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Abstract: The problem of frequent pattern mining in continuous streams has been widely studied m the
literature because of its numerous applications to a variety of data stream mining problems such as clustering
and classification. Tn addition, frequent pattern mining also has numerous applications in diverse domains such

as retail market data analysis, network momitoring, web usage minming and stock market prediction. The
algorithmic aspects of frequent pattern mining in streams have been explored very widely. This study provides

an overview of these methods.
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INTRODUCTION

Now a day’s many organization and researcher taking
interest in stream data mining. Currently there are many
sources produces stream of data continuously which are
unbounded, rapid and highly dynamic in nature. Example
sensor networks, networks, radio
frequency 1dentification, click streams,
telephone records, multimedia data, scientific data, sets of
retail chain transactions, etc. These sources are called
data streams.

Due to stream data are continuous, rapid, time
varying and unpredictable and unbounded and require
quick repose. Therefore, traditional data mimng algorithms
which are designed for static data are not suitable for
mining it cannot fulfill the
requirement of stream data mining.

Data stream mining 1s unportant research topic mn
research commumnity and the mumnber of researches also
growing in this field. Many algorithm and technology
developed and evolved for handling complexity and
volume of data, still there 1s need of wide view in different
methods. Since, it is under research area there are wide
chances of exploration.
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Preliminaries: A data stream D = {B,, B,, ..., By} 1s an
infinite sequence of batches where each batch B, contains
a set of transactions, i.e., Bi= {T,T,, ..,Tx} where k>0.
Each transaction T = (T, I, L. ... 1) is a set of items such
that TcD while n 1s called the size of transaction and T

is unique identifier of the transaction. An itemset is
a non-empty set of items. An itemset with size k 1s called
an m itemset.

There are many types of window model which use to
process data stream. A wmdow, W, can be either
time-based or count-based and either a landmark window
or a shiding window. W 1s time-based if W consists of a
sequence of fixed-length time units where a variable
number of transactions may arrive within each time unit.

W 1s count-based if W 1s composed of a sequence of
batches where each batch consists of an equal number of
transactions. W is a landmark window if W = {T,, T,. ...,
Tr}, W is a sliding window if W = {T1.., ..., Ts} where
each T, is a time unit or a batch, T, and T; are the oldest
and the current time unit or batch.

An association rule is an implication of the form
A=B, where AcW, BcW and AnB = . Tt helps to
discover combmation of goods. The
frequency or frequency of an itemset (x) T is the number of
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transactions that contain the itemset in a batch B and
denoted as freq (x). Occurrence frequency is also called as
absolute support. Support of X denoted by supp (X) 1s
freq (X)/N where N 1s total number of transactions
received in W in data stream.

It 15 also called as relative support. Support
(A=B) =P (AuB). Confidence of a rule X=Y denoted by
conf (X} 13 supp(XuY)/supp (X) where ¢ 1s the percentage
of transactions received in W, containing A that also
contain B. Confidence (A=B) =P (B|A).
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The lift value indicates that how many more times
itemset occurred than expected. It can mterpret the
importance of a rule. Tt is measure of a rule but it cannot
be define as minimum lift to minimum support or minimum
confidence.

Lift(X=Y) = confidence/expected confidence
Supp(X U Y )Supp (3X)* Supp (Y) An itemset X 1s called
as Frequent Ttemset (FI) if supp (X)> = minSupp where
minSupp 1s user defined mmimum threshold support. An
itemset X is closed in W if there exists no proper
super-itemset Y such that Y has the same support count
as X in W. An itemset X is a Frequent Closed Ttemset
(FCI) m W 1f X 15 both closed and frequent. An itemset X
1s a Frequent Maximal Itemset (FMI) in W if X and Y are
frequent and there exists no super-itemset Y such that
XcY.

To mine FIs/FMIs/FCls over a window in data stream,
1t 1s necessary to keep infrequent itemsets, because it may
become frequent later.

