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Abstract: We present a method constructing a function which 1s the best approximation for given data and
satisfies the given self-similar condition. For this, we construct a space F of local self-similar fractal functions
and show its properties. Next we present a computational scheme constructing the best fractal approximation
1n this space and estimate an error of the constructed fractal approximation. Our best fractal approximation 1s

a fixed point of some fractal interpolation function.
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INTRODUCTION

Fractal approximation has been applied to model the
objects which have fractal characteristics m nature.
Fractal functions whose graphs are fractal sets have been
widely used in approximation theory, signal processing,
interpolation theory, computer graphics and so on.
Hence, constructions of fractal functions and fractal
approximation have been studied in many papers
(Barnsley, 1986, 1988; Bamsley et af., 1989; Bouboulis and
Dalla, 2007a, b; Bouboulis and Mavroforakis, 2011,
Bouboulis et al, 2006, Chand and Kapoor, 2006;
Dalla, 2002; Feng et al., 2012, Malysz, 2006; Massopust,
1997: Metzler and Yun, 2010; Navascues and Sebastian,
2004, Lonardi and Sommaruga, 1999; Kang et al, 2014;
Yun et al., 2014; Hefei ez al. 1999).

Constructions of fractal functions by fractal
mnterpolation have been mntroduced by many researchers.
A construction of one variable fractal interpolation
functions by the Tterated Function System (IFS) with a
data set on R was studied by Barnsley (1986, 1988),
Navascues and Sebastian (2004) where the constructed
fractal fimctions were self-similar ones. The construction
was generalized by Bamsley et al. (1989), Bouboulis and
Dalla (2007a) and Yun et al (2014) which constructed
local self-similar fractal functions. Constructions of
Bivariate Fractal Interpolation Functions (BFTFs) have
been studied by Bouboulis and Mavroforakis (2011),
Bouboulis ef al. (2006), Chand and Kapoor (2006), Dalla
(2002), Feng et al. (2012), Malysz (2006), Massopust
(1997), Navascues and Sebastian (2004) and Yun et al.
(2014). A construction of BFTFs by fractal interpolation
on R was presented by Bouboulis and Dalla (2007b),
Yun et al. (2014) and self-affine fractal interpolation
functions were constructed by IFS with a data set on a

triangular domain by Metzler and Yun (2010).
Constructions of self-similar BFIFs by Dalla (2002),
Feng et al. (2012) and Malysz (2006) and self-affine
BFIFs by Massopust (1997) by IFS with a data set on a
rectangular grid were introduced. Bouboulis and
Mavroforakis (2011) local self-similar BFIFs were
constructed by the Recurrent Tterated Function System
(RIFS) on a rectangular grid.

A construction of local self-similar fractal
interpolation functions in R* was studied by Bouboulis
and Dalla (2007b). To comstruct fractal interpolation we
need a data set {(x, y),1=0, 1, ..., n} and a set of scale
parameters {s;, i = 1, ..., n}. The fractal property of the
graph of the interpolation function is determinated by
those data. Let a division of the interval and scale
parameters be given, that is a fractal property of the
function be given. If the number of experimental data is
more than the number of the mterval division, then we can
not construct the fractal interpolation for the data using
fractal interpolation theory.

So, we assume that a division of the mterval and
scale parameters be given (that 1s a fractal property of the
function) and study the problem constructing the best
fractal approximation for the data set {{&; ), i=0.1...,m}
where, m>n (n is the nmumber of the interval division).
Lonardi and Sommaruga (1999) and Hefei ef al. (1999)
constructions of the best approximation of functions by
the fractal functions were presented, respectively. But the
continuity of the approximation was not guaranteed then.
The best fractal approxmmation of a continuous function
in 1} space was introduced by Bouboulis and
Mavroforakis (2011) a space of differentiable fractal
interpolation functions was constructed and it was
proved that the constructed space is the reproducing
Kermnel Hilbert space.
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MATERIALS AND METHODS

A space of local self-similar fractal functions and a space
of contractive operators: In this study, we construct a
space of local self-similar fractal functions and a space of
contraction operators which are i1somorphic to each
other. Let:

