Tournal of Engineering and Applied Sciences 12 (3): 609-616, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Performance Analysis of MPI Approaches and Pthread in Multi-Core System

All A. Alabboud, Sazlinah Hasan, Nor Asilawati Abdul Hamid and Ammar Y. Tuama
Faculty of Computer Science and Information Technology,
University Putra Malaysia, Selangor, Malaysia

Abstract: Comparison among the HPC techniques has been made in order to address the highest and lowest
performance of each in terms of execution time, speedup and efficiency when 1t 1s used with the HPc multicore
systermn. The matnx multiplication in a variant size 1s used as a common complex task to examine the performance
of each approach. FSKTM server has been used as an HPC multicore system to perform the approaches and
tasks. Based on the results, it shows that Hybrid MPI/OpenMP approach 1s the best in terms of execution time,
speed up and efficiency than other approaches when the matrix size 1s very high (>1024x1024 size). Furthermore,
the results show that the compiler version has a significant impact over the performance of Pthread. With a new
compiler, the performance becomes much better due to the improvement in code translation.

Key words: Parallel computing, MPI, open MP, multithreading, hybrid

INTRODUCTION

High-Performance Computing (HPC) is a collection of
independently connected computers or processors that
collaborate together to solve high complex problems even
though continuous development of the data storage,
computer power, communication speed and the available
computational re-sources are failing to keep up with the
current complex application requirements. Therefore, HPC
infrastructure becomes the new trend for research. The
HPC applications are also known as supercomputers. The
concept of the HPC systems 15 i the ability of solving the
complex problems and executing the applications in
parallel. Therefore, the performance of the HPC system 1s
mamly depending on the algorithms, protocols and
techniques that are used to manage and allocate the
available resources for the parallel processes such as
OpenMP and MPT.

Recently, many research studies have focused on
parallel techniques and algorithms in order to enhance the
respense time and performance for the computational
parallel applications. Those algorithms are arranged
as approaches in order to simplify the application
development and code maintenance. There are three main
programming approaches in HPC system which are
Message Passing Interface (MPT) Open Multi-Processing
(OpenMP) and Multithreading.

With all of these available approaches users are faced
with the challenge to select the best one that is suited for
their hardware architecture. In view of this research, it is
seen crucial to examine each performance of the four

techmques (OpenMP, MPL Hybrid OpenMP and MPI and
Pthread) in order to distinguish the strength of their
performance respectively. With the experiment results, we
can determine which framework has the best performance
with a particular problem complexity.

A number of research has compared between the
performance of OpenMP and MPT to determine one of
which that meets for a specific application. A few latest
works of research have added a hybrid OpenMP and MPI
to the compression as a new trend that mixes shared
memory and message passing to produce a better
performance.

Wu et al. (2012) have proposed a selution to design
two-level parallel loop self-scheduling schemes by
adopting hybrid MPI and OpenMP programming model.
In the first level an MPI process is run by computing node
for mnter-node communication where in the second level
an OpenMP is used to execute the iteration in each
processor core. The solution had been outperforming the
previous researches that are compared with. However, the
performance of the proposed solution had not been
calculated using a real research station processor;
therefore, the compared previous solutions may not run
with full advantage of multicore that were designed to.
Furthermore, the implementation needs to be tested with
more types of application programs to verify the
performance and it calls for theoretical analysis.

The researchers in Wu et al. (2012) have studied a
hybrid approach to program for distributed memory
across node and shared memory access within each node
system. The proposed solution has combined two of

Correspondong Author: Ali A. Alabboud, Faculty of Computer Science and Information Technology, University Putra Malaysia,

Selangor, Malaysia

J. Eng. Applied Sci., 12 (3): 609-616, 2017

traditional programming models which are MPT and
OpenMP to improve the performance of multi-core based
systems. The multi-zone NAS parallel benchmarks with
two full applications have been used as a performance
measurement when running the solution on SGT Altix 4700
and an SGI Altix ICE 8200EX. Furthermore, the solution
also presented a new data locality extension for OpenMP
to improve the matching of the memory hierarchical
structure. However, the proposed solution was compared
with pure MPT only without including the other parallel
models solution such as Open MP and standard
C++parallel programming to the comparing list.