Example: In the example, there are 5 transactions. Each
transaction contains number of items. For the simplicity
weuse A, B, C, D, E, F letters to denote items. In Table 1,
A, B, C, D, B, Foccurred 3, 4, 4, 3, 4, 2 times, respectively.
Here minimum support = 4 is set. Therefore, only 3
item B, C and E satisfy mimmum support threshold.
Therefore, this items are frequent items because their
occurrence values are equal to the threshold value. Items
A, D and F are called as infrequent item sets. So,
they are omitted. Thus, this is called as frequent pattern
mining,.

Let’s take nonempty subsets of 1 = {B, C, E} are
{B, C}, {B, E}, {C, E}, {B}, {C} and {E}. If the minimum
confidence threshold is, say, 80%, then only 2 rules are
output and they are (1) {B"E}={C}, Confidence = 100%
(2) {C"E}={B} = 100%. Relative Support = 3/5 = 0.6 that
means it occurs in 60% of all transactions. Lift (X=Y)
{B, E}={C% has a lift of 0.6/(0.6x0.8) = 1.25.

MATERIALS AND METHODS

General issues in data stream mining: There are some
crucial 1ssues that need to be taken into account when
developing association rule for stream data.

Data processing mechanism: According to the
research of Zhu and Shasha (2002), there are three
data stream processing models, Landmark, Damped and
Sliding windows as shown in Fig. 1 (Jiang and Gruenwald,
2006).
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Table 1: Letters to denote items

D Ttem set

1 A B CE

2 A DE

3 A B CDEF
4 B, C,EF

5 B.C,D

The Landmark model mines all frequent itemsets over
the entire history of stream data from a specific time pomt
called landmark to the present. In this model, we treat each
time point after the starting point equally important. This
model is not suitable for mining where most recent
information and real time data are very unportant such as
stock market.

The Damped model mines frequent itemsets over
stream data. In stream data, each transaction has weight
and this weight decreases with time. So mn this model new
and old transaction has different weights. Due to above
characteristic of damped model, it is known as Time
Fading model. The Sliding window model mines frequent
itemset over stream data by temporary storing part of the
data and processed. In this model, size of sliding window
decided by need of application and system resources.

Besides above mention windows, Han et al. (2007)
proposed tilted ime window model. In this model, we are
interested m frequent itemsets over a set of windows
(Giannella et al, 2003). Each window corresponds to
different time granularity for example we are interested in
every 10 mimutes for the hour before that Each
transaction m this window has weight.

Memory management: This is major issue in mining
stream data. This includes choosing of efficient and
compact data structure algorithm which can efficiently
stored, updated and retrieved data. In traditional
algorithm, we do multiple scan over available data. This is
not possible in data stream because there is not enough
memory space to store all the transaction and their
counts. In simple terms, memory size 1s bounded and
hugh amount of data are arrives continuously. Tf we store
the information in disks, the additional I/O operation will
increase the processing time.

Data preprocessing: Data preprocessing is crucial aspect
inthe process of data mining. Tf data input to algorithm is
not n proper format then it cannot process efficiently. So,
preprocessing 18 needed and in which existing data
transform into new data which is in proper format and
suitable for processing. Different data mining tools
available in the market have different formats for input
which makes the user forced to transform the existing
input dataset into the new format.
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Fig. 1: Stream processing mechamsm: a) Landmark window, b) Damped window and ¢) Siliding window

One pass algorithm: There are many algorithms for
mining stream data. Based on result, they are categorizing
as exact algorithms or approximate algorithms. In exact
algorithms, the result consist of all the itemsets which
satisfy support values greater than or equal to threshold
support. To produced accurate result in stream data,
additional cost is needed. In approximate algorithms, the
result 15 approximate result with or without an error
guarantee.

Concept drift: Since, stream data are rapid and time
varying, we cannot assume that total number of class are
fixed because itemsets which are frequent can change as
well with arrival of new data. So, there is need of frequent
updating of model, because old data are inconsistent with
the new data. This problem is known as concept drift. Tf
we neglect non frequent itemsets from consideration
which can be frequent itemset later, we cammot get this
mformation. Therefore, technique 13 needed to handle
concept drifting.

Producing and maintain association rules: Mining
Association rule involves a lot of memory and CPU costs.
There is also one problem; processing time is limited to
only one online scan. So, there is need of real time
maintaining and updating association rule. However,
stream data, if we update association rules too frequently,
the cost of computation will increase drastically.