A={xeR:1=0,1, ..,n} a=x<x<.<x,=b,

I = [ab], L=[x.x]

s |si|<1,i=1,2, ., n}
be given Let 1<qzn (QeN), I, = [X4 Xopol: Xopor Xogo€ 10,
Xy, o0 Xy and e(k)-s(k)>2, k=1, ..., q. [ is called a region
and I, a domain. We define a mapping v: {1, .., n}- {1, ..,
q} which means that we relate every region to a doman.
For each ie{l, ..., n}, denote k =y (i). For ie{l, ..., n}
define a mapping u, 2 J,~1; by:

u (xX)=ax+Db (1)

which satisfies:
U X ) = X U (X ) = X
Let feC(T) be a continuous function satisfying:
£(x) =s, £, ) +p, (UL (), xe (2)

where, functions p, . I,-L,1 = 1, ..., n are defined by
Pir (%) = ext+d and satisfy the following conditions:

ST (%, 0o )T D XK ) = 1%, ) (3)
Sif(xe(k) )+ pl_k(xe(k)) =1f(x) 4

Define a space of functions satisfying Eq. 3 and 4 by
F. The graph of f=F has a local self-similarity and we get

f(x) = 0eF which corresponds to¢; = 0, d; =0, ic{1, ..., n}.

Lemma 1: F 1s a linear subspace of dimension n+1 of o(I).
Proof: For f.feFand AcR, we have:

f(x) = 5,.£ (u L OyHp,, () (0L E ()

=s.f(u, XD+, (u (xNxe
Hence:

(f+ £)(x):=s,(F + F)u,, (XD +(p, + P, (0 LxIxE L,
D) (x):=5, (A (up, GOYHAP,, ) (u ), (%) X € [,

Thus, f+feFand AfeF. Because for feF, (f(x), f{x)), ...,
f(x,))cR*"! is uniquely determined, a mapping ¥: F-R™" is
defined by:

W) = (F(x,) £(x,), -, (%, ) (5

And for (y, vy, ..., v)ER™, there exists a unique feF
such that fix) =y, 1=1, ..., n. In fact, the existence and
uniquenss of f are ensured by the existence and
uniquenss of the recurrent fractal interpolation function
(Bamsley ef al, 1989). This shows that the mapping
¥: F-R" is a bijection. We can easily check that the
mapping ¥ is linear. Hence, F and R™' are isomorphic. A
basis of F is:

¥ede =(0,...,L0,.,0i=L..,n+1 (6

The space F 1s a Banach space with the norm |.|... For
ay = (Yo, V1, -, Yo)ER™", define a function space F, by:

F, = {fcCd)y fix)=y,1=1, .., n}

Then, (F,, | |.) is a complete space. For fcF define a
function T f: I-R by:

(T,O00) =5, -Fu, ) i) xe L, )

where, p3 (x)=cax+d} satisfies the following conditions:

(T ) =y, (LX) =y,
1e.,

T, T,
S Y. TPk (Xs(k)) =Y 8 Yem TPk (Xe(k)) =Y

By these ¢ conditions d% and are uniquely given
by:
. (YY) (YE(k) - YS(k)) (8)

o
01,1( -

Koty ~ X

q% = ViaXew ~ Yi¥eao T8 (Xs(k)ye(k) _ys(ijs(k)) (9)
ik T

Koty ™ Xey

Therefore, for a v = (i, ¥, ..., ¥JER™', we get a
unique operator T, And because T,f is continuous by
Eq. 7, T,feF,. Thus, the operator T;: F,-F, is defined by
Eq. 7. It i3 easy to verify that the operator T, is a
contraction with respect to |... According to the
fixed-pomt theorem in a complete space, there exists a
unique fr.€F, such that:
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(ny(Xu)any(XJ:”':ny(Xn)) = (yU:' Y1>"'>Yn)

Let T be the set of such operators. Define a mapping
@ R™'=1 by ®(y) = T,et. Then, the mapping @ is a
bijection.

Lemma 2: The 7 1s a linear space of dimension n+1.

