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Abstract: Effect of rotation on the onset of Rayleigh-Benard convection in a horizontal nanofluid layer with
vertical magnetic field and internal heat source is investigated Linear stability analysis based upon normal
mode method 1s employed to find solution of the horizontal nanofluid layer bounded between free-free,
rigid-free and rigid-rigid boundaries. Rayleigh number has been determined using the galerkin method. Graphs
have been plotted to study the efficiency of rotation, magnetic field, internal heat source and other nanofluid

parameters to the system.
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INTRODUCTION

Nanoflud 1s an advanced fluid that 1s effective in a
wide range of engineering applications and the purpose
of using nanofluid rather than any fluid is to obtain higher
of heat transfer. The earliest appearance
observations of thermal conductivity enhancement in
nanofluid were reported by Masuda ef al. (1993) and the
term nanofluid has been proposed by Choi (1995).
Nanofluid is a base fluids (e.g., water, ethanol, oil) with a
dissolved nano-sized (1-100 nm) particles of a various
type of materials. Buongiorno’s model for convective
transport in nanoflud incorporates the effects of
Brownian diffusion and thermophoresis has attracted
great interest. The effect of nanoparticles deposition on
surface wettability 13 found to give impact on the boiling
heat transfer in nanofluid (Kim et al., 2006). The effect of
thermal diffusion has shown a strong effect in a fluid
suspension of alumina nanoparticles confined between
two differentially heated parallel plates under different
gravity conditions (Savino and Paterna, 2008). There is a
convincing study that cooperates with the physical
performance of thermal conductivity enhancement in
nanofhud (Eapen ef al., 2010). Nield and Kuznetsov (2010,
2011) studied the onset of convection in a horizontal
nanofluid layer of finite depth and double-diffusive
convection in a horizontal nanofluid layer. The mstability
effect because of the mtemal heat source on horizontal
fluid layer has been examined by numbers of author

values

previously (Friedrich and Rudraiah, 1984; Bhattacharyya
and Tena, 1984; Char and Chiang, 1994; Mokhtar et al.,
2009, 2010, 2011, Capone ef al., 2011, Bhadauria ef al.,
2011) and for the mternal heat source effect on horizontal
nanofluid layer has been investigated by Yadav et al
(2012a, b, 2013, 2014, 2016) and Nield and kuznetsov
(2014). The stabilizing effect of magnetic field has pulled
on a great interest because of its capability to elevate the
performance of heat transfer (Chandrasekhar, 1961; Rao,
1980; Rudraiah et ai., 1986, Wilson, 1994; Yadav et ai.,
2012a, b; Khalid et al., 2013). Effect of magnetic field on
horizontal nanofluid layer has been investigated by
these researchers Sheikholeslami et al. (2014a, b, 20135),
Al-Zamily (2014), Yadav et al. (2013, 2014), Gupta et al.
(2013), Hamad et al. (2011), Bansal and Chatterjee (2015),
Chand and Rana (2015).

The first landmark of the effect of rotation was
examined by Chandrasekhar (1961) on the onset of Benard
convection. In 1966, the effect of rotation was continued
by Vidal and Acrivos (1966) on the onset of Marangoni
convection. McConaghy and Finlayson (1969) extended
the previous investigation (Vidal and Acrivos, 1966) on
the oscillatory Marangom convection with coriolis force.
The effect of rotation in the instability convection for
both buoyancy and swface-tension forces was
considered by Namikawa et al. (1970). In 1994, Kaddame
and Lebon (1994a, b) exammed the onset of steady and
oscillatory Benard-Marangoni convection with the effect
of rotation. Later, Hashim and Sarma (2004) explored the
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effect of rotation for the onset of steady and oscillatory
Marangom convection. Nanjundappa et al (2015)
extended coriolis force in Benard-Marangoni convection
with magnetic field dependent viscosity. Meanwhile,
Agarwal (2014) and Yadav et al. (2016) used the effect of
coriolis force on the nanofluid layer. Very recently,
Wakif et al (2016) examined the effect of internal
heating m nanoflud layer with the addition effect of
coriolis force.

