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Abstract: Tn many geological structures, the permeability or penetrability of stone matrix is negligible compared
to stone fracture. In fact, fractures are the main direction of flow in stone massifs. As a result of improving the
efficiency of design studies; implementation of barefaced underground structures; separation of carbon dioxide
in underground brines; disposal of nuclear waste and investigation of the behavior of the current within the
fracture 18 considered as a crucial research project. The present study elaborates on a calculative model for
single-phase flow in a fractured environment in a special situation. The geometry of the fracture under study
is obtained through a series of Ct-scans from real fractures in Berea sandstone. The Ansys-Fluent Software
analyses the flow within a fracture with flow rate of 0.312-31.2 mm®sec and width and permeability unit
of 500 mm Darcy and through application of pulse-sine input rate. Flow condition and pressure drop calculated
in this study are compared with a simulation of walls of an impenetrable fracture. The calculated fracture range
is produced through a two dimensional stone matrix. Furthermore, laminar flow is calculated for several input
rates. The pressure drop within the fracture is used to describe the relationship between flow rate and pressure

drop resulting from flow.
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INTRODUCTION

Several significant advances have taken place in the
context of mathematical modeling of flow within fractures
since 1960°s. In addition, several research efforts have
been made in order to improve the development and
efficiency of oil reservoirs and other natural resources and
in order to eliminate the concerns for undersurface
pollutions. In fact these efforts have provided the
necessary contexts for development of several numerical
and technical modeling methods Lomize (Barenblatt ef af.,
1960). The cubic law of laminar flow within a canal
surrounded by two parallel glass sheets has been
empirically validated. However, in real geological
conditions it is extremely hard to find a fracture with flat
surface, 1.e., most natural stone fractures are uneven and
adopt variable spatial diaphragms. The linear form of the
Darcy rule has been extensively used for description of
laminar flows at low rates (Cowrt-Brown and McQueen,
2002). Researchers have investigated several conceptual
models for comparison of the model of fracture
matrix interaction, in fractured porous environments
(Berkowitz, 2002). Investigation of movement of water and
other fluids within unsaturated earth materials has
resulted in several accomplishments including disposal of
dangerous wastes in deep areas of earth, increased oil
recovery, extraction of shale gas and other structures,
advances in nuclear magnetic resonances and advanced

applications of x-ray in imagery technologies, etc. Our
empirical knowledge regarding imagination of fracture
flow within saturated porous environments is a crucial
item. Currently researchers are able to determine water
movement and distribution in a wide range of
natural and engineering materials in different spatial and
temporal resolutions. Tn many geological structures the
permeability or penetrability of stone matrix is negligible
compared to stone fracture. In this situation the hydraulic
behavior of the stone massif 13 controlled by fractures.
Therefore, comparison and estimation of the hydraulic
behavior of stone massif requires a suitable
understanding of the hydraulic behavior of the fracture
and fracture networks. By making use of a suitable
hydraulic model for investigation of hydraulic behavior of
stone massifs, design and safety studie’s precision can be
improved for swrounding environments of underground
pores such as tunnels and nuclear waste repositories. In
terms of microscopic scales, the behavior of fluid flows
within fractures is expressed by the use of Navier-Stokes
non linear partial derivatives (Zimmerman and
Bodvarsson, 1996). In general, these equations are
extremely difficult to solve and simultaneously, complexity
of the geometry of fracture adds up to this difficulty.
Primary studies for generalization of the Darcy’s (cube)
law for real fractures were performed using empirical data
(Louis, 1969). Navier Stokes equationsare capable of
providing a well-defined description of movement of flow
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Fig. 1: Dimensional schematic of the fracture
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Fig. 2: The schematic of the fracture along with its surrounding matrix

in different scales. In fact non-linear equations may
result in extension of calculation time. Suitable pre
conditions for making desirable engineering predictions
have stimulated macroscopic empirical development.
Darcy’s law is extensively used for investigation of
behavior of flow within fractures. With respect to the
geometric shape of the sample of interest, different
researchers have made use of wvarious geometric
profiles with uneven parallel w alls including saw tooth
(Elsworth and Goodman, 1986) sinuscidal and stepped
(Tsang and Witherspoon, 1981; Neuzil and Tracy, 1981).
In afoerementioned conditions, the hydraulic behavior of
the fracture 1s mnspected using effective opening. Flow
systems and non-linear flows in fractures have been
empirically (Louis, 1969) experimentally (Qian et al., 2005)
and numerically (Koyama et al., 2008) investigated by
different researchers. Since, Reynold’s equation’s
efficiency is considerably insufficient in these cases more
recently the numerical calculation of the Navier-Stokes
equation is used for investigation of fluid flows within
fractures (Brush and Thomson, 2003; Koyama et al.,
2008). In many studies, the non-linear behavior of flow
within fractures has been expressed by the use of
Brinkman-Forchheimer ecquation (Elsworth and Goodman,
1986; Zimmerman et al., 2004; Chenz et al., 2001). The
aforementioned equation expresses the relation between
pressure drop and the flow rate through the fracture in
terms of a quadratic polynomial.

