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Abstract: The 1ssue of how best to optimize Central Patterns Generators (CPG) for locomotion to generate
motion for one leg with two degrees of freedom has inspired many researchers to explore the ways in which
rhythmic patterns obtained by genetic algorithims may be utilized in uncoupled, unidirectional and bidirectional
two CPGs. This study takes as its assumption that the focus on stability analysis to decrease variation between
steps brings about better results with respect to the gait locomotion and argues that controlling the amplitude
and frequency may lead to more robust results viz., stimulation for movement.
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NTRODUCTION

Recent studies on stimulation for movement such as
walking, swimming and running have shown that the
basic locomotors patterns of biological systems are
produced by a central nervous system, referred to as the
Central Pattern Generator (CPG) (Sillar, 1996). Central
pattern generators are biologically mspired networks of
nonlmear oscillating neurons that are cable of producing
rhythmic patterns without sensory feedback. Tocalized in
the spinal cord of amimals, the CPG  sends signals from
the bramstem to produce a periodic activity and hence
generates rhythmic commands for the muscles
(Brown, 1911; I[jspeert, 2008; Righetti and Ijspeert, 2006;
Tjspeert et al., 2007, Sproewitz et al., 2008; Cho and Jeon,
2016, Maizir et al., 2016). Recent studies on human
body have shown that many functions that cannot be
controlled by the human body consciously are controlled
by the CPGs such as breathing and digestion (Billard and
Ijspeert, 2000).

Generally speaking, CPGs are considered a set of
nonlinear oscillators and each of the set of non linear
oscillators 1s forced by the output of a sensor which gives
a time-index to the first-order information on the motion
(Tjspeert, 2008). A neural oscillator is formed by two
neurons with mhibitive commections between them and
the responses of two neurons of a neural oscillator
suppress each other in such a way that one of them is
extensor neuron and the other 1s flexor neuron
(Bucher et al, 2000, Casasnovas and Meyrand, 1995,
Vreeswijk et al., 1994; Buschges, 2005; Matsuocka, 1987,
Pearson, 1995).

Interestingly, many physical structures of the limbs
and arms have been modeled and the control systems
have been copied to regenerate the same move patterns
in the robots as seen in nature. CPGs always synchronize
with body movement and accordingly burst rhythmic
patterns to motor neurons at an appropriate tume i a
movement cycle (jspeert, 2008). In legged locomotion,
each leg 1s controlled by distinct neuronal network where
the CPG gives signals to each joint (Amrollah and Henaff,
2010; Ijspeert, 2008). Experiments reveal that there 1s a
tight coupling between sensory feedback and CPGs. The
reflexes are phase-dependent they will have different
effects depending on the timing within locomotors cycle
(Pearson, 1995). Various models of CPG used for
controlling the biped locomotion n human robots have
been introduced (Aoi and Tsuchiya, 2005, Endo ef al.,
2005; Taga, 1998, Taga et al, 1991, Marbach, 2004).
Different modes of locomotion have been controlled by
Models of CPGs such as the CPG models used with
octopod and hexapod robots inspwred by msect
locomotion (Arena ef al., 2004; Inagaki et al., 2006, 2003,
Nolfl and Flereano, 2000). CPGs have been also used to
control swimming robots such as swimming lamprey or eel
robots (Arena er al., 2004; Crespi and Tjspeert, 2008,
Ijspeert and Crespi, 2007; Tnagaki et al., 2006) as well as to
control Quadruped robots (Billard and Tjispeert, 2000;
Brambilla et al., 2006, Fukuoka ef al., 2003). This study
summarizes the kinematics model used for simulations
and gaits design, explains the uncouple, umdirectional
and bidirectional two CPGs structures and analyzes
stability of the mode. It also explores how optimized
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central pattern generator structures may be adapted to
robotic systems that perform one-leg movement and gives
suggestions for future research.

MATERIALS AND METHODS

Kinematic model: Kinematic model is designed to perform
basic analysis. Figurel shows the flight and stance modes
of the leg structure where L.,, T, represent the lengths of
the thigh and the calf leg respectively and 6, 0, show the
angular positions of the hip and the knee. Let us also
assume that (X,, vo) denotes the first coordinate of the
hip and (%, yy) denotes the second coordinate of the knee.
Now, if the tip of the second link touches the ground the
leg will behave like a revolute joint. This indicates that a
zero slip 15 considered between the tip of the link and
ground surface. As such the body will move along
x-direction only i stance mode.

