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Abstract: Hashing is a widely used technique in computer science. The recently proposed quantum hashing
has also proved its usefulness in a number of applications. The key property of both classical and quantum
hashing 1s the ability to withstand collisions however, the notion of collision itself 1s different in the classical
and quantum setting. In this study we analyze the set of numeric parameters that determine the probability of
quantum collisions for the quantum hashing. Although, there is a general method of obtaining good hashing
parameters, it makes sense for comparatively large inputs. That is why we construct different methods to
complement the general one. We present two explicit optimization algorithms for computation of quantum
hashing parameters: one 1s based on the genetic approach and the other uses the annealing simulation. The
solution to the considered optimization problem can be used for the variety of quantum hash functions and also
provides a solution to the general problem of constructing sets of pairwise distinguishable states in

low-dimensional spaces.
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INTRODUCTION

Hashing is a well-known technique, widely used in
computer science. Following the ideas and properties of
the cryptographic hashing, we have proposed its
quantum analogue in (Ablayev and Vasiliev, 2014). Just
like in classical case it can find applications in different
communication scenarios including quantum digital
signature protocol from (Gottesman and Chuang, 2001)
and quantum communication protocols (e.g. in the
one-way quantum  communication model and
simultaneous message passing model (Vasiliev, 2015). Tt
has also proved useful for constructing efficient quantum
algorithms (Ablayev and Vasiliev, 2014). This quantum
hash function was generalized in (Ablayev and Ablayev,
2014) by proposing a method for constructing new
quantum  hash functions from a specific family of
functions and an arbitrary universal hash family.

The key property of both classical and quantum
hashing is the collision resistance. Ablayev and Vasiliev
(2014), we have discussed the notion of quantum
collision. The reason why we have defined it is the
observation that in quantum hashing there might be no
collisions in the classical sense: since quantum hashes are
quantum states they can store arbitrary amount of data
and can be different for unequal messages. But the
procedure of comparing those quantum states implies
measurement which can lead to collision-type errors.

We have defined a quantum collision to be a
situation when a procedure that tests an equality of
quantum hashes outputs true, while hashes are different.
This procedure can be a well-known SWAP-test
(Buhrman et al., 2001) or something that 1s adapted for
specific hash function. Anyway, it deals with the notion
of distinguishability of quantum states. And since
non-orthogonal quantum states cannot be perfectly distin
guished we require that the pairwise mmer products of the
quantum hashes for different inputs are bounded.

A quantum hash function can be perfect, 1.e., having
no quantum collisions at all. However, this would mean
the absence of the other umportant property of the
cryptographic hashing-the pre-image resistance. The
trade-off between these 2 properties and the construction
of a “balanced” quantum hash function were discussed in
(Ablayev and Marat, 2015).

Here we concentrate on the problem of mimimizing the
probability of collisions for the quantum hash function
from (Ablayev and Vasiliev, 2014). The underlying
numeric optimization problem is the same for all further
generalizations of that function from (Ablayev and
Ablayev, 2014; Buhmman et al., 2001, Ablayev and Marat,
2015) and thus our solution can be used for the variety of
quantum hash functions.

As noted above the probability of quantum collisions
is determined by the value of the inner product of
quantum hashes for different inputs. Therefore, the
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solution to the problem of minimizing quantum collisions
with additional requirement of small quantum hash size
(and thus pre-image resistance) would also solve the
problem of constructing sets of parwise-distinguishable
states in low-dimensional spaces (Buhrman et al., 2001).

Preliminaries: In this study, we recall a quantum hashing
function from (Ablayev and Vasiliev, 2014). Let q = 2" and
B={b, b, ...bicZ, We define a quantum hash function
Yg.B: {0, 13%(H 24 a5 follows. For an input xe {0,137

we let:
1)}

It follows from thus definition that the quantum hash
[, (x)7 of an n-bit bit string x consists of log d+1 qubits.
We have shown in (Ablayev and Vasiliev, 2014) that d
can be of order O(n) without losing the quality of
hashing. The set B = {b,, b,, .., b;} of hashing parameters
not only determines the size of the hash but also
gives the function , ; an ability to withstand cellisions,
ie., to distinguish different hashes with bounded error
probability. We have called this property &-resistance.
Formally, for 8e(0, 1), we call a function Y. x-(H")*
d-resistant if for any pair w, w’ of different inputs:
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The value of q for the hash function Y, ; entirely
depends on ¢ (which is fixed here by the size of the input)
and the set B, 1e., 8 = & (g, B). Ablayev and Vasiliev
(2014) we have used a construction for this set of
polylogarithmic size (in n) based on (Razborov et al.,
1993). We have also proved the following result.