Entire previously mentioned research efforts have
improved our knowledge in terms of non-linear behavior
of flows. The present article has elaborated on nmumerical
calculation of the Navier-Stolkes equation for a viscose

fluid in a laminar and two-dimensional flow within a
fracture with the use of ansys fluent: CFD simulation
software. In addition, the flow in the fabricated fracture
has been simulated by. Furthermore, in order to achieve a
constant flow rate at the opening of fracture, pressure
drop has also been calculated along with penetrability
matrix. In order to mvestigate the effect of penetrability of
matrix of surroundings of fracture on the flow, the
aforementioned matrix was 1investigated thoroughly.
Nevertheless, an equation has also been yielded for
friction coefficient of the fracture. A porous matrix with
porosity of 20% has been considered for non-deformable
walls (Fig. 1 and 2).

The equations governing the flow: Overall description of
fluid flow within a fracture 13 done through application of
Navier-Stokes relations. These relations or so-called
equations express the momentum and mass balance in
fracture space. Considering a stable and laminar flow
and a Newtonian fluid with constant viscosity and
density within a fracture with impenetrable walls,
the Navier-Stokes equations can be re-written mn the
following vector form (Zimmerman ez al., 2004):

PlViu=u—-VuVvp (1)

(Yt}

In the upper equation, “p” represents the density of

@

fluid; represents the viscosity of the flud, “u” represents

the rate flow vector and “p” represents the Hydrodynamic
pressure.
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Fig. 3: Schematic of fracture shape geometry

In order to have a package of equations (Chen et al.,
2001) we are required to combine these equations with
continuity equations (which express the mass balance)
(Zimmerman and Bodvarsson, 1996). For an
mcompressible fluid, the mass balance equation 1s
equal to the volume balance equation. Therefore, it 1is
re-written in the following form Nazridoust et al. (2006)
(Fig. 3):

Vu=0 (2

MATERIALS AND METHODS

Model geometry: The fractire geometry used m this
study is achieved through conversion of 3D data into 2D
data through CT-Scan. This method was introduced by
Nazirdoost et al. ( 2006) and was used in the long core of
Berea sandstone. The preferred fracture 1s generated
through distibution of tension in ways almost similar
to standard Brazilian method (Chen et af., 2001). For a

| _1016cm

Mass flow outlet

single-phase laminar flow, water fluid with density of
998.2 kg/m’ and viscosity of 0.001 kg/msec and air with
density of 1.225 kg/m’ and viscosity of 1.8x107° have
been assumed. For fracture with penetrable wall matrix;
flow rate ranged between 0.312 mm®/sec and 31.2 mm®/sec
per width unit. Tn addition sinuscidal pulse rate was
applied with frequency of 1 time/sec and penetrability was
assumed as 500 mm Darcy. It should be noted that rate
was also applied with no pulse and no penetrability. In
sum, a total of 16 simulations were run for water and air.

Boundary conditions: The marginal condition of input rate
is used for the input area. The input rate is considered as
monotonous and 1n line with X vector. In addition the
marginal condition of the output flow 1s considered for
the output of flow m the geometry of fracture. The other
solid surfaces of the fracture (fracture boundaries) have
been expressed as impenetrable walls with no-flow
boundary conditions.
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Fig. 4: Continue
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Fig. 4 Schematics of pressure contours for air and water flows under penetrability, impenetrability, pulse-flows and

no-pulse flows
RESULTS AND DISCUSSION

Results of simulation: Single-phase flows of water
and air were analyzed through fracture passages and the
pressure-drop related to each different flow rate was
mvestigated. The flow 15 considered as a laminar and
incompressible one. Figure 4 shows the static pressure
changes m fracture for the flow rate of water and air in the
range between 0.312-31.2 mm*/sec. This Fig. 4 shows a
roughly linear change in pressure along the fracture. The
pattern of pressure lines mn this figure 1s similar to the flow
of air in the fracture except that water pressure drop 1s
much more than air’s pressure drop. This is mostly due to
water’s higher viscosity compared to air (Viscosity ratio
between water and air 18 0.67). As you can see, sunilar to
the case with air contour meters, the rate of pressure drop
is directly related to the flow rate for water contour
meters too. Considering for the matrix of surroundings of
fracture has resulted m reduction of amount of fracture
coefficient and pressure-drop. Logarithm diagrams show
the logarithm of the relation between flow rate and
pressure-drop.

Vector of rate for the flow rate of 3.12 mm®/sec per
fracture width umit 1s shown for both water and ar

flows. As you can see, the fluid is directed towards
the high rate flow. The air’s maximum flow rate is
228.5 mm/sec while for water the maximum rate can be
228.3 mm/sec (Fig. 5-8).