We have two cases: the first case is when the leg is
in stance mode, the kinematic model has one degree of
freedom (Fig. 1) The hip joint angle 8, is also calculated
with respect to knee angle 6, which is determined by the
CPG. The second case 1s when the leg 1s in swing mode,
we obtain leg with 2 DOF. The hip and knee jomt angles
are calculated by uncoupled, unidirectional and
bidirectional two CPGs. The kinematic equation are:

X, =X, tLcosO, %, =x, +L,cosO +L,cos6,

y, =Lsind and y. =L sind, + L,sin®,

Central Pattern Generators (CPGs): As defined
previously, CPGs are biologically inspired networks of
nonlinear oscillating neurons that are cable of producing
rhythmic patterns without sensory feedback. Recently, a
plethora of applications have been implemented using
different neutrals in robotic structures. These neutrals are
umnplemented by software methods called CPGs where the
CPG umit 1s responsible for generating required angular
hip eand knee joints. The
mathematical differential equations present the CPGs in
general Equaton (Larsen) (Ijspeert and Crespi, 2007
Ijspeert et al., 2007, Sproewitz et al., 2008):

references for the

¢, =2nv, + Zr]wusin((P] -® _q)u)
1

ﬁ—al[j(Rl—ri)—flj M

where, 8, is the output of oscillator i which has amplitude
1. Both the amplitude and the output are angles expressed
either in radians or in degrees which are subsequently

Xy

(Xp ¥

Ye (Xp Y9

Fig. 1: Leg system in swing and stance mode

sent to the motor controllers of the robot. By deriving the
Eq. 1 we obtamn three types of CPGs, uncoupled,
unidirectional and bidirectional CPGs, respectively:

@, = Znv,

L= al[i(Rl Tr 1) rl}

o )
¢, = 2mv,

- a .
L= az[f(Rz rz)rz}
P = 2V, + LW, sin(p, — ¢ — D)

L =a i(Rl r1)T1J
[4 3)

@ =12mv,

(¢ = 2nv, +r,wsin(g, —@, — <)

)

The output of the systems gives 0, = r,(1+cos (p,))
and 6, = r, (1+cos (@) where 6, and 6, (defined
previously) are said to represent the angular joints of the
hip and the knee respectively and the state variablese,
and 1; equally represent the phase and the amplitude. The
CPG will converge if isolated by v, and R;. The constant ¢
determines how fast the amplitude r; will converge to R;.
When multiple CPGs exist they are coupled together by
the coupling weights w; and phase biases ¢, where
i,j=1,2and i#j. Certain forms of outputs are possible by
changmg the numerical values of parameters (for more
details about different CPGs (Amrollah and Henaff, 2010;
Parker and Smith, 1990). Figure 2 shows one CPG in
simulink block.
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Fig. 2: Internal dynamics of one CPG (uncoupled)

Stability: Tt is a clear for the first case uncoupled two
CPGs that there 1s no bifurcation and that the first and the
second CPGs are independent of each other and they are
always oscillators. As for the second case, umdirectional
two CPGs where @ = @,-@, denotes the phase difference,
r; and 1 ,converge asymptotically to R and R,
respectively. The time evolution of the phase difference
1s determined by:

@ =1(D) =@, ¢ =2alv, v}~ LW, sin(D- 2}
If the oscillators synchronize they will do so at the

fixed points @eo. We obtain these points when @ = 0. Now
when f((deo) = 0 it gives us:

Note that there 1s no fixed-point if:

2n(v, —v,) <1

RZWIZ

That is when the difference of intrinsic frequencies is
too large compared to the coupling weight w,, multiplied
by the R, amplitude of the oscillator 2 the oscillators do
net synchronize and are said to drift. If:

(v, —v,) 1

R2W12

then there 13 a single fixed pomt Geo = 1/2+0),, when v,>v,
and e = w240, when v,<v., This solution is
asymptotically stable and the two oscillators will
synchronize with that phase difference. Finally, if:

2n{v, -v,) <1

RZWIZ

then there are two fixed points; one of tdhem is stable and
the other one 1s unstable. The stability of the fixed point
is determined by the sign of:

df (&)
4z —R,w, cos(Ze—@ )

The fixed point is stable if this quantity is negative
and unstable if it 1s positive. If the imitial phase difference
15 the unstable fixed pomt the two oscillators will remain
synchronized with that phase difference hence there is no
bifurcation. The thurd case 1s bidirectional two CPGs. Let
us consider four different cases.

