomes unstable and the
stable 2-cycle emerges. This change in stability is called
a period-doubling bifurcation and the point at which it
occurs 1s called a bifurcation pomnt.

For increasing values of 1 stable 4 and 8-cycles, etc.,
exist. The bifurcation Fig. 2a shows this period-doubling
behavior with cycles of period 1, 2, 4 and 8 clearly visible.
Tt can be seen that it undergoes period doubling
bifurcations on a route towards chaos which occurs at
r=2.69. Windows of periodic behavior are also evident in
particular a cycle of period three at r=3.12. The
windows of periodic behavior break up the chaotic
dynamics. This phenomenon is called intermittency.

While all orbits are bounded, the Ricker model,
being exponential, predicts population dynamics with
mcreasingly large meaximuims as the growth rate increases.
However, it conversely predicts mimmums approaching
N, = 0. Thus, one of the disadvantages of the Ricker
Model is that it never explicitly predicts extinction, unless
the minimum population on a cycle is less than one
individual. However, 1t does describe increasing
vulnerability to extinction mn the form of wvery small
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Fig. 1: Tteration plots, N, versus n with: a)yr=1 andb) r=2.4. Here K, =1 and N, = 0.4
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Fig. 2: a) Bifurcation diagram and b) Lyapunov exponents with K; = 1

minimum populations. The values of r for which stable
periodic orbits exist can be more precisely determined
using Lyapunov exponents. Lyapunov exponents are a
means of quantifying sensitivity to imtial conditions,
relating the exponentially fast divergence or convergence
of orbits with close but different initial conditions. Such
sensitivity 1s a trait of chaotic dynamics and thus a
system 18 defined to be chaotic if (and only if) 1t has one
or more positive Lyapunov exponents (Wolf et al., 1985).
The Lyapunov exponent A for a function f(N,) is defined
by Young (2013) (Fig. 2):

n-l

Zln

154, [droy)
Ng—p

e (2)
dN,

)\4 _ limn

n—see

Applying Eq. 2 to system Eq. 1, Fig. 2b shows the
existence of stable, periodic orbits (A<0) bifurcation points
(4 = 0) and chaotic dynamics (4>0). It should be noted
that however, the Lyapunov exponents do not give any
mndication of the period of the orbits, merely mdicating
stable or chaotic dynamics.

Periodic environment (€+#0): We now return to system
Eq. 1. [teration plots show that even for a relatively small
growth rate, r = 1 the population is forced into a 2-cycle
(Fig. 3a). Observe also that the population 1s displaced by
one time step from changes in the environment, since only
the previous generation and the environmental conditions

it experienced influence the population. If the growth rate
is increased to r = 2.4 (Fig. 3b) the population is forced
into a 4-cycle and thus a period-doubling bifurcation has
occurred for 1<r<2.4. Summarizing this behavior in a
bifurcation diagram allows comparison of the dynamics
with the case of constant carrying capacity (May, 1974).
Setting €-0.1 and comparing Fig. 4a with Fig. 2a, it is
clear that the periodic carrying capacity has forced
the population into a 2-cyclic even for O<r<2. The
period-doubling route to chaos is the same for both the
periodic and constant carrying capacities. Bifurcations
into 4 and 8-cycles for example, occur earlier than in the
case of a constant environment. The bifurcation diagram
for the periodic environment show richer dynamics.
Additional windows of periodic orbits are present as a
result of crisis-induced (Kubo ef af., 2008) intermittency
initiated by a saddle-node bifurcation at 1=2.69, resulting
i a 2-cycle.

In the region 2.69<r<3.06 the process of
period-doubling starts over leading again to chaotic
dynamics. At r=3.6 the chaotic region experiences a
sudden expansion resulting in a attractor-merging crisis
(Young, 2013) a feature absent m the population with a
constant carrying capacity. If the size of the oscillations
of the carrying capacity is increased to € = 0.4 the
bifurcation in Fig. 5 is obtained. Comparing the bifurcation
diagrams for € = 0.1 (Fig. 4a) and € = 0.4 (Fig. 5) it is
apparent that structural changes have occurred.
Period-doubling bifurcations occur at smaller r values
compared to the € = 0.1 case.
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Fig. 4: Bifurcation diagram: a) Lyapunov exponents and b) with K; =1, N, = 0.5 and € = 0.1

N

Fig. 5

5 RESULTS AND DISCUSSION

4 It 1s noticeable that very small population values

3 occur n 4-cycles for intermediate growth rates (such as

2| whenr = 2). This makes the population more vulnerable to

1 L 7 additional environmental perturbations such as natural
[ . disasters or increased competition for resources, factors

% o5 10 15

_ that may place the population at risk of extinction.
r Figure 6 shows bifurcation diagrams for fixed growth

rates r but varying amplitudes of oscillations € in the

Bifurcation diagram of N, against r with  camrying capacity. Interesting dynamical behaviour is
parameters K, =1, N, =0.5and e = 0.4 evident with intermittent windows of stable periodic
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Fig. 6: Bifurcation diagrams of N, for € with: a) r = 2 and b) r = 2.5. Tnitial conditions K, =1 and N, = 0.5
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Fig. 7: Typical attractor regions m the (r, €) parameter
space for the Ricker Model with altemating
carrying capacity. White regions A>0 indicate
periodic attractors while black regions 4<0 indicate
chaotic attractors

behaviour and aperiodic dynamics. While extinction is not
described, very small population sizes are predicted for
larger values of € and r. By using the Lyapunov
exponents, a plot of typical attractor regions in the (1, €)

parameter space was produced in Fig. 7. White regions
represent stable periodic population dynamics while areas
of black represent chaotic behaviour. Note again that
extinction 18 not possible in the Ricker Model. Comparison
with the logistic map with periodic carrving capacity
shows that the Ricker Model gives rise to far more stable
periodic behavior than the logistic map with the same
model for carrying capacity (Monte et al., 2004).

Although, neither population size nor the length of an
orbit before reaching a stable cycle can be determined
from this plot, regions of stability can be determined.
Reference can then be made to iteration plots or
bifurcation diagrams for relevant values of r and € for
more detailed information regarding the population
dynamics.

CONCLUSION

Tn this study, a discrete periodic carrying capacity was
applied to the Ricker Model. Tt was observed that the
alternating carrying capacity forced periodic behavior
onto the population. It was demonstrated that the larger
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the size of the environmental oscillations the earlier the
onset of chaos. However for smaller growth rates Q=<2
and larger oscillations 0.6<e€<1, chaos was not a precursor
to extinction. It was observed that larger periodic changes
in the environment were better tolerated by populations
with smaller growth rates as population increases in time
mtervals of high carrying capacity were restricted by the
smaller growth rate. The subsequent collapse n time
intervals of lower carrying capacity was much less and
thus a small growth rate moderates the reactions of a
population to changes in the environment.

The overall dynamics resulting from applymmg the
discrete periodic carrying capacity to the Ricker Model
were similar to the logistic model. The primary difference
15 that the Ricker Model does not explicitly predict
extinction. Increasing the size of oscillations in the
carrying capacity caused the onset of chaos to occur
earlier with respect to growth rate. Despite extinction not
being described, it was seen that populations with
smaller growth rates O<1<1 tolerated larger environmental
oscillations without experiencing chaos.
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