Air pressure drop for the flow rate of fracture at
width unit of 0.312-31.2 mm*/sec is between 0.1-20 Pa. The
amount of dependence of more twist is present, highest
pressure drops are expected. A considerable portion of
pressure drop takes pressure drop on fracture opening is
referred to as the cube law. As the opening of the
effective fracture 13 smaller and place m areas with the
smallest diaphragms. The following two vectors show the
relationship between flow rate and pressure drop for
fractures with penetrable and impenetrable matrixes and
flows of water and air. As you can see as the flow rate
increases, pressure drop increases n a linear form as
well (Fig. 9 and 10). In a similar form, pressure-drop
changes in fractured part are analyzed for water flow and
results are shown in the following image. Pressure
changes are between 8-1050 Pa in the range of flow rate of
0.312-31.2 mm%/sec. It should be pointed out that in this
range, the Reynold’s number is variable too. Despite
higher pressure drop m terms of the water flow the trend
of changes mn the flows are sumilar for water and air. As
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Fig. 5: Rate vector for air with impenetrable matrix and no-pulse flow at flow rate of 3.12 mm?*/sec
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Fig. 6. Rate vector for air with penetrability of 500 mm Darcy and pulse flow at flow rate of 3.12 mm’/sec
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Fig. 7: Rate vector for water with impenetrable matrix and no-pulse flow at flow rate of 3.12 mm®*sec
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Fig. 8: Rate vector for water with penetrability of 300 mm Darcy and pulse flow at flow rate of 3.12 mm®/sec

you can see in the diagram, the slope of the porous
environment 1s almost equal to the slope of impenetrable
wall. The calculated pressure drop for the porous
environment and pulse flow is almost 31% less than
pressure drop observed for impenetrable matrixes. Friction
coefticient for a lammar flow between two parallel surfaces
1s as follows:

=0 3)

Reg

In terms of the upper equation, whenever the

Reynolds number increases, the friction coefficient

decreases. The Reynolds number 15 defined as
follows:
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Ultimately, a friction coefficient equation 1s obtained
for this special fracture with impenetrable walls (Fig. 11):

124845

Reg

f (1+0.078Re,"" JwhenRe <2 (5)

Considering for porous environment surrounding the
fracture along with a pulse flow-rate, results in a 31%
pressure-drop. By making use of the results of
simulations, a relationship has been developed for
investigation of friction coefficient of a fracture
surrounded by a penetrable matrix. On this basis, another
new fracture friction coefficient is presented for fractures
with penetrable porous matrixes:

_ 83.456

Rey

f (1+0.078Re,"" JwhenRe <2 (6)

Empirical equations number 5 and 6 provide a precise
logical estimation of pressure-drop and friction coefficient
for fractures and a wide range of Reynolds numbers that
are smaller than 2. In terms of equations number 5 and 6,
friction coefficient mamtains its reverse relation with small
Reynolds numbers. In fact the common non-linear
dependence in Reynolds 1s because of laminar inertia
effects in higher Reynolds numbers. Results of
simulations under different conditions are in consistence
with parallel surfaces model. The new empirical model for
fracture that when the statistical
knowledge regarding length of fracture and diaphragm are
available, then pressure-drop becomes valuable as a
function of flow rate m fractured reservors.

By making use of the Navier-Stokes equations we
have shown that presence of a penetrable matrix around
the fracture with pulse flow rate, results in reduced
pressure-drop compared to impenetrable matrixes.
Therefore, we have suggested a friction coefficient (Eq. 6).
Equation 6 shows that presence of a penetrable matrix
around the fracture results in reduction of amount of
friction coefficient compared to impenetrable matrixes.

friction shows

CONCLUSION

In terms of numerical simulation, the single-phase and
two-phase laminar flows were mvestigated considering
presence of penetrable and impenetrable matrixes. The
following have been yielded from these
simulations:

results

¢ Pressure drop calculated for the porous environment
with pulse flow is 31% less than pressure-drop
recorded for impenetrable matrix

* A considerable portion of pressure-drop takes place
in areas with smallest diaphragms
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+ Presence of an impenetrable matrix surrounding the
fracture results in reduction of friction coefficient in
comparison with previous status of the impenetrable
matrix

¢« A direct relationship exists between pressure-drop
and flow rate. As the
pressure-drop increases as well

flow rate increases,

RECOMMENDATIONS

Regarding other 1ssues related to this research, the
following counts could be mentioned:

*+  Modeling of flow in turbulent flows and analysis of
its effects on fracture matrix

* Three dimensional modeling of fracture flow in
porous matrixes

+ Modeling of a single-phase flow and investigation of
heat conduction in saturated porous areas or
investigation of mertia effects
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