Sharma and Kanungo (2011) compared the
performance of multithreading find-grained and
course-grammed problems as data intensive and
computation-mtensive problem. The researchers used
MPT and hybrid MPI/Open MP approach to evaluate the
problems. They evaluated the programming suitability
model based on computational problems type. Unlike the
other researchers which are comparing programming
models on cluster of SMP nodes they compared the
models on cluster of commodity multicore nodes. The
result has shown that hybrid model produces better
performance n most cases. However, the study did not
use the pure OpenMP to show the performance of it with
such problems.

Derus (2015) the researchers have presented a generic
framework to be used with MPI implementation named
Pioman. The proposed solution brought a seamless
asynchronous communication — progression using
available cores. The solution was compatible with any
runtime system because 1t used standard threads
programming model. Tt was compared with the OpenhMP
and MPI programming model and the result has shown an
improvement regarding overlap, multithreading and
progression with outperformmg the MPI models.
However, the solution has not been compared with the
advanced parallel programming models such as hybrid
OpenMP/MPI which may be yielded better performance
than the proposed solution.

The MPT+OpenMP programming model and matrix
multiplication which are based on column wise and row
wise block striped decomposition m the multi-core cluster
system have been outlined by He et ol (2010). The
experiment result has shown that the performance of
parallel algorithm gain significant improvement when
using MPI+Open MP matrices decomposition. However,
the experiment has some limitations that may affect the
reliability of the results. Matrix size used in the experiment
was small with two sizes only (1400x1 400 and 21 00x2100).
On top of that, the number of processor in the experiment
did not make sense (5, 7 and 10). Apart from that, the

610

experiment did not use a pure OpenMP in the
implementation. Thus, the performance may be
increased or decreased when these parameters are
changed.

In 2015, the researchers Klawonn et al. (2015) using
OpenMP with PETSc+MPT in the finite element assembly
with shared memory parallel direct solver Pardiso to
hybnd MPI/OpenMP parallelization n FETI-DP. Thus, the
solution used OpenMP on subdomains where MPT used
in between subdomains. The efficiency of the proposed
solution has been mvestigated from two-dimensional
nonlinear hyperlasticity. The solution improves the
scalability for up to four threads for each MPI ranked on
Ivy Pridge processor architecture with incremental
improvement for up to ten OpenMP threads for each MPI
rank.

Parallel programming models: There are four main
techniques that are used to manage and code the
applications in parallel in order to solve the complex
problems using multicore system.

MPI (Message Passing Interface): MPI is known as a
standardized and portable message-passing system to
which it is exploited to function on an extensive variety of
parallel computers. MPT indeed is the most popular
programming model which uses
techmque. It 1s structured by passing the message
between the processors. Tt can be programmed in
C/C++ or Fortran Having said that in view of this research,
C++ 18 the only tool selected as programing language
(Kotobi et al., 2014).

message passing

Open MP (Open Multi-Processing): Open multi-
processing, widely known as open MP is portable,
scalable and compiler directives library 1s written to
manage and execute the programs in parallel (Sharma and
Kanungo, 2011). Tt is written to target the shared memory
system by using fork and join models to run the code n
parallel on multi-core server.

Open MP and MPT are identified hybrid when these
two are combined by Mixing Shared Memory and
Message Passing and they are used to measure better
performance (Rabenseifner ef al., 2009).

Hybrid open MP/MPI: The differences between two
previous techniques are not only in the way they manage
the resources and execute the code but also in the core of
the library itself. The open MP does not require a
multicore compiler to research because of the compiler’s
directive nature which gives the ability to embed the
library in the standard compilers. On the other hand, the

J. Eng. Applied Sci., 12 (3): 609-616, 2017

MPIT requires a specific compiler to execute the MPIT
codes. However, instead of those differences between the
two libranes, the developer and multicore designer are still
able to write a code using both libraries at the same time.
This combination takes the advantages of both to
advance the system performance and extend the system
abilities when solving the problems. This combination 1s
called hybrid openMP/MPI.