The mentioned literature survey demonstrates no
other study has been made on the effect of rotating
nanofluid layer with vertical magnetic field and internal
heat source on the onset of Rayleigh-Benard convection.
Therefore, our present investigation is examined and the
obtained results are presented graphically.

MATERIALS AND METHODS

Mathematical formulation: Consider a horizontal layer of
a rotating nanoflud layer of thickness, d confined
between the planes z = d and z = d subjected to the
uniformly internal heat generation, J,” with the uniform
vertical magnetic field, h' = (0, 0, h,") heated from below.
The nanoflud layer 1s keep rotating about vertical axis at
a constant angular velocity, Q" = (0, 0, Q). The stability of
a horizontal rotating nanofluid layer in the existence of
vertical magnetic field and mternal heat generation 1s
examined. The dimensional (non-dimensional) variables
are marked with asterisks (without asterisks). The
temperatures at the bottom and upper wall are taken to be
T, and T, The applicable goveming equations to
describe the Boussimesq flow under this model with the
modified Maxwell’s equations are:
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ot
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Where:

Vi=(uv,w) = Nanoflud velocity

t = Time

P = Nanofluid density

P = Pressure

Tl = Viscosity

pe = & Py t(1-0 ), = Magnetic permeability

h'=(h,h, h) = Magnetic field

g = Gravity

3 = Particle density

¢ = Nanoparticles volume fraction

P~ 9 = Thermal expansion coefficient

C o = Specific heat

T = Temperature

K = Nanofluid thermal conductivity

Dy = Browmnian diffusion

D = Thermophoretic diffusion
coefficient

n=¢n+(1-¢"M: = Electrical resistivity
On the steady state, the upper free surface of the fluid

layer is flat and stationary. The pressure and temperature
field are (Char and Chiang, 1994):

1%2)—pn—pﬁ(z—dﬂ;+9§§(2_d@ )

T(Z):—J—“zz+ Jd AT z+ T, (8)
ZK Ik d
Where:
AT = Temperature difference
P, = Reference pressure along the nanoflud layer

Dimensionless variables are introduced as below:

(X_*, y: . ) (u»«, V*, W*)
.z) = wv,wi=4d
(2] PR AR, >
W, tog pd’ ¢ =4, (9)
Y, =d'FEt=—p="—0=——1,
£ d et & -9,
T - (b, by b}
T = ¥ ‘i FRLLE hz = *
T (et ) =
Where:
t=%/pe = Thermal diffusivity
¥’ = Z-component of vorticity due to the rotation

Substitute Eq. 9 mto Eq. 1-6 then the following
equations are the obtained non-dimensional variables:
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V.V =0 (10)

a—VJrV-VV
ot

A

RaTé, - Rnod, +H%[(Vxh)xh]+ﬁ(\/x &)

}—Vp+V2VRméZ+
(11)

A vt -vir+Nevg.vr+
ot Le (12)
NANB
RV VT+[Q(1-22)-1]w
B y. quivqw AT (13)
ot Le Le
My .vh= (h-V)V+£V2h (14)
ot Pm
V.h=0 (15)
Where:
P, = pfoyp = Prandtl number
R, = [p.d i tpa(l-¢")]gd/ue; = Basic density Rayleigh
number
Ra = pp gud’ AT/, = Rayleigh number
R, = (py- P -d'oVed'ue, = Nanoparticl
concentration Rayleigh
number
H=u,h' & 4mpyvm; = Nanofluid magnetic
number
P = ppam = Magnetic prandtl
number
Ta = 4Q7d/* = Taylor number
Ng = (pe)/pe)dd, by = Moeodified particle

density increment
Modified diffusivity
ratio

Lewis number
Internal heat source

N, = DTAT*HDBTC(d)I*_d)U*)

Le = /Dy
Q= 1, d¥2kAT"