Case 1: Let us assume that @, = -@,,, w,; = w,, = -w and
R, =R, =1.Then, as t~~ we will have r,~R, and r,~R,:

@ =2av, —wsin(Q, —¢, —@,;)
@, =27v, + wsin(Q, — @, —9,)

Also, for @ = @@, which denotes the phase

difference the time evolution of the phase difference is
determined by:

% =f{(@) =@, —¢ =2n{v, —v,)

Now, if () = 0 then v, = v, which means there is
no fixed point. Tn this case it is said to drift.

Case 2: Let us assume that @, = -0,, w,, =w, = wand
R, =R,=1.Then

& =f(@) = §, — ¢, =2n{v, —v)—2wsin(@ - &)
Now, (=) = 0 gives us:

Do = arcsin{m}+ 1z
w

If the oscillators synchronize, they will do so at the
fixed points Deo. Note that there is no fixed-point if:

(v, —v,)

W

>1

That 13 when the difference of intrinsic frequencies 1s
too large compared to the coupling weight w the
oscillators do not synchronize and are said to drift. Tf, on
the other hand:

v, —v,)

w

-
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then there is a single fixed point @ = ©/2+; when v >v,
and @ = -w/2+@, when v,<v,. This solution is
asymptotically stable and the two oscillators waill
synchronize with that phase difference. Finally, if:

WY, —V,) v)
w

then there are two fixed points; one of them 1s stable and
the other one is unstable. The stability of the fixed point
is determined by the sign of:

dr(@e=)
K%

=-weos(=—;)

The fixed point is stable if this quantity is negative
and unstable if it is positive. If the initial phase difference
15 the unstable fixed pomt, then the two oscillators will
remam synchronized with that phase difference.

Case 3: Let us assume that 3, = -&),, and R,
Then:

=R, = 1.

&= @, — @ = 2nv, —v,) — (W, + W, )sin(P-D,)

and f(@e) = 0 leads to the fixed point:

Do = arcsin{ 2mlv; v, )] B

W+W

Note that there is no fixed-point if:

2mv, —v
(v, )|
W21+W12

That 1s when the difference of intrinsic frequencies 1s
too large compared to the coupling weight wy,+w,, the
oscillators do not synchronize and are said to drift. Tf:

2nv, —v,)
Wy T Wiy

=1

then there 13 a single fixed pomt Geo = 1/2+0),, when v,>v,
and @« = W2+, when v,<v,. This solution 1is
asymptotically stable and the two oscillators will
synchronize with that phase difference. Finally, if:

2n(v, —v,) <1

Wyt Wy,

then, there are two fixed points; one of them is stable and
the other one is unstable. The stability of the fixed point
1s determined by the sign of:

df((;g ) _ = (W, +W,, Jeos(eo — ), )

Again, the fixed point is stable if this quantity is
negative and unstable if it 1s positive. If the wutial phase
difference 1s the unstable fixed pomt then the two
oscillators will remain synchronized with that phase
difference.

Case 4: Let us take @, = -@,, In this case, we have:

@ = ¢, — @ =27n(v, —v) —(Ryw, + R,w,)sin(@-,,)

and () = O results in:

. 2n(v, —
(Jeo = aresin v, v) +,
Ryw, + Rywy,

Note that there 1s no fixed-pomnt 1f:
2alv, —v,) 51
RIWZI + RZWIZ

That 13 when the difference of intrinsic frequencies 1s
too large compared to the coupling weight multiple by
amplitude R,w, +R,w,, the oscillators do not synchronize
and are said to dnift. If:

2niv, —vy) -1
Row, +R,w,

then there 18 a single fixed point Gee = T/24+C, when v,>v,
and @ =w/24+¢), when v,<v,. This solution is
asymptotically stable and the two oscillators will
synchronize with that phase difference. Fmally, if:

Iniv, —v,) <1
Ryw, +R,w,

There are two fixed points one of them is stable and
the other one is unstable. The stability of the fixed point
1s determined by the sign of:

df(Peo)

e =—(Ryw, +R,w,)cos (= —&,)
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The fixed point is stable if this quantity is negative
and unstable if it is positive. As such when the initial
phase difference is the unstable fixed point the two
oscillators will remain synchromzed with that phase
difference.