Muli threading: Multi-threading which is also known as
Pthread is defined as a POSIX standard which designates
a thread model (Nichols et al, 1996). Pthread allows a
program to take charge of multiple different flows of
research which overlaps in time. Each flow of research is
referred to as a Thread and the creation and control over
these flows is achieved by making calls to the POSTX
Threads APT (Application Programming Interface)
(Kuhn et al., 2000).

MATERIALS AND METHODS

Each technique will be classified based on the size of
its performance. We will use the matrix multiplication as a
complex issue to solve in parallel. The program will be
coded in C++ 14 which is the latest standard version of
C++ and executed with GCC 5.0 which is the latest version
of standard C/C++ compiler. The FSKTM server which we
have provided its specifications in objective section will
be used to run the code.

Performance measurements: There are three main terms
used to measure the performance of the HPC system
which are: execution time, speedup and efficiency. Each of
those terms describes a specific characteristic in term of
performance. Due to the importance of those three terms,
the developers of HPC approaches have included many
tools in the coding library to calculate those terms.

Execution time: This term is measured by milliseconds or
nanoseconds and present the time between starting
execution the process till the execution is completed and
retrieve the proper results. The value of execution time
can be calculated by the following Eq. 1:

()

Execution time = Time,, 4 —Tlmebegin

Speed-up: This term presents the differences m execution
time between multicore and single core. In addition, it can
be used to get the differences between multicores when
using different number of cores. The value of speed-up
can be calculated by the following Eq. 2:

Execution time single core

Speed-up = (2)

Execution time multi core

611

Table 1: Number of instructions

Matrix size Number of instructions
16 4096

32 32768

64 262144

128 2007152

256 16777216
512 134217728
1024 1073741824
2048 8589934592
4096 68719476736
8192 5.49756E+11

When the speed-up value equals to the number of
processors, the speed-up 1s linear. However, when it 1s
less, the speed-up is poor. Theoretically, the speedup
value cannot exceed the number of processor value.

Efficiency: Improving the performance of the system by
adding more cores or processors can be inefficient
sometimes. Therefore, we need a measurement to find the
efficiency of the system and the amount of speed that 1s
gained when adding more processors or improving the
approaches. The $ efficiency $ value can be used for thus
purpose. It shows in percentage the amount of speed or
performance that is gained when adding or using more
processors compared with an optimal value linear speed
up. The following equation can be used to calculate the
efficiency:

Efficiency = (Speed-up/number of processor) <100 (3)

The higher the efficiency, the more processor can be
added to improve the performance. Theoretically, the
value of efficiency cammot exceed 100%.

Experiment analysis: To understand the complexity of the
matrix multiplication, an analysis has to be done to
calculate the number of mstructions that need to be
executed. The complexity of the matrix multiplication is
O(n’) where n is the size of matrix, e.g., matrix size
1024x1024 the n value will be 1024. Table 1 shows the
amount of instructions that have to be executed to
calculate the matrix multiplication results. With matrix
sized <1024, the number of mstruction will be <1 billion.

RESULTS AND DISCUSSION

In this study, the results of the experiment are
mntroduced. First, the execution time 1s calculated for each
model with a different size of matrix and number of
processors. Then, the speed up and efficiency are
calculated based on the execution time.

Compiler performance: Compiler of the programming
language is responsible for converting the code that is

J. Eng. Applied Sci., 12 (3): 609-616, 2017

written in any language to the machine language.
However each language has different instructions,
operations and way to write the code. Therefore, each
programming language has its own compiler. It 1s an
interpreter between the high-level language and
computers hardware. For that, the programming language
designers are trymg to make the compiler better by
frequent updates. For instance, GNU C/C++ Compiler
(GCC) is updated every year. These updates not only
support new features but also improve the translation
from high-level code to more efficient machine code.
Many research papers have been conducted to
optimize the compiler-transformed machine code in order
to provide a better parallel code (Chen and Wu,
2003; Munir ef al., 2015). Furthermore, the hardware

venders have developed a compilers designed
especially for parallel coding such as intel C++ parallel
compiler.