Proof: For T,.T,€7 and AcR, define T,.T, on F by:

n+ya
fe k., (T, + TYz WEYx)=s, -Fu (x)) +

(prn = p T ()X e |,
and lTyl onF)\_yl by

fe B, AT, D0 =s,- T )+

Ap (' (X)) x€1, i=1...n

Note that we omit a subscript k after this because
the domain and region are all fixed. Tt is clear that
(T,, +T,)feF, _ and AT Hf e L Therefore, T, + T, €F
and AT, €7, 1.e., the linear operations are defined n the
set T. It 1s easy to prove that the set T 1s a linear space
with respect to the linear operations. The mapping @:
R¥=T is linear. In fact, because for v, = (¥, 5, Vi1 --» ¥in)
and v, = (Vyp, Va1 o Vo )ER™', AR by Eq. 8 and 9:

P = RN = (e e (4 +d”)

T T T T T T
=6 x+d R+ d” =p ()4 p 7 (x)

plT""1 (x)= cf”l X+ le”‘ = k(cfyl x+ leyl )= KplT"l (x)

and we get:

(Dy, + ¥, )E)NE) = ( Py + Py NN,
(O D) = WPy (x)

Hence, T and R™' are isomorphic which means that
the dimension of T is n+l. By the isomorphic relation
(0,0, ..., MeR™' correspondeds to the operater T defined
by:

(TEYx) =s, - £(u ' (X)), xe 1,

whose fixed pomnt 1s fi(x) = 0.

Theorem 1: Let F and T be the linear spaces constructed
above. Then, they are isomorphic.

Proof: This follows from Lemmas 1 and 2. Denote the
isomorphism of F-T by ¥. Note that for {feF, the fixed
pomnt of T with ¥&)=T 1s f.

RESULTS AND DISCUSSION
Construction of LSFA of a data set: In this study, we

prove that there exists the least squares
approximation fin F of a data set and present an algorithm

fractal

for finding f by calculating approximately the contraction
operator T in T corresponding to f. Let P be a data set
given by:

P={(X.7):i=01__m)
(X, <X <---<X

(10)

Xy =Xy, X, =X, )

m?o

where, m>n. An f is called the Least Squares Fractal
Approximation (LSFA) if £ is a solution of the following
question:

min 3\ (F(x) -7 (1)

First, we consider the existence and unigeness of
LSFA.

Theorem 2: If {x,, x,, ..., n,} = & . %} then there exist a
unique solution £ cF of Eq. 11 and a unique T»cT whose
fixed point is "

Proof: Define an operator B, F-R™" by:

feF, B, f =f(x, 00X, f(xX, 0

and denote B_F by D. Then B 1s a linear operator and D
is a linear subspace of R™. Equation 11 is represented by:

: 5002
min|| B, f —z|;

where, 2={z,.%7,....,Z,}¢ R™ and |.|; 1s the Euclidean norm.
Therefore Eq. 11 is equivalent to the Eq. 13:

min| z—- ||z (13)

Because (R™, ||.|) is a Hilbert space and D is a
subspace of R™', there exists a unique solution z of
Eq. 13. If B,f = 0, then from the hypothesis of the
theorem:

(fixy), f(x,), .., fix))=1(0,0,..,0)

1498



J. Eng. Applied Sci., 12 (6): 1496-1502, 2017

and f(x) = 0 by the construction of F. Therefore, B, is an
injection and there exists a unique £ cF such that B.f = 2,
1.e., there exists a unique T =¥"(t")et . From Theorem 2,
Eq. 11 15 equivalent to the following equation:

: a2
min| B, £, — 2
ET

Now, we consider a construction of the LSFA.
Let ¥ be the linear mapping defined by Eq. 5 and denote:

vi=Fe)e=(0,..,1,0,..,0,i=1, ..., 0+l

Then, (v} 13 a basis of F and there exist unique
As ooon A,2R such that:

f = ikkvk
k=0

Forf, geF, define <f, g >R by <f, g>= 3" f(F) (X)) We
get a normal equation:

Ao=Db
A=(a,),a; =<V, v, > b=(b), b, = > zv,(X,)
k=0

(14)
to find f'eF. Since, v, i =1, ..., n are fractal functions in
Eq. 14, it needs enormous operations. Therefore, we
consider an algorithm for calculating the approximation of
contraction operater Tp. We calculate approximately £ as
the fixed point of Ty.. Now, for po=. %, ... %), letus
denote X,, = p,*R™". Define an operator T,, on X,, by:

Z:(Zu: Zis s

z, )€ R™®*, T (Py> 2=y, 2,
2:(20, Z, z,)

S Ly

where, Z ,1=1, 2, .., m are defined as follows: forx; , there
existl ({1, ... n}) and k({0 1, .., m-1})such that %L,
and %, <u'(T)<%,, . Then:

7, =587, +7,,)/ 2+ cu (X)) +d,
The operator T,, is given by g, ¢ andd,i=1, .., n
where |s]<1,1=1, .,nand ¢, d,1=1,2, ..., nare

calculated by Eq. 8 and 9 and represented by v, 1, ..., ya.
Let us denote (T, (p,, 2)), = 2. We find a T, such that:

1 (T(py> 2, — ||z =Il 2 — 2]l — min 15

This problem is a minimization problem of a
multi-variable function with unknown v, v, .., v, We find

T
F P F
B. y B, ¥
R, LE R,

Fig. 1: Relation between T and T,

Yo» Vis s ¥n from this problem. Next we find the RB
operator T", using the method constructing the fractal
interpolation and its fixed point, that is the fractal
interpolation with {(x,, vo), (X, ¥1), ..., (%, ¥.)} and scale
parameters s, s,, ..., 5, 18 our best fractal approximation.

Estimation for errors of the approximation: Tn this study,
we consider a relation between T and T and estimate an
error between the approximation solution fr+ and given

data. For (py, ¥), (pp, )X, and AeR, define (py, V)P, &),
A (pg y) and |(pg, y)| as follows:

(Py> V) +(Py- ) =Py ¥ +8) APy, ¥):= Py, A¥)
1Py ¥)[:=max |y |

D<i=m
Lemma 3: T, 1s a contraction operator on X,

Proof: For(p,. v), (p. )X, we get:

- — .8

Iy, —& ‘:EI|Y1< F Vw8 &l

[ TaPos ¥~ TaPos 8| =1 (P> ¥3 —

00 ©11= by 7-2) | =mexe |, -5 |

5

551(‘ Yi ~ 8t Vi —8in |)

ssmax |y, —g | =[P, y —8) |
where, ¢ = max{|s;]| 1, .., |s,|}<1. Therefore, T, is a
contraction operator with contraction constant ¢. Because
X, 18 equivalent to R™', we identify X, with R™" and get

a diagram that shows the relation between T and T,
(Fig. 1).

Lemmad: Let X -%,=%,-%/m fori=1,2 .., m LetT
and T, be defined by the same s, ¢;d,i=1, 2, ..., n. Then
for geF, we have:

IT,B.g B, Tgll, —0 (16)

Proof: By the definitions of B, and T, we get:

B.g = (gxy) g(x,), .., g(x, ). T, Bog = (80, &> > )
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g =8,(g, T8 )/ 2T P (U (X))
Xcl, X <4 (X)<%, ,
And:
Tg(x)=sg(uy (x)+p(uy' (X)), x€ ],
B, Tg=(Tg(x,), Tg(x,), ..., Tg(x,))

Therefore, we have:

[(T.Bugh —(B.Tg) [ =[8(8, +8ra )/ 2+

Py (uy (X)) —sig(u (X)) - p, (0 (K ) =

|8,((8) + 8 )/ 2 -8 (X} 0 (m — o)
which gives in Eq. 16. If T and T, are defined by the same
s, c,and d,1=1, 2, ..., n, then since contraction constants

of T and T, are given by s i=1, 2, ... n, the elements of
T and T, have the same contraction constant ¢.