We seekk a time-independent quiescent solution
of Eq. 10-15 with temperature and nanoparticle volume
fraction varying only in the z-direction, that 1s a solution
of the form:

V=0,T=T,z),p=p,(2), 0=0,(2).h (16)

:ez

where the subscript b denctes the basic state. On the
basic state we superimposed mfinitesimal perturbations in

the form:
V=V, T=T(z)+T,p=p,2)+p.0

=G, () + Ly, =y, T WLh =& I

(17)
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Substitute Eq. 17 into Eq. 10-15 and linearized by
neglecting products of primed quantities. The resulting
equations are obtained when Eq. 16 are used:

V:-V'=0 (18)
1V =—Vp'+ V'V'+Ral'é, - Rn¢'é, +
Pr ot (19)
A Pr A
Ta(Vixe )+ H—[(Vxh
JTa(vice,) o L(Vxh)<e ]
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(20)
N[BT 30| 2NN, T
Le| dz 9z Le 9z
9 = Lo Nagop (21)
ot Le Le
oh'_ 9w Py (22)
g 9z ° Pm
V_hﬁ:() (23)

The parameter Rm is not included in these and
subsequent equations. It 1s just the measure of the basic
static pressure gradient. Applying the curl operator twice
on Ha. 19 together with Eq. 18 and Eq. 23 then combine
the resulting Eq. 19 with Eq. 22 in the z-component, we
obtam:

{V“ —1§V2}w’ —RaT'V}+Rno'V: —
Pr ot (24)
Pr iw! ayr'
H—V? —T t_g
Pm { 9z } JTa dz
|:Vz - } J—BW (25)
Pr ot

In Eq. 24 1s the horizontal 2-dimensional Laplacian
operator. The proposed normal mode technique 1s in the
form:

i axx+ayy)+ot]

(s T 0w, ) = [ W(2).6(7).0(7). % (7) ]

(26)
Where:
(a, a,) = Wave vector on the (x, ¥) plane
wl=q e’ = Square wavenumber
o = Growth parameter
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Substituting Eq. 26 into Eq. 20-21 and Eq. 24-25 by
neglecting terms of the second and higher orders in the
perturbations.

(D* —a®)' W ~HD'W —a’Ra0 + a’Rn¢ —/TaD¥ = 0
(27
D4 ey N
[1-Q(1-27) W+ Le 6-—2Do=0
2NN e
Le
(28)
WI—EQ(DZ—aﬂe——L{DZ—aﬂ¢=0 (29)
Le Le
TaDW +{D’ —a’}¥ =0 (30)
The appropriate boundary conditions are:
W=DN=0=(=¢=¥=DF=0Q a7=0 (31)
At the upper free boundary:
W=D'W=D0=£=¢=¥=0, aaz=1 (32)
At the upper rigid boundary:
W=DW=D0=E=¢=DF=0 aZ=1 (33)

Where D = d/dzand a= 2 +a* .

Galerkin-type weighted residuals method 1s employed
to find an approximate solution to the system of Eq. 27-30.
The variables are written in a series of basis fumction as:

W:iAWﬁ:iﬁl@ Ecqy ZDw
1=1 1=1

1=1 1=1

(34)

Substitute Eq. 34 into Eq. 27-30 and make the

expressions on the left-hand sides of those equations (the

residuals) orthogonal to the trial functions, thereby

obtaining a system of 4N linear algebraic equations in the

4 N unknowns. The vanishing of the determinant of

coefficients produces the eigenvalue equation for the
systerm.

RESULTS AND DISCUSSION

The lmnear stability analysis 18 camried out to
mvestigate the effect of the onset of rotating nanofluid
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Fig. 1: The effect of magnetic field, H on the Rayleigh

number, Ra against wavenumber (a)

layer with vertical magnetic field and internal heat
generation. The various boundary conditions that have
been used are free-free, rigid-free and rigid-rigid
boundaries. The model employed for nanoflud affiliates
the effect of Browman motion and thermophoresis. In this
research, all the parameters considered are aligned with
those proposed by Chand and Rana (2015). The response
of the critical Rayleigh number, Ra, to the changes of the
difference physical parameters; Ta, H, Q, Rn, Ny and N,
are studied.