For all above said, we can conclude that using a
different compiler or old version may affect the
performance of the parallel models. The FSKTM server
that is used in the experiment has a 10 year-old GCC
version which 1s 4.2 from 2007. Using such compiler may
lead to:

Inefficient machine code

Not supporting all new features that developed in
the latest version of C/C++2014 such as new
execution time measurement and Pthread functions
Lack in multithreading management since the
multicore system was not widely used or fully
supported by the C/CH++compiler in 2007 hence
malking the developer design a new compiler for MPT

Now a days, the multicore system is widely used
even with microcomputers and smartphones. Therefore,
the programming language developers added fully
supported models to multicore application in their
language and updated the compiler to be more efficient
when translating the code for such machine.

To examine the effects of the compiler on the
performance of the application, we calculate the
performance of Pthread application using two different
compilers which are 4.2 from 2007 with 64 processors and
6.1 from 2016 with 8 processors.

Table 2 shows the execution time in seconds of 64
processors@4.2 and 8 processor@6.1 GCC. The latest
GCC compiler has a sigmficant mmprovement in the
multithreading management with up to 100 times better in
small matrix size and 10 times better with large matrix size.
For that, the Pthread model 13 excluded from the

experiment because it 1s not a fair comparison to compare

612

Table 2: Execution time of different GCC

Rize Pthread (GCC 4.2) (64 cores) Pthread (GCC 6.1) (8 cores)
16 0.003 0.000030
32 0.020 0.000215
64 0.100 0.001732
128 0.420 0.010109
256 1.810 0.087348
512 7.630 0.749541

Table 3: Compiler performance with operimp

Rize Pthread (GCC 4.2) (64 cores) Pthread (GCC 6.1) (8 cores)
16 0.0031 0.000488997

32 0.0043 0.000540972

64 0.00522 0.00135612

128 0.00529 0.00372005

256 0.0125923 0.032939

512 0.151071 0.279898

Table 4: Execution time of single core

Size Execution time (sec)
16 0.0001
32 0.0003
64 0.0030
128 0.0200
256 0.2100
512 1.9000
1024 24.300
2048 353.56
4096 235000
8192 20.270

code generated with not fully supported the parallel
application like GCC 4.2 with a fully parallel supported like
MPICC compiler MPT or OpenMP library.

The open MP code also uses GCC compiler and that
may also affect OpenMP code performance as shown in
Table 3. However, the functions which are developed in
OpenMP library helps to generate a better parallel code
with better multi-processor management. Therefore when
comparing the OpenMP performance on GCC 4.2 and 64
processor with GCC 6.1 and 8 processor, the performance
of 64 cores 1s better than 8 processor but still nefficient.
When we increase the number of processors 8 tunes
(from 8-64 processors) and the matrix size is 512, the
performance increases about 84% when it should be
increased to at least about 300-400%. From the results, we
conclude that the compiler version has an impact on the
performance of the system and it should be updated
frequently to improve the system performance.

Execution time: The execution time represents the time
that 15 needed to run a program. The value of this
performance measurement can be in second, millisecond
and nanoseconds. Table 4 represents the execution time
of the matrix multiplication using a single core measured
by seconds. Tt can be noticed that the matrix size which is
<1024=1024 items runs very fast with <2 sec. However,
witha larger matrices size, the execution time becomes

J. Eng. Applied Sci., 12 (3): 609-616, 2017

Table 5: Execution time (2 processors)

Table 9: Execution time (32 processors)