Resource aware: Resources such as memory space, CPU
and sometimes energy are very preclous in data stream
mining. One cannot ignore the resources availability, for
example when mamn memory 13 totally used up in
processing algorithm, data will be lost and it lead to
inaccuracy of results. In general, if we don’t consider this
problem, it will degrade the performance of the mining
algorithm.

RESULTS AND DISCUSSION

Data stream mining algorithms: Mimng frequent
pattemns in static (Agrawal et al., 1993; Han ef al., 2000,
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Hu et al., 2008; Tanbeer et al., 2008; Tsay et al., 2009) and
incremental (Zhang et al, 2007, Lee and Yen, 2008)
databases has been well-addressed over the past decade.
The first frequent pattern mining algorithm was Apriori
which was proposed in 1993 to find association rules
(Hsu et al, 2004; Shen et al, 1999, Wang, 2008,
Wang et al., 2006; Chen and Wei, 2002; Lee ef al., 2007,
Tsay and Chien, 2004) among patterns. This technique
finds the frequent patterns of length k from the set of
already generated candidate patterns of length k1. The
main performance limitations of Apriori-like approaches
result from the requirement for multiple database scans
and a large number of candidate patterns, many of which
prove to be infrequent after scanning the database. To
overcome these problems, Han et al. (2000) proposed the
Frequent Pattern tree (FP-tree) and the FP-growth
algorithm; this algorithm reduces the number of database
scans by two and eliminates the requirement for candidate
generation. Introduction of this highly compact FP-tree
structure led to a new avenue of research with regard to
mining frequent patterns with a prefix-tree structure.
However, the static nature of an FP-tree and the
requirement for two database scans limit the applicability
of this algorithm to frequent pattern mining over a data
strearmm.

General issues and research issues associated with
frequent pattern mining over a data stream were reviewed
by Gaber et al. (2007), Jiang and Gruenwald (2006),
respectively. However, because the scope of this work
includes mining a data stream using a shding window
mechanism, we provide a thorough literature review
focusing primarily on studies related to window-based
approaches.

Most studies about finding frequent patterns n a
data stream are based on the landmark window model
(Lee and Wang, 2007; Yuet al, 2004; Zhi-Tun et al., 2006)
or the sliding window model (Chang and Lee, 2005;
Chi et al., 2006; Leung and Khan, 2006a, b; Lin et al.,
2005; Mozafari et al., 2008; Li and Lee, 2009). The first
attempt to mine frequent patterns over the entire history
of streaming data was proposed by Manku and Motwam
(2002). They developed two single-pass algorithms,



J. Eng. Applied Sci., 12 (4): 857-863, 2017

sticky-sampling and lossy counting both of which are
based on the anti-monotonel property, these algorithms
provide approximate results with an error bound.
Zhi-Tun et al. (2006) used a lattice structure, referred to as
a frequent enumerate tree which is divided into several
equivalent classes of stored patterns with the same
transaction-ids in a single class. Frequent patterns are
divided into equivalent classes and only those frequent
patterns that represent the two borders of each class are
maintained; other frequent patterns are pruned. DSM-FI
(Lee and Wang, 2007; Li et al, 2005) 13 another
algorithm that was developed to mine frequent
patterns using a landmark window. Every transaction is
converted into k (the total number of items in the
transaction) small transactions and inserted mto an
extended prefix-tree-based summary data structure called
the item-suffix frequent itemset forest. Manku and
Motwani (2002) developed an FP-treehased algorithm,
called FP-stream to mine frequent patterns at multiple time
granularities using a novel titled-time window technique.
When a new batch of transactions arrives, the algorithm
processes the stream data using an FP-growth technique.
The major limitation of this batch-by-batch processing
approach 15 that when a stream flows, the FP-stream
needs to build an FP-tree to capture the stream contents
of each new batch.