RESULTS AND DISCUSSION

Optimizing gait generation: In this study, we will
consider three cases where each pattern generator
outputs angular patterns for each jont. To evaluate gait
generation, we need to find the optimal parameter sets by
using central pattern generators which explains how the
angular of the luip and the knee should vary with time to
generate motion along x-direction. For each case,
parameter sets for the central pattern of each jomnt 1s
glver
P =1a, vi. Ry, v, Ry}

Uncoupled case:
P,={a, v, a, R, a, v,, R, wy,, @}
Unidirectional case:
Pi=ta, v, R, wy, @, a5, v, Ry, Wiy, Oy}

Bidirectional case: Nolfi and Floreano (2000), Alexander
(1996) used genetic algorithms to find the optimal
parameter sets. In this study there 15 only one cost
function utilized the different walking patterns depend on
this cost function (Arikan and Trfanoghu, 2011):

T=-0, ¥ 5, () + C,[ Y (820 + 82 (k)N
k=1 k=1

where, C,, C,e[0, 1] with C+C, = 1, n is the number of
elements of position vector in simulation and N is the
length of the time. To maximize the displacement or the
velocity, we should mimmize T If C, = 0 then the aim 1s to
maximize the displacement. However, 1if C, C, = 0 then
there will be another cost function involving energy
related terms in addition to the position. The goal is to
minimize the energy while changing the position. Actually
this fact is available in biological locomotion (Alexander,
1996, 2003). The angular positions of the lip and knee
joints are shaped during the optimization. These cost
funections result in two different walkang patterns. The first
cost function presents walking pattern with large
variations in joint because only the displacement is
emphasized in this function. However, the second one
moves m +x direction with small angular vanations of lup
and knee jomts.

Still there are two constraints 0<0,, 0,<m.
Figure 3 through 5 show some gaits as a result of
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Fig. 3: a) Simulation of walking gait with constraints; b)
Toint angles against time; ¢) Displacement against
time

evolutionary optimization techmque. Evolutionary
optimization algorithms reveal the gait below in case
corstramts applied for jomnt angles. In this study, we used
the hybrid function during the optimization. A hybrid
function is an optimization function that runs after the
genetic algorithm terminates in order to improve the value
of the fitness function. The hybrid function uses the final
point from the genetic algorithm as its initial point. You
can specify a hybrid function in Hybrid function options.
Specifically, we used optimization toolbox function at
pattern search or fmincon, a constrained minimization
function. The example first runs the genetic algorithm to
find a pomt close to the optimal point and then uses that
point as the initial point for pattern search or fimincon.
Following gait optimization, we may conclude that
locomotion 1s achievable by using the cost function T for
the case of the uncoupled two CPGs such as in Fig. 3a-c.

Again by utilizing gait optimization, stimulation of
movement may be obtamned using the cost function T for
the case of the unidirectional two CPGs it is show by
Fig. 4a-c. Finally by optimizing gait we obtain movement
by means of using the cost function I for the case of the
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Fig. 4: a) Simulation of walking with constraints; b) Joint angles against time; ¢) Displacement against time
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Fig. 5: a) Simulation of walking gait with constraints; b) Joint angles against time of optimizing gait; ¢) Displacement

against time of optimizing gait

bidirectional two CPGs, Fig. 9-11 show this results.
Table 1 and 2 summarize the results of the optimization in
unbounded and bounded region. It 15 concluded that all
parameters i three types of CPGs have positive values.
The parameters R, and R, are the smallest values in
both table. A close look at Table 1 and 2, we clearly realize
that in Table 1 the displacement and the velocity increase

too much Thence it is not possible to be
physically implemented, simply because optimization
has been carried out in an unbounded region. By
contrast in Table 2, optimization can be physically
implemented. Moreover, the three cases reveal no
bifurcation; better results come from bidirectional two
CPGs, though.
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Table 1: Uncoupled, unidirectional and bidirectional two CPGs in unbounded in 10 sec