Size MPI speed OpenMP speed Hybrid speed Size MPI speed OpenMP speed Hybrid speed
16 0.007214500 0.09083000 0.018812500 16 0.000846 0.01302 0.0024375
32 0.014858800 0.12599000 0.056046200 32 0.0017424 0.01806 0.0072618
64 0.025112600 0.15294600 0.057370600 64 0.0029448 0.021924 0.0074334
128 0.061269000 0.15499700 0.115553900 128 0.006012 0.022218 0.0149721
256 0.202703900 0.36895439 0.250733000 256 0.0225972 0.05288766 0.032487
512 1.286105000 4.42638030 1771174300 512 0.16254 0.6344982 02204877
1024 15.17621820 583702880 1970358040 1024 1.8382536 8.367072 2.5529556
2048 141.1732955 674.014270 140.8765484 2048 17.492634 26.61638 18.2531076
4096 1387.597220 4117.73410 1222.258058 4096 1685781756 590.2554 158.365662
8192 11883.86630 50821.4360 11121.78057 8192 1405274224 7284.984 1441.028047
Table 6: Execution time (4 processors) Table 10: Execution time (64 processors)
Size MPT speed OpenMP speed Hybrid speed Rize MPT speed OpenMP speed Hybrid speed
16 0.0043005 0.06231 0.0120625 16 0.000235 0.0031 0.000625
32 0.0088572 0.08643 0.0359366 32 0.000484 0.0043 0.001862
64 0.0149694 0.104922 0.0367858 64 0.000818 0.00522 0.001906
128 0.030561 0.106329 0.0740927 128 0.00167 0.00529 0.003839
256 0.1148691 0.25310523 0.160762 256 0.006277 0.0125923 0.00833
512 0.826245 3.0365271 1.1356699 512 0.07315 0.151071 0.098843
1024 93444558 40.042416 12.6338572 1024 0.510626 1.99216 0.654604
2048 88.9208895 462.37839 90.3294812 2048 4.859065 23.0039 4.680284
4096 856.9390593 2824.7937 783. 706994 4096 46.827271 140.537 40.60658
8192 7143.477303 34863.852 7131.24136 8192 390.353951 1734.52 369.494371
Table 7: E; tion ti 8 .

ale /: sxeallon Uilie (8 processors) - that is what the parallel models founded for. Even when u
Size MPT speed OpenMP speed Hybrid speed . .
16 0.0020445 0.03038 0.0061875 2 processors are used, only the performance 15 higher
32 0.0042108 0.04214 0.0184338 than a single core processing. With the low complexity
64 0.071166 0.051136 0.0188694 matrix multiplication, the performance of the models is
128 0.014529 0.051842 0.0380061 . . .
256 0.0546009 0.12340454 0.082467 extremely high with up to 4.42 sec in worst case (open MP
512 0.392805 1.4804958 0.5825457 with dual cores). The highest performance 1s with MPL
;gﬁg i‘jﬁi‘;g? < ;g?fgégg 2?222;?61 p model when the lowest 13 with open MP model. However,
4096 4073072577 1377.2626 402.005142 the complexity and the development life cycle of MPT and
8192 3396.079374 16998.296 3657.994273 Hybrld WI/OpenW i much hjgher than Openw

L therefore the OpenMP can be a good choice with a low

Table 8: Execution time (16 processors) . ltiok . d bl
Size MPI speed OpenMP speed Hybrid speed matrix multiphecation to produce an acceptable
16 0.001457 0.02201 0.0040625 performance.
32 0.0030008 0.03053 0.012103 Nevertheless, if we compare the performance of
64 0.0050716 0.037062 0.012389 : : :
128 0010354 0.037550 0.024953 5 paral.lel model with a sequential program in a.very low
256 0.0389174 0.08940533 0.054145 matrix size (16, 32 and 64) we notice that the differences
512 0.27993 1.0726041 0.3824795 are very low. Running parallel models require initializing
1024 31658812 14.144336 4254926 some libraries and executing extra instructions to manage
2048 30.126203 163.32769 30421846 .) . 2
40096 200.3200802 007.8127 263.04277 the parallel code. The time that 1s needed to run all of
8192 2420.194496 12315.002 2401.713412 these mstructions increases the total execution time.

much higher due to the high complexity and number of
instructions. With 8192 matrix size, the application needs
about 5.6 h to be completed.

From that, we conclude that the one billion
mstructions can classify the matrix into two categorize:
low complex and high complex multiplication issue.

The performance of each model has been calculated
based on different matrix size and number of processors
starting from 2-64 processors. Table 5-10 show the
execution time of the models with 2, 4, 8, 16, 32 and 64
processors, respectively. The performance is clearly
mnproved by mcreasing the number of processors and

Therefore, both parallel and sequential program have
almost the same performance. What is concluded from
here 1s that mstead of developing a parallel application for
such 1ssue, sequential application 1s worth using.