We compared our results with Nield and Kuznetsov
(2011) m the omission of Taylor number; Ta, magnetic
field; H and internal heat source; Q. The obtained results
equivalent with (Nield and Kuznetsov, 2011) where the
value of Ra, = 657.5 for free-free, Ra. = 1140 for free-rigid
and Ra, = 1750 for ngid-rigid boundaries.

Figure 1 represents the stability curves of Rayleigh
number, Ra against wavenumber, a for various values of
magnetic field, H = 12, 16, 20 in various horizontal
boundary conditions. From the Fig. 1, the mncreasing
values of magnetic field, H is to shift the curves to a
higher region and hence delays the onset of convection.
The reason behind this is the Lorenz force, a force exerted
by a magnetic field on a moving electric change that
produces a resistance on the onset of heat transfer
(Yaduv et al., 2015). The system is found to be more
stable in rigid-rigid boundaries compared to free-free and
rigid-free boundaries. From the graph, it is obviously that
the nigid-rigid curves dominated the upper space of the
graph.

Figure 2 represents the plot of variation values of
Rayleigh number, Ra agamst wavenumber, a for different
values of Taylor number, Ta = 1000, 2000, 3000 in various
horizontal boundary conditions. The Rayleigh number, Ra
increase with an increase m the Taylor mumber, Ta and
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Fig. 2: The effect of Taylor number, Ta on the Rayleigh
number, Ra agamst wavenumber (a)

this indicates the existence of Coriolis force due
to rotation is to inhibit the onset of Rayleigh-Benard
convection. The mechanism of the rotation 1s to mnhibit
the motion to the horizontal plane thus suppress the
vertical motion and thermal convection (Yadav et al.,
2016).

For variation values of Rayleigh number, Ra against
wavenumber a for different values of mtemal heat source,
Q = 0.5, 1, 1.5 are shown in Fig. 3 in various horizontal
boundary conditions. The Rayleigh number, Ra decrease
with an increase in the mternal heat source, Q and this
umplies the effect of mternal heat source, () 1s to accelerate
the onset of Rayleigh-Benard convection. This implies
that the increase in internal heat source, QQ is to increase
n the distribution of basic temperature gradient in which
leads to the increase in the rate of disturbances in the
nanofluid layer and destabilize the system.

Figure 4 and 5 show the effects of Lewis number,
Le=0.4, 0.6, 0.8 and modified diffusivity ratio, N, on the
onset of convection. It 1s observed that both effects of
Le and modified diffusivity ratio,
N, promote the onset of comvection in a rotating
nanofluid layer. Tt is because the role of both the

Lewis number,

thermophoresis and Browman motion 1s to enhance the
onset of heat transfer in nanoflud layer in which can be
observed at any volume fraction of nanoparticles. As the
reaction of modified particle density, Ny in nanofluid layer,
there is no significant effect observed in the increment of
the Ny values. It 1s because of the low value of N which
presents only in the perturbed energy equation, thus the
effect of parameter Ny on the onset of convection in
nanoflud layer will be very small which can be omitted
(Nield and Kuznetsov, 2011), (Chand and Rana, 2015) and
(Yadav et al., 2016).

Raleigh number (Ra)

0=05.1.15 ; .