Uncoupled, Unidirectional and bidirectional two CPGs in unbounded in 10 sec

Start at initial points Parameters values F-values Xb Optimization type E
30.3617, 28.5861, 0.8646, 30.7363, 28.5866, 0.8628, -2.3849e+004 47.8770 GA and hybridfen 3.0341
2003022, 14.2796, 1.2199 20.3314, 14.27%, 1.2202 at finincon
to uncoupled
30.7363, 28.5866, 0.8628, 30.6689, 28.5866, 0.8629, -1.1924e+004 47.8777 GA and hybridfen 3.0343
20.3314, 14.2796, 1.2202 20.3406, 14.27%96, 1.2202 at fimincon
to uncoupled
13.2211, 27.9674, 0.8541, 23.3678, 17.2865, 40.4284, 0.9287, 28.0195, -2.8213et+004 112.8684 GA and hybridfen 2.9301
20.0000,1.2259, 47.6153, 50.7133 33.3458, 1.2273, 52.0449, 50.3126 at pattemsearch
to unidirectional
58.3216, 34.6978, 0.8072, 8.6457, 61.4180, 34.8193, 0.8691, 8.8225, -6.8743e+004 1384982 GA and hybridfen 3.6014
1.1144, 59.4932, 34.2898, 1.2267, 1.0938, 61.9136, 34.4234, 1.3595, at fimincon to
12.0076, 6.7790 12.1180, 6.7896 bidirectional
61.4180, 34.8193, 0.8691, 8.8225 62.4355, 34.8369, 0.8565, 8.9123, -3.4536e+004 139.0181 Hybridfen at frnincon  3.6186
1.0038, 61.9136, 34.4234, 1.3595, 1.1130, 61.9463, 34.4603, 1.3678, unidirectional
121180, 6.7894 12.1621, 6.8044
17.2865, 40.4284, 0.9287, 28.0195, 17.5270, 40.6125, 1.0038, 27.1307, -5.7859e+004 116.9131 GA and hybridfen at. 3.0240
33.3458, 1.2273, 52.0449, 50.3126 33.3437, 1.2270, 51.1525, 50.1892 patternsearch to
unidirectional
Table 2: Optimizing uncoupled, unidirectional and bidirectional two CPGs in bounded region in 10 sec
Optimizing uncoupled, unidirectional and bidirectional two CPGs in bounded region in 10 sec
By optimizing of two CPGs Parameter’s values F-values xb Optimization type E
D&E Twouncoupled 33.7958, 1.9992, 1.4355, -1.1020e+03 4.4082 GA 18.4589
without constraints 68.5282, 1.9857, 3.2592
D&E Twouncoupled 18.6883, 1.9928, 0.7746, -1.3260e+03 4.9613 GaA and hybrid function 4.1004
with constraints 46,4124, 1.9604, 1.5327 at pattern search
D Twouncoupled 35.3887, 1.9955, 0.7564, -2.7312e+03 4.9856 GaA and hybrid 4.2406
with constraints 26,4992, 1.9606, 1.5707 function at fimincon
E Twouncoupled 0.0613, 0.0426, 0.0070, 9.3082e-09 0.3100 GaA and hybrid
with constraints 0.0309, 0.0429, 0.0263 function at pattern search 9.3175e-09
D&E Unidirectional two 50.0000, 1.9850, 0.78(4, -1.7074et03 6.4220 GaA and hybrid function 4.2509
CPGs 13.1020, 1.9230, 1.5356, at pattern search
2.0000, -0.3699
D Unidirectional two CPGs 20,2328, 1.9347, 0.7369, -3.0227et03 5.5084 GA and hybrid function 41719
256692, -1.9619, 1.5424, -0.3227, 3.2986 at fimincon
D&E Bidirectional two CPGs 48.2175, 1.9592, 0.8301, -1.6230e+03 6.2665 GaA and hybrid function 4.2799
1.9690, -0.5784, 31.8414, at pattern search
1.9616, 1.5398, 1.7346
D Bidirectional two CPGs 9.5946, 1.9499, 0.8009, -3.1376et03 6.1787 GaA and hybrid function 2.9796
1.2422, 5.5546, 48.1560, 1.9717, 1.2744, 1.9235 at fmincon
E = Energy, D = Displacement, F-value = objective finction and xb = displacement in meter
CONCLUSION we believe can be implemented physically. Most

To sum up m this study uncoupled, wnidirectional
and bidirectional two CPGs are used to generate motion
for one leg with two degree of freedom. The study
shows that when optimization is conducted in an
unbounded region, the results are impossible to be
unplemented physically. Furthermore by using genetic
algorithms and hybrid functions it seems that it is difficult
to find a global region because there is no bifurcation
for the parameters in the three cases above. However,
when we consider the stability analysis presented
above with the objective of decreasing the variation
between steps it is vital that we control the amplitude
and the frequency to obtain better results. Such results,

important the study reveals CPGs can control biped
locomotion not only in animals but also in human
beings.

SUGGESTION

Future research should investigate whether CPGs can
control other functions in human bodies such as
breathing, let alone the stimulation of the arm movement.
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