Theorem 3: Let T and T, be defined by the same s;, ¢; and

d,i=1,2, .. nIffor 5. %, .5, 0 (R)e{&. 5%, LK.} LeL,
then we get B_f; = T, B_f; and:

IBf =2 22 an
—C

Proof: Since, f; is the fixed point of T, we have:
£.(x)=TE(x) =s, - F.(u (xD+ p, 00 (X)), x€ |
and by the definitions of B and T, we get:
(B £ (), =s, £ (0 X )+ py o] (K )
Since, Bufr = (%), . ..f(X. ) | we have:

rTm Bme = Tm (fT (in ): s--a f(im ))
And:
(T.Bufr) =s, - fr(u G0+ pi(uy (X))

Hence, we have B, f. = T B_.f; and:

| Bofy ~ 2SI BE, ~T 201+ T2 2
= By~ T, 2]+ T, 5 2
<c||Bfr —Z||+|| T 2-Z]|
Thus:
B, —2l £ T,2-2

Lemma 5: Barnsley (1986), let X be a Banach space and T
a contraction operator on X with the contraction constant
c. Let f1 be the fixed point of T. If for feX, |{-T¢ <€ then:

I~ fllke/ (-

Demote & = T2~z and &, =|T,B,f,. | -B,f. =IT,B,f. ~B,TT.|.
Theorem 4: Let f,. be the fixed point of T" defined by the
solution (y'y, ..., v ) of Eq. 15. Then, we have

B, L. —2l<(E +e,)/(1-0) (19

where, ¢ i1s the contraction constant of the contraction
operator T',. Especially, €, = 0 under the conditions of
Theorem 3.

Proof: We can easily see that:

IBaf 2|9l B, — L. I+ ]1E. —2]] (20)

From Lemma 4, we have | T,B.f.-B,f.—0. Let us

denote p=T,B.f. -B,f..p=(p,....p.) . For % €L, there exists
ake{0 1, ..., m} such that =, <v'(x)<%,,. Then, we get:

P = Sl(f-l-* (X, )+ f-r* E D 2+p (uil(i )] 731f-1- (ufl X N-
PO (%) =5, (L (%, )+ £ (%, )/ 2= £ (o (X0

From Lemma 5, we have:

IBufy Ly 2,/ A—e),lIf, — Zli<e /1—0)

where, c =max {|s;[,1=1, .., n}. By Eq. 20 and 21, we get
Eq. 19.

Examples of calculation

Example 1: Tet P be a data set given by
P={(%, z)eR¥:i=0, 1, 10} ={(0,3.6),(0.1,51),(02,5.6),
(0.3,6.3),(0.4,6.0),(0.5,5.4),(0.6,5.6),(0.7,5.0),(0.8,4.2),
(09,3.2),(1, 1.7} Let §x5, X, %5, %5, X, = §0,0.2,05,07, 1},
A=1(0yy). (02, y),(0.5,y,), (0.7, y2), (LLy )}, 8= {s;, s,
S S = {173, 2/5, /7%, Then, I, = [0, 0.2], I, = [0.2,
05, L =105 07l and I, = [0.7, 4]. Let T, = [0, 1], T,
=0, 1, I,=100,1], I, = [0, 1]. By Eq. 1 and 2, we
have u(x) = 02x, wx) = 03xH02, u(x) = 0.2x+05,
= 03x+07 and by Eq. 8 and 9 ¢, d, =T =1, .., 4
given by ¢ = {0.666667y,1y,-0.333333y,, 0.4v-yty,-0.4y,,
0.166667y,-y,+y0.166667y,, 0.142857y;-y,+0.857143y,},
d={0.666667y-0.dytyy, -0.166667yty,, -0.142857ytys} .
Then, we have (vy, ¥, Vo ¥5» Vo) = (316738, 4.97274,
5.05272, 4.84987, 1.66452) from the Eq. 15. Hence, we get
c¢=(2.30631,0.681127,0.0476312,-2.97066), d=(2.11159,
370579, 4.52482, 4.39739). The attractor of IFS {R%: w, w,,
Wi, W,k

1500



J. Eng. Applied Sci., 12 (6): 1496-1502, 2017

Values

02 04 06 08 i)

Variables

Fig. 2. LSFA of a data set. The points are one of the data
set

10

9

Values
~

2 4 6 8 10 12
Variables

Fig. 3: The coastline

u,(x)

W1{XJ_{ J,i=1,2, 3,4
y sy+cx+d

is the graph of the found least squares
approximation (Fig. 2).