Speed up results: Based on the execution time experiment
of both parallel and sequential program, the speed up can
calculated as an additional performance measurement. The
speed up does not only describe the performance the
model itself but also the optimality of code and the
amount of mmprovement when using extra processors.
Speed (Table 11-16). The speed up value should be less
or equal to the number of processors used to execute the

J. Eng. Applied Sci., 12 (3): 609-616, 2017

Table 11: Speed up (2 processors)

Table 15: Speed up (32 processors)

Size MPT speed OpenMP speed Hybrid speed Rize MPT speed OpenMP speed Hybrid speed
16 0.013860974 0.001100058 0005315615 16 0.11820331 0.007680492 0041025641
32 0.020190056 0.002381141 0.005352727 32 0.172176309 0.016611296 0041312071
64 0.119461943 0.019614766 0.052291592 64 1.018744906 0.136836344 0.403583824
128 0.326429353 0.129034756 0.173079403 128 3.326679973 0.900171032 1.335817955
256 1.035993881 0.369176044 0.83754432 256 9203186767 3.970680495 6464124111
512 1.477328834 0.429244636 1.072734626 512 21.97431083 6.004492341 16.3207692
1024 1.601189419 0.416307694 1.23327839%4 1024 19.21906836 5.904241771 12.518379403
2048 1.654420542 0.346520853 1.657905469 2048 17.35190572 4417395477 11.79562939
4096 1693575027 0.570702222 19226709 4096 15.94012002 3.981327405 13.83907541
8192 1.705673851 0.398847447 1.822549894 8192 18.42423099 2.782435761 21.06634662
Table 12: Speed up (4 processors) Table 16: Speed up (64 processors)
Size MPT speed OpenMP speed Hybrid speed Size MPI speed OpenMP speed Hybrid speed
16 0.02325311 0.001604879 0.008290155 16 011820331 0.007680497 0.041025641
32 0.033870749 0.003471017 0.008348035 32 0172176300 0.016611296 0.041312071
64 0.200408834 0028592669 0.0813553208 o 1 018744506 0136836344 0403583834
128 0.654428847 0.18809544 0.269932126 128 3.326679973 0.900171032 1.335817955
256 1.828167888 0829694432 1.306221971 256 0203185767 3 070630405 6461124111
512 2299560058 0.625714817 1.673021359 12 51 07431083 6.004402341 163207602
1024 2600472464 0.606856489 1.923403052 1024 19.21906836 5.904241771 12.518379403
2048 2626604404 0.503127415 1383643316 4500 17.35190572 4417395477 11.79562030
4096 2742318652 0.831919159 2998369641 4096 15.94012002 3.981327405 13.83907541
8192 2.837353637 0.581404487 2. 842420375 8192 18.42423099 2.782435761 21.06634662
T.able 13: Speed uP (3 plgiocessors) d brid d Table 17: Efficiency (2 processors)
f;ze g[gisgf; " 00[(’);“31;&; ;‘;;e I(;h(; 12 lﬁsfgf P Rize MPT efficiency OpenMP efficiency Hybrid efficiency
32 0.071243369 0.007119127 0.016274452 16 0.6930487 0.0350479 0.26578075
64 0.421549616 0.058644147 0158987567 2 1.0095028 0.11905705 0.26763635
128 137655723 0.385787585 0.526231315 64 3.97300713 0.9807383 2.6145796
256 3.845456593 1701720212 2.546473135 128 16.32146765 54517378 8.65397015
512 4.837005639 1.28335386 3.261546691 256 51.79969405 28.4588022 41.877216
1024 5469959321 1.244675045 3.749664613 512 738664417 214622318 53.6367313
2048 5.524926506 1.036026633 5040702486 1024 8005947095 20.8153847 61.6639197
4096 5.768325524 1.706283174 5.845696372 2048 82.7210271 17.32604265 82.80527345
8192 4,968647304 1192472469 5.541288063 4096 84.67875135 28.5351111 96.133545

8192 85.28369255 1994237233 91.1274947

Table 14: Speed up (16 processors)

Size MPI speed OpenMP speed Hybrid speed
16 0.06863418 0.004543389 0.024615385
32 0.09997334 0.0098264 0.024787243
64 0.5915293 0.080945443 0.242150295
128 1.93162063 0.53249554 0.801490773
256 5.396043929 2.348853251 3.878474467
512 9787411138 2.771389835 7.267586498
1024 8.67558808 1.718002174 7711027642
2048 T7.752719452 1.430008592 T.977377632
4096 7.094263235 1.655151423 8.903445243
8192 9.375359928 1.345947915 10.43980797

program. Therefore, we notice that the speed value has
increased when more processors are added. As mentioned
before, the speed up also describes the amount of
mnprovement in the performance when using parallel
model. It 13 noticeable that the low complexity matrix
(16, 32 and 64) has a very low speedup (<1) and that
supports the conclusion that using parallel models with
these size 13 not worthy.

