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Abstract: We present a theoretical analysis of the temporal variation of a population subject to a variable
environment. This is achieved by treating the carrying capacity, a proxy for the environment as a state-variable.

This enables us to describe the population and environment interaction via a set of nonlinear coupled
differential equations. Importantly, we discuss the effect of a delay in the environmental response to changes
in population density. The existence of a Hopf bifurcation 1s established as well as the minimum time delay
required for the onset of sustained periodic fluctuations in the population. Finally, we discuss the ecological

management implications imputed by the model.
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INTRODUCTION

The logistic equation, despite its limitations, has been
widely applied in population and ecological modelling.
The classical logistic equation for a single population of
density N(t) is characterized by:

N(t
N 1-MY ) oy -, 1
dt .
Where:
Ny = The initial population density
a = The intrinsic growth rate

K, = The constant carrying capacity

The expression a (1-N/K;) represents a density
dependent growth rate which ensures that growth is a
self-limiting process. The logistic equation, introduced
by Verhulst 1s a modification to the Malthusian Model
which predicts an exponential increase in population
unrestrained by resources and without predation
(Agarwal et al, 2014). However, due to environmental
limitations that is the shortage of resources and space, the
presence of natural predators, impose limitations on the
size of the population that can be sustained.

The carrying capacity, K; in Eq. 1 is usually
considered to be fixed which does not realistically
represent the state of an environment or habitat. Barly
attempts to incorporate seasonal effects into models
were the mclusion of a time-varying carrying capacity

(Rogovchenko and Rogovchenko, 2009). Subsequently,
other time dependent functional forms of the carrying
capacity were proposed to different
envirommental changes. A saturating functional form was
used to model microbial growth under an occlusion of
healthy human skin (Safuan et af., 2011). A logistically
varying carrying capacity has been used to model the role
of technological advances in the increase of the human
population (Meyer, 1994; Meyer and Ausubel, 1999).

More recently, the carrying capacity was considered
as a state-variable, thus described by a differential
equation. An extensive study has been done on the
importance and relevance of treating the carrying
capacity as a proxy for the state of the environment
(Safuan et ai., 2013).

In most cases, the growth and maintenance of a
population 1s controlled by environmental limitations
which themselves are subject to variations due to both
exogenic and endogenic processes. A population can
grow exponentially or fluctuate, even exlubit chaotic
dynamics, depending on environmental conditions
(Becks et al., 2005). The feedback about the state of the
environment, via the carrying capacity, may show delays
due to the complex interactions between the population
and its environment (Saether, 1997).

A delay is incorporated into the logistic equation for
capturing oscillations that are apparent in Daphnia

describe

populations (Hutchinson, 1948). More recently, a delayed
system of equations was successfully used to model the
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irruptive dynamics of large herbivores subject to changes
in their food supply (Forsyth and Caley, 2006). The
consumption of available food by the herbivores was
considered as environmental stress and thus modeled via
induced changes in the carrying capacity.

The interaction between a population and its biotic
resource (food) may exhibit delays as the resource
modifies its mternal process to adjust to the presence of
the population. A delay may be directly incorporated into
the carrying capacity in the logistic equation to describe
the growth of a population (Yukalov et al., 2009). In this
study, a delay 1s mcluded into the rate equation for the
carrying capacity. The dynamics of the population and a
bifurcation analysis are presented.

Coupled delayed logistic carrying capacity model: It is
well established that herbivory has a detrimental effect
on flora growth and development (Saether, 1997). In
New Zealand, possum browsing causes defoliation that
mhibits or reduces flowering and fruiting of affected trees
and plants. When possum numbers are reduced, such
trees and plants flowered and fruited abundantly
(Cowan and Waddington, 1990). A model that describes
this observed effect of possum browsmng is given by
Safuan et al. (2012):

(;—Ij—aN(t){l

aK
dt

N(t)] @

K(t)
dR () —cK (t)N(t) 3)

This important class of models directly couples the
rate of change in the population to the rate of change in
the abundance of a biotic resource upon which the
population depends on (the environment). Here a is the
mtrinsic growth rate of the population, b the intrinsic
growth rate of the biotic environment and ¢ 1s a measure
of the intensity of consumption of the biotic resource by
the population. Equation 2 can also be written as
K(t) = Rg(N) K where Ry(N) = b-cN represents a
density-dependent replenishment rate. It is unportant to
note that N depends on R (N), this implies that the
presence of the population alters the rate at which the
biotic resource replemshes.