Theorem: For arbitrary de (0, 1) there exists asetB =
{b,, b,.., by} of size d = [ (2/8") In 2qsuch that the
quantum hash function r, ; is d-resistant. In other words,
for arbitrary 8e(0, 1) it is possible construct a &-resistant
quantum hash function v,  that would produce a log
d+1 = O(log log q) = O(log n)-qubit hash out of n-bit
input.

MATERIALS AND METHODS

Optimization problem: Tt can be easily seen that for the
function Y, 5 (x) we have:
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and we want it to be less than some & for any value
of (w-w") except for 0. Thus, the optimization problem
that arouses here 13 the following. For a fixed g mmimize
the target function:

b, (w —w")

8(q,B) = max
z#0 q
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over all B = {b,, b,, .., b;}c zq. The best possible solution

exists for B = zq, since if x= 0

However, this would mean that the size of the hash
is even larger than the input and hashing loses one of its
important properties. So we require that d should be much
smaller than q (preferably, d = O(log q) and we actually
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solve the above problem several times for mecreasing
d until it gives us the set B with desired value of & (g, B).

Genetic algorithm: The idea of genetic algorithm was
proposed by Holland (1975) for the mvestigation of
natural adaptation but it was later used for solving
computational search problems. Tt is based on the
evolutionary theory by Charles Darwin and uses
biological terms to describe the algorithm. When applied
to our optimization problem we define them as follows:

Chromosome is a set of numeric parameters B
Individual is a solution to the search problem and is
described by a set of properties (its chromosomes)
Since our ndividuals have a single chromosome, we
will use both terms interchangeably

Gene is an element of the set B

Locus 1s a position of a gene on the chromosome
Allele 18 a set of sequential genes
chromosome

Population is a fixed number of individuals
Fitness describes the quality of the solution
(individual). In our case fitness 1s given by the
function & (g, B) and our aim is to minimize it

on the

To start the algorithm we randomly generate a family
of sets (a population); all sets of genes are kept sorted to
ease operations with them. The size of the population is
equal to |B| but no more than 100. Such a small number of
individuals 1s chosen to reduce the runming time of
the algorithm. Then the population is evolved as
following.
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First of all, the new individuals are created from
existing ones using the crossover process. It is performed
by choosing 2 random locations in chromosomes and
exchanging alleles between these locations. That s
2 individuals are created after the crossover of two parent
chromosomes. After the crossover both children can
mutate with given probability.

Mutation 1s a probabilistic process of changing some
genes of an individual. The probability of mutation for
each individual is set to 0.25. The probability of mutation
of a certain gene 1s set to 0.1. All genes have equal
probability of mutation. The mutation of a gene 1s
described by the following equation:

yl’ =y, +(max—yi)[l—r(l—;)b} if p=0,

v~ —min)(l—r(l—;)"j, ifp=1

Where:

re[0, 1] = A random number

T = A number of generation

P = A total number of generations

P = Picked randomly from {0, 1}

b = An adjustable parameter which we have set

to 1, max = ¢/2 and min = 0

Finally, for all mdividuals the fitness fimction 1s
evaluated and distinet individuals with the best results
give the next generation. The evolution process repeats
the given number of iterations we have set the maximal
number of generations to 100.

RESULTS AND DISCUSSION

Simulated annealing: We have also developed a
simulated annealing algorithm to compute the set B. This
algorithm is a metaheuristic search algorithm and it is
described m (Kurkpatrick ef af, 1983). We used
concurrent-sa library for Haskell language for general
procedure of simulated annealing. Simulated annealing is
ingpired by a physical process of melting some substance
and then lowering the temperature slowly. This process
allows the substance to get to optunal state (1e., state
with the lowest energy).

To apply this algorithm to our problem we need to
define what 13 a state what 1s the energy of a state and
how the state changes. We define the state as some set B
with elements from z,. We define the energy of a set B as
the value of & (g, B). Set B changes into the other
(neighbor) set if these sets differ only in one element. So,
we start by generating a family of random states then we
change them according to current temperature. This
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temperature slowly decreases. After sufficient time
population will have sets with low & (q). The change of
temperature, required number of iterations and
concurency are handled by concurrent-sa library. In our
program we wrote only the size of the family, the function
for changing states and the function for generating
random sets.

Summary: To summarize we have analyzed the problem
of quantum collisions for the quantum hash function and
proposed two explicit optimization algorithms for
constructing sets of numeric parameters that mimimize the
probability of collisions.

CONCLUSION

The algorithms presented m this study can be used
as a part of the following strategy of minimizing quantum
collisions. If the size of the input is small we can use a
brute-force algorithm to find the best possible set of
parameters for quantum hashing. Otherwise, if the size of
the mput 18 large a constructive algorithm can give
asymptotically good results. But in the case of
moderate-sized inputs both of these algorithms fail: the
first one because of the time complexity and the other
because of the oversized quantum hash. In this case our
algorithms can be used to construct a balanced quantum
hash function which 1s both compact and collision
resistant.
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