fractal

Example 2: Calculate LSFA of a coastline with a data set
taken from the coastline in Fig. 3. We take the following
data set: P = {(2.0, 5.82), (2.1, 5.86), (2.2, 5.9), (2.3, 5.92),
(2.4,5.92),(2.5,5.92),(2.6,6.0),(2.7,6.22),(2.8,6.29),(2.9,
6.31),(3.0,629),(3.1,627),(32,6.39),(3.3,663), (3.4,7.15),
(3.5,7.29),(3.6,7.47),(3.7,7.49), (3.8, 7.55), (3.9, 7.59), (4.0,
7.61),(4.1,7.54), (42,7.42),(4.3,7.26), (4.4, 7.28), (4.5, 7.36),
(4.6,7.36),(4.7,7.40), (4.8, 7.40), (4.9, 7.36),(5.0,7.32), (5.1,
7.42),(5.2,7.38),(5.3,7.38), (54, 7.28),(5.5, 7.01), (5.6,6.75),
(5.7,6.54),(58,6.23),(5.9,5.52), (6.0, 5.48), (6.1, 5.44), (6.2,
5.36),(63,5.46),(6.4,5.34),(6.5,5.18),(6.6,5.24), (6.7, 5.28),
(6.8,5.16),(6.9,514),(7.0,512),(7.1,5.16),(7.2,5.12}, (7.3,
5.10),(7.4,5.06),(7.5,51),(7.6,5.48), (7.7,5.82), (7.8, 5.98),
(7.9,5.98), (8.0,5.84), (8.1, 5.70), (8.2, 5.62), (8.3, 5.58), (8.4,
5.4),(8.5,5.28),(8.6,520),(8.7,5.24), (8.8,5.2),(8.9,5.14),
(9.0,512),(9.1,5.20),(5.2, 5.50), (9.3, 5.50), (9.4, 5.54), (9.5,
5.56),(9.6,5.42),(9.7,540),(98,5.6), (9.9, 5.6, (10.0, 5.68),
(10.1,5.64, (102, 5.64), (103,5.60), (10.4, 5.62),(10.5, 5.70),

10

9

Values
~

2 4 6 8 10 12
Variables

Fig. 4: A data set of the coastline

10 |

Values

Variables

Fig. 5: The fractal approximation of the coastline

(10.6,5.74),(10.7,5.74),(10.8,5.78),(10.9,5.86),(11.0, 5.88),
(11.1,5.88),(11.2,5.70), (11.3,5.76),(11.4, 5.84),(11.5,5.78),
(11.6,574),(11.7,5.74), (11.8,5.68),(11.9, 5.58), (12.0, 5.52)}
Then, we have I =[2, 12], A = {x,. X, X5 Xa, Xo, X5, Xg» X70 Xga
%o, X0t L = [2,3L L, =[3,4L. L =[4. 51 ], =[5. €.k =[6, 7],
,=[7.8],1,=1[8,9],1,=[9, 10],1,=[10, 11],1,, =11, 12],
Yoo Yo ¥ ¥ Yo ¥s Yo Yo Yo ¥e Vi, (5.71008,
6.22253,7.4376,7.58819, 5.95495, 491328, 5.74059, 5.12894,
5.59619, 5.83781, 5.6046), ¢ = (0.0522894, 0.122562,
0.0161142,-0.162269, -0.103113, 0.0837858, -0.0601096,
0.0477794, 0.0252167, -0.0222661), d = (5.03448, 5.4064,
6.83436,7.34172,5.50017,4.1747, 5.2898, 4.46238, 4.97475,
5.31133). The attractor of IFS {R% w,, W,, Wa, W, }:

{X} [ ul(X) J |
W, = ,i=1,2,....,10
y sy+cx+d

is the graph of the found least
approximation (Fig. 4 and 5).

squares fractal

CONCLUSION

We comstruct a space of fractal mnterpolation
functions with a given division of the interval and scale
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parameters and find a function satisfying some
approximation condition for data {(%.Z).i=9, L....m}with
m>n 1n this space. We call it a local self-similar fractal
approximation. The values of the function at nodes of
division {y, 1 = 0, 1, .., n} are unknown unlike

mnterpolation function.
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