Mining recent frequent patterns using the sliding
window techmque has also been studied in the literature.
Lin et al. (2005) presented a method to mine a data stream
for frequent patterns using a time-sensitive sliding
window, 1.¢., the window size 18 defmed by a fixed period
of time. In this approach, the mcoming stream within a
window time period is divided into several batches and
frequent patterns are mined in each batch individually.
Using a discounting mechanism, the method discards the
old patterns by using an approximation table that
provides the approximate counts of the expired data items.
Chang and T.ee (2005) proposed estWin that finds recent
frequent patterns adaptively over an online transactional
data stream using the slhiding window model. This
algorithm requires the minimum support threshold and
another parameter termed the significant support to
adaptively maintain the approximate frequent patterns
window after window.

Most of the methods discussed
approximate frequent patterns (Giannella et al, 2003;
Manku and Motwam, 2002; Silvestri and Orlando, 2007,
Yu et al., 2006) with an error bound or additional prumng
threshold. Very few techniques (Chang and T.ee, 2003,
Leung and Khan, 2006a, b; Li and Lee, 2009, Ye et al.,
2005, Mozafari et al., 2008) find the exact set of recent
frequent patterns from a data stream.

above find
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Li and Tee (2009), the researchers proposed an
Apriori-based algorithm, called MEI-TransSW which
finds complete set of recent frequent patterns by using
bit-sequences to keep track of the occurrence of all items
in the transactions of the current fixed-sized sliding
window. To remove old data and to reflect the
inclusion of new data it performs a bit-wise left-shift
operation for all bit-sequences. This approach is based
sliding window where the
bit-sequence update operation is performed at the arrival
of every single transaction. The MFI-TransSW applies
the level-wise candidate-generation-andtest methodology

on transaction-sensitive

to find the complete set of recent frequent patterns from
the current window. Therefore, it suffers from the Apriorn
(Agrawal et al., 1993) limitation of huge candidate pattern
generation, especially when mimng stream data that
contamn large mumnber of and/or long frequent pattems
and/or with lower support thresholds. Furthermore, the
transaction-by-transaction update mechanism may limit its
performance when stream flows at high speed. Again,
the approach maintains the bit-sequence
information in full for all items in the window, it fails to

since

achieve memory efficiency when the window contains
large number of transactions and distinct items which is
very common in data stream environment. Even though
MFITransSW discovers recent frequent pattems from a
data stream, 1t differs sigmificantly from the proposed
technique n both mining approach and data processing
strategy.

The other algorithm DSTree (Leung and Khan, 2006)
which discovers exact frequent patterns from a data
stream. DSTree uses a sliding window mechanism in
which the window 1s divided into a fixed number of
equalsized, non-overlapping batches of transactions. A
canomnical ordered prefix-tree structure is used to store the
current window information. Each node in the tree
maintains a list to explicitly store its frequency count in
each batch. To avoid tree traversal during extraction of
the old batch information from the tree, DSTree keeps
track of the last visited batch at each node by using an
additional pointer to the last updated batch number. To
reflect the sliding of window it shifts the contents of
frequency lists in the nodes. Upon a mimng request,
capturing  the full
window, an FP-growth-based mining technique is used to

after information for a

mine the complete set of frequent patterns from the tree
(Fig. 2).

The DSTree, however, has several limitations. First,
because it stores items in canonical order, it does not
guarantee a highly compact tree structure which 1s
essential when handling stream data to avoid massive
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storage overhead, to reduce the search space and to
accelerate the FP-growth-based miming operation. Second,
DSTree maintains the batch information (1.e., frequency
count) mn each node with the help of a list of frequency
counts; this list at each node further mcreases the tree
size. Third, another storage overhead 1ssue with DSTree
15 the need to mamtain an extra batch pointer at each node
to indicate the last-visited batch for this node. Fourth, as
described by Leung and Khan (20064, b), during the tree
update phase DSTree does not visit all nodes in the tree
(i.e., it avoids traversing the whole tree) and does not
perform shifting the frequency counts list at each node in
practice. Therefore, 1t does not perform the frequency list
update operation for the nodes which are not visited
during the new mcomimg batch. Such tree update
operation may leave some invalid nodes in the DSTree
structure for the current window. DSTree may carry over
some expired information that produces some ‘garbage’
nodes. Such ‘garbage’ nodes in the current DSTree will
obviously increase the tree size. Fifth, due to the
enormous number of ‘garbage’ nodes, the total number of
nodes in the tree may become unmanageable if the
knowledge in the stream changes over time. Sixth, to
ensure exact and consistent mining, before executing the
mining algorithm, the tree needs to be ‘cleaned’ to get rid
of the ‘garbage” nodes (1.e., deleting all the nodes that are
no longer valid for the current window and then adjusting
the tree structure to update the frequency count list)
which may be a costlier task than traversing the tree once
to refresh its content after each batch. Therefore, the size
and mimng efficiency of a DSTree are highly dependent
on the distribution of data in transactions because the
frequency-independent item ordering of the tree structure