The speedup of open MP 1s the lowest when the
highest speedup is tested with Hybrid followed by MPT.
The best speedup acquired from the experiments is when
using Hybrid models with 64 processors. Therefore, we

conclude that using MPI and Hybrid models is the best
choice for both high complexity issues and high number
of processors.

Efficiency results: Efficiency 1s the third performance
measurement in parallel system. This measurement 1s not
related to the speed of the model. It describes the
efficiency of the code and the system. The higher the
efficiency is the better the code will be. In addition,
measuring the efficiency of the system with different
processors gives an indicator of it is worthy to add more
processors to the system or not. For example, we have a
system with 50% efficiency and 64 processor, then
another 64 processors are added which turns the
efficiency into 40%. In other words, the system
performance cannot be improved by merely adding
processors alone. The efficiency of the three models 1s
increased when adding more processor. However, we
notice that the OpenMP model has the lowest efficiency
due to the compiler issue discussed in the beginning of
this chapter (Table 17-22).

J. Eng. Applied Sci., 12 (3): 609-616, 2017

Table 19: Efficiency (8 processors)

Size MPT efficiency OpenMP efficiency Hybrid efficiency
16 0.611396425 0.041145488 0.2020202
32 0.890567113 0.088989088 0.20343065
64 5.2693702 0.733051838 1.987344588
128 17.20696538 4.822344813 6.577891438
256 48.06820741 21.27150265 31.83091419
512 60.46257049 16.04192325 40.76933364
1024 68.37449151 15.55843806 44.87080766
2048 69.06158133 12.95033291 63.00878108
4096 72.10406905 21.32853968 73.07120465
8192 62.1080913 14.90590586 69.26610079
Table 20: Efficiency (16 processors)

Size MPI efficiency OpenMP efficiency Hybrid efficiency
16 0.428963625 0.028396181 0.153846156
32 0.624833375 0.061415 0.154920269
64 3.697058125 0.505909019 1.513439344
128 12.07262894 3.328097125 5.009317331
256 33.72527456 14.68033282 24.24046542
512 61.17131961 1732118647 4542241561
1024 47.9724255 10.73751359 35.69392276
2048 48.45449658 8.9375537 47.9836102
4096 50.58914522 14.71969639 55.64653277

Table 21: Efficiency (32 processors)

Size MFPI efficiency OpenMP efficiency Hybrid efficiency
16 0.369385344 0.024001538 0.128205128
32 0.538050966 0.0519103 0.129100222
64 3.183577831 0.427613575 1.26119945
128 10.39587492 2.813034475 4.174431109
256 29.04120865 1240837655 20.20038785
512 68.66972134 21.85778857 51.00240375
1024 41.30958863 9.075755534 29.74493563
2048 41.72470538 7.554360866 39.98634184
4096 43.56287506 1244164814 4637211066
8192 57.57572184 8.695111753 65.83233319
Table 22: Efficiency (64 processors)
Size MPT efficiency OpenMP efficiency Hybrid efficiency
16 0.664893617 0.050403227 0.25
32 0.968491736 0.109011628 0.251745434
64 5.730440098 0.897988506 2.45933893
128 18.71257484 59073724 8.140140661
256 52.27417556 26.05759075 39.3907563
512 68.87804541 27.46385598 55.13955038
1024 74.35725952 19.05908663 58.00262448
2048 75.10446969 15.86415781 77.97336658
4096 78.41317509 26.12746109 90.42561575
8192 71.7612993 18.25973469 77.90429973
CONCLUSION

This study an experiment analysis, design and results
are presented and analysed. First, we described the
effects of using old compiler on the parallel system and
amount of improvement that we get when using a newer
version of compiler to compile the parallel codes. The
results have shown that the GCC compiler version has a
significant impact on the performance. Next, the three
models OpenMP, MPI and Hybrid are examined with a
different size of matrix and number of processors. With a
low complex issue, there are two choices to write a hugh

615

performance application which are sequential code
with a very simple i1ssues and OpenMP with a medium
complexity issues. However with a high complexity issues,
the MPT and Hybrid models are the optimal solution with
a high performance, speedup and efficiency. All in all, the
four parallel models produce a high performance when
solving the 1ssues mn parallel.