System of Eq. 3 can be non-dimensionalized under the
change of variables, N* = ¢cN/b, K* = cK/b, t* = at, then
dropping the Asterisk (*) yields:

dN_N(t)[lN(t)] )
dt K(t)

dK
—ufl— (5)
o " RO-NOJK()

where, p = b/a. This system has a stable equilibrium
solution at (N, K,) = (1, 1). Whenever 0<N=<1, the rescaled
R(N) = pu(1-N(t)) remains positive and thus the resource
is increasing. Whenever, N>>1 then R {IN)<0, so the biotic
resource is decreasing. The value of p is a key parameter.
If p<0.25 then N<1 for all t. As N1, RIN)-0
asymptotically reaching the
However, if p=>0.25 and for N small, the resource increases
rapidly and overshoots the equilibrium value K, = 1.
According to Eq. 2 the population N follows K. When
N=1, then R{IN)<0 thus reducing the available resource,
causing the population to also decrease. As the resource
decreases 1t passes through K, and when N drops below
N, then R (N)>0 halting the decrease i resources and is
then followed by an increase again. This results in a
periodic behavior with exponentially decreasing amplitude
until equilibrium is achieved.

In Eq 4 and 5, the rescaled R {N) changes
instantaneously with the population N at time t. We
propose a model where the effect on the replenishment
rate of the biotic resource exhibits a delay in response to
its consumption by the population. Retuming to the
example of possum browsing of fruiting trees and plants,
the flowers have a long developmental period which could
be modeled by the inclusion of a delay. The model with

equilibrium  solution.

delay 1s:
dN—N(t)(l—N(t)} (6)
dt K(t)
dK B B 7
= R NE-O)R(Y (7

Now R (W) = u(1-N(t-1)) where T is some characteristic
feature that measures the delayed response of the biotic
resource to its consumption. The effect of T on the model
dynamics is analysed.

Local stability analysis: In thuis section, we first derive the
equilibrium solution of Eq. 6 and 7 then linearize around
the equilibrium solution to determine its stability. We
show the existence of limit cycles when the delay 1s above
some critical value.

Let the equilibrium solution again be denoted by
(N, K,). Then, setting the right-hand side of Eq. 6 and 7 to
zero with the substitutions N(t) = N(t-t) =N, and K(t) = K,
we find the equilibrium solution to be (1, 1) as
before. To linearize around the equilibrium solution
we  write N(t) = 1+n(t) and K(t) = 1+k(t) where both n(t)
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and K(t) are small perturbations. Substituting into Eg. &
and 7 retaining only linear terms in n(t), k(t) and K(t) leads
to the linearized system:

dn
- (8)
i n{t)+k(t)
dk
E:—}m(t—r) (9)

We assume the solutions for both n(t) and K(t) can be
written as e" leading to the characteristic equation:

AMrAh+rpe™ =0 (10

Setting T = 0 in Eq. 6 reduces to that for the non-delay

model (Safuanetal., 2012). Equation 10 may have real
or complex roots depending on the values of p
and T.

Figure 1 identifies three distinct regions in the (p, T)
parameter space categorised by the nature the roots
of Eq. 10. In Region 1, both roots are real and negative
indicating that (1,1) is a stable equilibrium solution. In
Region 2, both roots lie on the left-half of the complex the
plane. This results in oscillating solutions about the
equilibrium with exponentially decaying amplitudes.
On the boundary of Region 1 and 2, there 1s a single
(degenerate) negative root. Unlike, the previous two
regions, in Region 3 the roots of Eq. 10 are now complex
with positive real parts. The solutions are locally unstable.
Purely imaginary roots occur on the boundary of Regions
2 and 3. By crossing this boundary, the stability changes,
thus representing a bifurcation of the solution.

We can determine the conditions for which bifurcation
occurs by substituting A = 1w into Eq. 10. Then, setting
the real and imaginary parts to zero leads to Eq. 11 and 12:

peos(wt)—m’ =0 (I
®—usin{mt)=10 (12)

Solving for the critical values w, and T, we obtam:

m2:,/1+4u271 (13)

’ 2
T, —1tan'{1]+m,fori—0,l,2, a4
(DE (DE (DC

Furthermore and with reference to Fig. 1, for p fixed
and m vicinity of the bifurcation curve, as T crosses the
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Fig. 1. Regions in the (u, T) parameter space denoting the
different types of roots of the characteristic
equation. In Region 1, all of the roots are real and
negative. In Region 2, all of the rocts lie on the
left-half of the complex plane. In Region 3, all of
the roots lie on the right-half of the complex plam.
On the boundary of Region 2 and 3 the roots are

purely imaginary

bifurcation curve from Region 2 into region III the
transversal condition R {dA/dt}>0 is satisfied which 1s a
necessary condition for the existence of a Hopf
bifurcation. Tn this instance the bifurcation is supercritical.

