Tournal of Engineering and Applied Sciences 12 (5): 1261-1264, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Containerized Architecture for Software as a Service Applications Development

Vladimir N. Solovyev, Andrey V. Prokofyev and Roman G. Chesov
Flexbby Solution’s LLC Dolgoprudny, Moscow Region, Russia

Abstract: This study describes the containerization of a multi-tier client-server architecture based on LXC
isolation technology. A multi-tier client-server architecture was used as a single node to create the orchestration
application to manage saas cloud. Several types of applications like as CRM, contract management have been

developed and placed mn application container.

Key words: LXC, docker, SaaS, virtualization, containerization

INTRODUCTION

Virtualization and cloud computing have great impact
on how enterprise customers use software. Organizations
are adopting virtualization technology, using public and
private clouds, SaaS, integrating storage systems,
network infrastructure, computing capacity to increase
resource utilization and improve fault tolerance of
muission-critical business applications (Columbus, 2015).

Meanwhile, from the perspective of busmess
management and saas service maintenance, the
main goal of the enterprise or service provider computing
mnfrastructure 1s the ability to quickly and cheaply create,
deploy and menage applications (CRM, ERP, Contract
Management, BI, etc.).

This is the reason for the increased interest to
application containerization technologies such as
LXC by Docker (2017). Containenization can be effectively
used to build application and services hosting cloud
mfrastructure as well as to unify and simplify the process
of applications development and maintenance. According
to some studies, containerization reduces deployment
time by 54%, labor costs by 40% and the total cost of
application deployment by 30% (Rastogi and Sushil,
2015).

MATERIALS AND METHODS

The 1dea of applications contamerization 1s not new.
It was used in umix systems such as free bsd jail and
solaris containers but did not gain widespread adoption
until the appearance of L.XC and Docker. Development
and use of contamerization i1s currently one of the
drivers for public a nd private clouds infrastructure
(Linux Containers, 2014). In contrast to hypervisor-based
virtualization (e.g., Microsoft Hyper-V, XEN, ESXi
Hypervisor) that inplements hardware abstraction layer,

App1 || Appl App 1
Bins/libs | | Bins/libs| [Bins/libs

App 1 [| App I App 1
Guest OS] |Guest OS| [Guest OS]

Bins/libs Bins/libs
| Hypervisor | | Docker/LXC engine |
Host OS Host OS
Infrastructure Infrastructure

Fig. 1: Virtualization and contamerization

containers allow to 1solate operation system calls and run
multiple isolated application containers at the same
operation system kemel without hardware emulation
(Fig. 1). This approach allows to save system resources
(Dua et al., 2014, Morabita et al, 2015). Application
containerization simplifies applications delivery to end
users, change management, migration and backup. As a
result, it 13 gaiming popularity among software developers
and consumers.

Architecture of the containerized cloud

Multi-tier client-server architecture: The multitier
client-server architecture has been divided into
several functional layers to simplify administration,
scalability and change management (Fig. 2). To implement
each functional layer, one or more techmques can be
used. Presentation layer includes everything related
to user interaction with the system. Tt can be as
simple as a command-line mterface but now a days users

Corresponding Author: Vladimir N. Solovyev, Flexbby Solution’s LL.C, Dolgoprudny, Moscow Region, Russia
1261

J. Eng. Applied Sci., 12 (5): 1261-1264, 2017

Interaction AJAX Web
layer client server
5
&
Business Business 5
logic layer AP logic core o1l b
5
E
Data layer e Data base Data
storage e

Fig. 2: Multitier client-server architecture layers

AJAX External
client system
‘Web Messaging
server server

architecture of the

client-server

Fig. 3: Multi-tier
application

and customers have a number of requirements such as
compatibility of graphical user interface with a variety of
web-browsers, mobile accessibility, convenient operation
with different screen resolutions.

Data layer is a part of the system that provides data
storage and provisioning (for most business and
analytical systems the data source is the database
management system). Additional data sources can be
external systems or in terms of the system being
developed, mtegration interfaces and non-structured data
storage.

Business logic layer (domam logic) describes the
main functionality of the application that constitutes the
business domain of analytical or business applications.
Integration layer provides the integration between the
components of the multi-tier architecture and external
systems. This multi-layer approach has been used to
create a multi-tier client-server architecture which later
was containerized using L.XC and Docker technologies.
This type of architecture i1s a multi-tier client-server
application (Fig. 3).

Key components of this system are a database
(Postgre SQL, MSSQL, etc.) an application server, a
messaging server (Apache ActiveMQ, other standard
components can also be used as a messaging server). In
addition, there are 3 components providing access to the
application logic from the web-browser. They are a web
server (Apache, nginx or others), web APT adapter (Fast
CGI Service) and AJTAX web-client. Another component,
a tomcat servlet container is used for generating
document print forms and saving user documents. The
components of the system can be mstalled m the same
container node or be separated into different application
containers for load balancing and scalability

(Slideshare, 2017).
RESULTS AND DISCUSSION

Containerization of multi-tier client-server architecture
Management hierarchy for an isolated container: A
high-level API has been developed to manage
containerization which allows access to the host machine
Linux kernel and LXC environment. At the level of an
1solated application contamer, “mitsys™ component has
been designed which provides access for external
components to the container core through a high-level
API and allows to control start up and shutdown of the
required services. “SSN-manager” has been developed at
the level of the host machine which uses a high-level APT
to provide access for the external admimstration server to
Linux kernel functions, visualization tier (LXC), virtual
container and its services through “initsys” component.
In addittion, “SSN-manager” manager has access
interfaces to file storage server and web-servers to
provide control from a single administrator console.
“SSN-manager” has an APT to developing business logic
for subscription management (at the cloud administrator
level) which can also be deployed in one of the
containers. It provides a homogeneous environment in
which the control system uses the same infrastructure
which it controls. Management hierarchy for an isolated
container 1s shown in Fig. 4.