REFERENCES

Chen, L.L. and Y. Wu, 2003. Aggressive compiler
optimization and parallelization with thread-level
speculation. Proceedings of the IEEE Intemational
Conference on Parallel Processing, October 6-9, 2003,
IEEE, California, USA. isBN:0-7695-2017-0, pp:
607-614.

Denis, A., 2015, Pioman: A pthread-based multithreaded
commumication engine. Proceedings of the 23rd
Euromicre International Conference on Parallel,
Distributed and Network-Based Processing (PDP),
March 4-6, 2015, IEEE, Bordeaux, France
1sBN:978-1-4799-8491-6, pp: 155-162.

He, L., W. Shen, Y. Li, A. Shi and D. Zhao, 2010.
MPT+Open MP implementation and results analysis
of matrix multiplication based on row wise and
column wise block-striped decomposition of the
matrices. Proceedings of the TEEE 3rd International
Jomt Conference on Computational Science and
Optimization (CSQ), Vol. 2, May 28-31, 2010, TEEE,
New York, USA. 1sBN:978-1-4244-6812-6, pp: 304-307.

Klawonn, A., M. Lanser, O. Rhembach, H. Stengel and G.
Wellein, 2015. Hybrid MPIT-Open MP Parallelization in
FETI-DP Methods. In: Recent Trends in
Computational Engineering-CE2014, Mehl, M., M.
Bischoff and M. Schafer (Eds.). Springer, Switzerland
1sBN:978-3-319-22996-6, pp: 67-84.

Kotobi, A, N.AW.A. Hamid, M. Othman and M. Hussin,
2014, Performance analysis of hybrid Open MP-MPT
based on multi-core cluster architecture. Proceedings
of the TIEEE International Conference on
Computational Science and Teclnology (ICCST),
August 27-28, 2014, TEEE, New York, USA.
1sBN:978-1-4799-3242-9, pp: 1-6.

Kulm, B., P. Petersen and E. O'Toole, 2000. Open MP
versus threading in C/C++. Concurrency Pract.
Experience, 12: 1165-1176.

Munir, A., A. Gordon-Ross and 8. Ranka, 2015. Modeling
and Optimization of Parallel and Distributed
Embedded Systems. John Wiley & Sons, New Jersey,
USA

o

J. Eng. Applied Sci., 12 (3): 609-616, 2017

Nichols, B., D. Buttlar and J. Farrell, 1996. Pthreads Sharma, R. and P. Kanmungo, 2011. Performance evaluation

programming: A POSIX standard for better of MPI and hybrid MPI+open MP programming
multiprocessing. O'Reilly Media Inc., Sebastopol, paradigms on multi-core processors cluster.
California. USA. Proceedings of the IEEE International Conference on

Recent Trends i Information Systems (ReTIS),
December 21, 2011, IEEE, New York, USA., pp:
137-140.

Wu, C.C,L.F. Lai, C.T. Yang and P.H. Chiu, 2012. Using
hybrid MPT and open MP programming to optimize

Rabenseifner, R., G. Hager and G. Jost, 2009. Hybrid
MPL/OpenMP parallel programming on clusters of
multi-core SMP nodes. Proceedings of the 17th
Euromicro International Conference on Parallel,

Distributed ~ and ~ Network-based Processing, communications m parallel loop self-scheduling
February 18-20, 2009, Weimar, Germany, pp: schemes for multicore PC clusters. I
427-436. Supercomputing, 60: 31-61.

616

	609-616_Page_1
	609-616_Page_2
	609-616_Page_3
	609-616_Page_4
	609-616_Page_5
	609-616_Page_6
	609-616_Page_7
	609-616_Page_8