RESULTS AND DISCUSSION

Unlike, the non-delayed model Eg. 4 and 5, the
proposed delayed model Eq. 6 and 7 undergoes a Hopf
bifurcation leading to the formation of a limit cycle once
T exceeds the mimimum critical value T. However, T, varies
as the parameter p varies.

Figure 2 compares the solutions of Eq. 3 to those of
Eq. 4. The left panel shows the time evolution of both N(T)
and K(t) whereas the right panel shows the corresponding
phase-plane. For all cases we have fixed t = 1.5 whereas,
p 1s chosen from each of the Regions 1-3. The mitial
conditions for the system Eq. 4 and 5 are (N(0), K(0) = 0.1,
0.1) while for the delayed system (4) the history functions
are N(t) = 0.1, te[-t, 0] and K(0) = 0.1.

For Region 1, we take p =0.15(u<1/4). Figure 2a shows
the time evolution of the population (solid lines) for both
the non-delayed system (Eqg. 4 and 5) (blue) and the
delayed system (Eq. 6 and 7) (red) and their
corresponding carrying capacities (dashed lines). The
population monotomically approaches the equilibrium
solution.

Figures 2¢ and d illustrate the effect of a delay within
Region 2. For the case | = 0.6 (p<1/4) the notable feature
in the numerical solutions are the damped oscillations in
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Fig. 2. Numerical solutions for the non-delay and delay models. The left column depicts the time evolution of the

populations and their carrying capacities for different values of p with T = 1.5 The night column shows the
corresponding phase plots. Blue curves represent the non-delayed system and the red curves represent the

delayed system. Carrying capacities are represented by dashed lines and the populations are represented by

solid lines

the population and the carrying capacity for both
models. For the delayed model, the amplitude of
oscillations are larger compared to the non-delayed
model for the same p. By increasing p but wholly
remaming within Region 2, the oscillations persist longer
as we approach the boundary of theHopf bifurcation
locus.

Next we consider the case for p = 1 that 15 when the
intrinsic growth rate of the biotic resource is equal to the
population growth rate. As p>0.25 system Eq. 4 and 5
exhibits damped oscillations about its equilibrium
solution. However, system Eq. 6and 7 undergoes a Hopf
bifurcation due of the choice of p and T being n
Region 3 of Fig. 1. In this situation, the amplitude of the
oscillations increase or decrease depending on the lustory
functions before reaching the limit cycle. This behavior is
clearly depicted in Fig. 2f. Solutions of the delayed system
(red curve) with listory fimetions located inside the limit
cycle spiral outwards and asymptotically approach the
stable limit cycle. Similarly, solutions (green curve) with
history functions located outside the limit cycle are
attracted inward and towards the limit cycle.

CONCLUSION

We have previously proposed a model to describe
the interaction of a population with its environment
(Safuan et al., 2012). The environment is represented as a
biotic resource which sustains the population. As the
the it alters the
environment by reducing the rate of replenishment of the

population  consumes resource,
resource. Here we include a delay in the response of the
environment to changes in the population density. For
delays below the mimmum threshold, T, the population
approaches its equilibrium. For delays above t. the
environment and the population exhibit periodic
oscillations. The amplitude of the oscillations in the
carrying capacity, a measure of the variability i the biotic
resource, 1s much larger than that of the population. This
feature is built into the delayed model (Eq. 4 and 7).
From the differential equation for N{(t) we have:
N (=<0 if K(D)<N(t), N'()>0 if K(t)>N(t). This means that
N(t) will tend to follow K(t) when K(t) 1s higher N(t) will
increase towards K(t) and when K(t) is lower N(t) will
decrease towards K(t). In the case where the intrinsic
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growth rate a is large (u is small), the rate of change of
N(t) will be large in magnitude so that it will follow K(t)
closely. The solution for N(t) shows smaller amplitudes
for smaller values of a (larger values of p) the population
1s less affected by rapid changes to the carrying capacity.
Figure 2e illustrates that delays can induce large
amplitude oscillations in the carrying capacity as well as
in the population. Of concern 1s the very low population
density during the lower end of the cycle. A low
population density 1s vulnerable to environmental
stochastic perhurbations which are ever present. Tt is then
of wvital importance to appropriately manage such a
situation to ensure that oscillations are reduced or
eliminated altogether.

Depending on the situation, the harvesting of the
population may be the only option to consider. When to
harvest and the mntensity of the harvest are unportant
considerations. In many circumstances maimtaimng a
constant harvesting policy might be appropriate but it
might be more cost effective for frequent short-term
harvesting.

Finally, we may never be able to accurately predict
long-term population dynamics until we understand the
umpact of populations on the environment, for example the
effect of browsing on plant physiological, changes in
demographic parameters, the influence of vegetation
abundance and nutritional quality on population
fecundity. All of these mteractions require further
consideration.
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