File hierarchy of a container: A “base container”
component has been developed to provide virtual
environment updates. Base container is used to initialize
the base application container (Linux Foundation, 2003).
A “subscription project” may be created for each type of
containerized applications which includes a “base
container” +project business logic +filest+database. In
turn, the virtual application contamer contains only user
data, settings and files. If the container cloud is updated,
it is enough to simply upgrade the “base container” once
and restart the subscription through the admmistrator
console. The subscription will start with the new update.

1262

J. Eng. Applied Sci., 12 (5): 1261-1264, 2017

Initsys

Linux Kernal NS Stop
Launch

T Stop
Suspond

App
LXC RDBMS
? web APL

File < SSN-manager
storage

Web \

Subscription
server

control center

Fig. 4: Management hierarchy for an isolated container

User level
OS shell
App server
component bin

python libs,
database libs, etc

Base container

Busines application

Subscription webclient (AJAX)
. setting storage
t
projec cotainertfiles
database
Subscription User database files

Fig. 5: File hierarchy of a container

In case of updating the busiess logic of subscription,
client, etc., it is enough to update only the subscription
project. All the subscriptions created based on this
project will also be updated (Fig. 5). As a result,
subscription update time does not depend on the
number of subscriptions and takes only a few seconds
(Albert, 2015).

Network hierarchy of container management: All
components of the cloud infrastructure interact via TP
protocol which allows to locate the cloud components in
a physically and geographically distributed infrastructure
(Fig. 6).

Usage and testing: The developed containerization
layer was used to containerize analytical and business
applications and deploy them in the cloud for saas
applications. Ubuntu OS was used as a host OS. Examples
of user interfaces of the saas applications are shown in
Fig. 6.

¢

Packager

SQI
repository]

App | App 2
(hosted) (hosted)
F
| Virtual switch internal IP I

$ Server-node

|SSN-manager Web server

nginx

A
w hitps

st 3

https

Fig. 6: Network hierarchy of container management
CONCLUSION

This study describes the containerization of a
multi-tier client-server architecture based on LXC 1solation
technology for saas application developments. A
multi-tier client-server architecture was used as a single
node which includes the following elements: database
server and cache subsystem, application server,
messaging providing the integration of
architecture components, application server, web-server
and AJAX web client. The mult-tier client-server
architecture has an open APT based on Python and XMI.
for creating application business logic and modifications

of the user interface. In order to provide the isolation

server,

layer of a single node in the multi-tier client-server
architecture, inplementation classes and contamerization
management have designed and
implemented in CH++.

classes been

The approach proposed in this study allowed to
create a homogeneous environment in which the
control nodes are built using the same technology
as the controlled nodes. This technology allowed to
create a prototype of the cloud mfrasttuctire for
business and analytical SaaS applications hosing.

The first test results show that contamerization

technology has a potential to create scalable
clouds for business and analytical SaaS
applications.

ACKNOWLEDGEMENT

The research was performed with support of

the Minmistrty of Education and Science of the
Russian Federation (research No. RFMEFT
57914X0069).

1263

J. Eng. Applied Sci., 12 (5): 1261-1264, 2017

REFERENCES

Albert, P., 2015, Worldwide cloud applications market
forecast 2014-2018. Apps Run the World, Dublin,
California. https://www .appsruntheworld. com/the-
hand-rail-is-going-a-little-faster-than-the-moving-si
dewall/.

Columbus, L., 2015 Roundup of cloud computing
forecasts and market estimates, 2015. Forbes,
New York, USA. https://www. forbes.com/sites/
louiscolumbus/%202015/01/24/roundup-of-
cloud-computing-forecasts-and-market-estimates-2
015/,

Docker, 2017. Docker documentation. Docker Inc., San
Francisco, California. https://docs.docker.com/.

Dua, R., AR Rajaand D. Kakadia, 2014. Virtualization vs
containerization to support paas. Proceedings of the
2014 IEEE International Conference on Cloud
Engmeenng (IC2E), March 11-14,2014, IEEE, Boston,
Massachusetts, USA., ISBN:978-1-4799- 3768-4, pp:
610-614.

Linux Containers, 2014. LinuxContainers.org
Infrastructure for container projects. Linux
Containers Organization, USA. hitps:/ linuxcontain
ers.org/.

Linux Foundation, 2003. Virtualization the open source
standard for virtualization. San

Francisco, California, USA. http://www.xenproject.

hardware

org/users/virtualization html
Morabito, R., T. Kjallman and M. Komu, 2015. Hypervisors
vs. lightweight virtualization: A performance
of the 2015 IEEE
International Conference on Cloud Engineering
(IC2E), March 9-13, 2015, TEEE, Tempe, Arizona,
USA., ISBN:978-1-4799-8219-6, pp: 386-393.
Rastogi, G. and R. Sushul, 2015. Cloud computing

implementation: Key

comparison. Proceedings

solutions.
Proceeings of the 2015 2nd International Conference
on Computing for Sustainable Global Development
(INDIACom), March 11-13, 2015, IEEE, Dehradun,
India, ISBN:978-9-3805-441 5-1, pp: 320-324.

Slideshare, 2017. Discover, share, present, share what
yvou know and love

issues and

through presentations,

mfographics, documents and more. LinkedIn
Corporation, Mountain View, California.
http://www.slideshare net/TBR Market Tnsight/

the-developers-coup-2015-applications-
development-demands-and-vendor-opportunities.

1264

	1261-1264_Page_1
	1261-1264_Page_2
	1261-1264_Page_3
	1261-1264_Page_4