may not provide as much prefix sharing as possible
among all the paths in the tree structure. As a result,
DSTree 18 likely to have a much extended mining time
compared to tree structures arranged according to
frequency-descending ordering.  Furthermore,
DSTree was constructed based on the assumption of

item

no main memory limitation which 1s unrealistic when
handling very large amounts of data, such as data
streams.

In contrast, CPS-tree algorithm maintains exactly the
same information about the stream data as DSTree does
by storing it in an FP-tree-like highly compact tree
structure and, thereby, ensures a more storage-efficient
data structure. The lughly compact tree structure offers an
efficient FP-growth-based mining platform. Further,
storage efficiency is achieved by maintaining the list of
frequency counts only at the last node of each path
representing a transaction, instead of keeping this
information at each node. Moreover, the CPS-tree does
not need the extra batch pointer at each node to keep
track of the last update. The CPS-tree constantly updates
itself by extracting the expired transactions after each
slide of the window, guaranteeing that the tree will not
contain ‘garbage’ nodes and constantly ensuring a
ready-to-mine tree status.

Like FP-tree, each node in a CPS3-tree explicitly
maintaing parent, children and node traversal pointers and
a support counter to record the total frequency of the
node in the path. In addition, each tail-node maintains a
pane-counter. The structures of an ordinary nede and a
tail-node are shown in Fig. 3. An example to illustrate the
construction of a CPS-tree from stream data. Figure 4

Stream data
TID)

Trans
a,c d e
a,b,c,d

a, b, d

b, d
b, c,
a, b,

~ Window 19

Off WEang —

e
d

r—Window 24
N =2 A% BN £°8) S B

<

‘Garbage' node

Fig. 2: DSTree for the stream data: a) DSTree at window 1 and b) DSTree at window 2

Parent
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Node traversal

pointer ~&———N:s
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Childern list

pointer

Node traversal

Parent

&——N: s; pane-counter [V1, V2, ..., Vn]

N = Node name
S = Total support count
n = Number of pane in window

Childern list 'V, = Support count of node N at pane j

Fig. 3: Nodes of a CPS-tree: basic structure: a) An ordinary node and b) A tail-node
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Fig. 4: Construction of the CPS-tree: a) Data stream; b) Initial empty Cps-tree; ¢) CPs tree after mserting Pane 1, ) CPs
tree after inserting Pane 1; d) CPs tree after restructuring Pane 1 and f) CPs tree after restructuring Pane 1 and 2,

1e., at Window 1

shows a data stream (Fig. 4a) with corresponding
transaction IDs and a step-by-step construction
procedure for a CPS3-tree (Fig. 4b-f).

CONCLUSION

In this study, we provide a survey of research on
mining data streams. We focus on frequent pattern mining
and have tried to cover both early and recent literature
related to mining association rule over window sliding
model or landmark window model. In particular, we have
discussed in detail a number of pattern growth based
algorithms on mimng over data streams. Moreover, we
have addressed the merits and the limitations and
presented an analysis of the algorithms which can
provide insights for end-users in applying or developing
an appropriate algorithm for different streaming
environments and various applications.

We believe that as many new streaming applications
and sensor network applications are becoming more
mature and popular, streaming data and sensor data are
also becoming richer.

More high-speed data streams are generated in
different application domains such as millions of
transactions generated from retail chams, millions of calls
from telecommunication companies, millions of ATM and
credit card operations processed by large banks and
millions of hits logged by popular web sites. Mining
techniques will then be very sigmficant in order to
conduct advanced analysis such as determining trends
and finding interesting patterns, on streaming data. It 1s
our intention to present this survey to simulate interests
m utiizing and developing the previous studies mto
emerging applications.
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