1 2 3 4 5
Wave number (a)

Fig. 3: The effect of mternal heat generation, Q on the
Rayleigh number, Ra agamst wavenumber (a)

Free-free ......... Free.rigid —_— Rigid-rigid
- \ ;
2400 - Le=04.06.08//
] N /
& 2200 ~ _l_ -
@ ]
_E 2000 ~ a
2 1800 4 " Le=0.4.06.0.8
< i K
[=)] 1 -
T 1600 - Le=04.06.08 .
[hd ] B
1400 -
1200 -

Wave number (a)

Fig. 4. The effect of Lewis number, Le on the Rayleigh
number, Ra against wavenumber (a)
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Fig. 5: The effect of modified diffusivity ratio, N, on the
Rayleigh mumber, Ra against wavenumber (a)

Figure 6 shows the effect of selected values of
concentration nanofluid Rayleigh mumber, Rn = 1,5, 9.
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Fig. 6: The effect of concentration nanofluid Rayleigh
number, Rn on the Rayleigh number, Ra agamst
wavenumber (a)

Based from the observation as the concentration
nanofluid Rayleigh number, Rn mcreases the Rayleigh
number, Ra increases. This leads to advance the onset of
convection and thus destabilizes the system. An
mcreasing values of concentration nanofluid Rayleigh
number, Rn increase the volumetric fraction of
nanoparticles and thus increase the Brownian motion and
thermophoretic diffusion of the nanoparticles which
induce to destabilize the system.

Figure 7 represents the critical Rayleigh number, Ra,
as a function of the magnetic field, H for the selected
values of internal heat source, Q = 0.1, 0.5. From the
respective figure, the effect of magnetic field, H slightly
mnduces the values of critical Rayleigh number, Ra, for
internal heat source, Q. As expected the existence of
magnetic field, H has a positive significant effect to
stabilize the nanofluid layer in the presence of internal
heat source, Q.

Figure & plot of critical Rayleigh number, Ra_ for
various values of modified diffusivity ratio, N, = 1, 10
against the Taylor number, Ta. Clearly, the effect of
modified diffusivity ratio, N, is known to hasten the onset
of convection, but the process can be slowed down with
the existence effect of Taylor number, Ta.

The interaction between the effect of concentration
nanofluid Rayleigh number, Rn = 1, 3 on the critical
Rayleigh number, Ra, with Taylor number, Ta can be seen
i Fig. 9. In the respective figure, it 13 observed that the
presence of nanofluid Rayleigh number, Rn has a
destabilizing effect where the increased wvalues of
concentration nanofluid Rayleigh number, Rn = 1, 3
decreased the cnitical Rayleigh number, Ra,_. But by adding
the effect of Taylor number, Ta the process of heat
transfer can be delayed.
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Fig. 7. The variation critical Rayleigh number, Ra and
magnetic field, H with different values of internal
heat source (Q)
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Fig. 8 The variation critical Rayleigh number, Ra and
Taylor number, Ta with different values of

modified diffusivity ratio (N,)
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Fig. 9: The variation critical Rayleigh number, Ra and
Taylor number, Ta with different values of
concentration nanofluid Rayleigh number (Rn)

The presence of internal heat source, Q = 3, 9 to the
system for the selected values of Taylor number, Ta is
plotted in Fig. 10. The figure shows that the effect of
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Fig. 10: The variation critical Rayleigh number, Ra and
Taylor number, Ta with different values of
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Taylor munber, Ta slightly increases the values of critical
Rayleigh number, Ra, for internal heat generation, Q.
Therefore, this observation shows that the mcreasing
values of destabilizing internal heat source, Q can be
delayed through the effect of Taylor number, Ta on the
systerm.

CONCLUSION

The stability of a horizontal layer of a rotating
nanofluid layer in the presence of vertical magnetic field
and internal heat generation is investigated. Linear
stability analysis has been made using normal mode
technique for horizontal nanofluid layer heated from
below in free-free, rigid-free and rigid-rigid boundaries.
Then, the effects of various parameters are presented
graphically. The mam conclusions are; rigid-rigid
boundaries are the most stable compared to free-free and
rigid-free boundaries. Taylor nmumber, Ta and magnetic
field, H inlibits the onset of convection of the system.
Internal heat source, QQ accelerates the onset of heat
transfer. Nanofluid parameters: Lewis number, Le,
concentration nanofluid Rayleigh number, Rn and
modified diffusivity ratio, N, both have a destabilizing
effect to the system when their values are increased.
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