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Abstract: The main objective 1s to annotate and classify different types of hemorrhagic shices such as mntra-axial,
subdural and extradural slices. A two-segregated annotation is proposed to classify hemorrhagic slices due to
their different shapes and locations in the brain. The first anmotation 1s to identify the intra-axial hemorrhage
slice whereas the second annotation 1s to classify the subdural and extradural slices. All the extracted features
from both annotations will be used as inputs to the Support Vector Machine (SVM) classifier. Experiments
conducted on a set of 519 CT slices under the proposed method show sigmficant results. From the findings,
the proposed method yields 79.3, 85 and 89.2% correct classification rate for intra-axial, subdural and extradural.
On overall, the CCR obtained for subdural and extradural slices 1s higher than intra-axial slices. This 1s
contributed by more specific local shape features are employed for subdural and extradural which results in
better recognition. Global features are adopted to classify the intra-axial slices due to their arbitrary shapes. The
proposed approach can be used to create an automated retrieval system so that radiologists and medical
students can use it to retrieve the hemorrhage images for further study and analysis.
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INTRODUCTION

Computed Tomography (CT) scanner appears to be
a vital tool in the assessment of patients with head
trauma. Tt remains the investigation of choice even
following the advent of MRI, due to the ease of
monitoring  of injured patients and the Dbetter
demonstration of fresh bleeding. The detection of the
hemorrhage 15 significant so that immediate and proper
treatment can be carried out.

An amnotation system of the hemorrhages can assist
the radiologist in identifying the hemorrhage and reaching
at a decision faster. Different approaches have been
presented by researchers to achieve better detection
accuracy. Human head 1s roughly bilateral symmetric.
Thus, the human head can be divided mto left and right
hemispheres. Both cerebrum and cerebellum are symmetric
with lobes and ventricles in both hemispheres. Brain
hemorrhage can cause brain shift. As such investigation
of the symmetric information cen assist hemorthage
detection. Matesin et al. (2001) proposed a rule-based
detect Firstly, the
symmetry axis of the head is located by using several

approach to brain lesions.

moments. Then a rule-based expert system 1s developed
to annotate the lesions and so on. Likewise, a
knowledge-based approach and midline location was
also adopted by Chan (2007). Besides Liu ef al. (2004)
proposed a symmetric detection approach to detect the
brain lesions by identifying the symmetry of each CT
slice. Tf the midline is shifted then hemorrhage is
considered to exist. Similar midline detection approach
was also adopted by Chawla ef al. (2009).

Besides symmetric comparison, global features are
extracted from the entire slices and SVM technique 1s
applied by Liu et al. (2008) for the hemorrhage slices
detection. Gong et al. (2007) proposed region-based
feature extraction in which region features such as area,
eccentricity, extent and so on are extracted and

subsequently, trained decision tree 1s adopted to
differentiate normal regions with different types of
hemorthagic regions. However, trained decision tree
produces relatively low accuracy for hemorrhages as
compared to normal regions. Likewise, Ramana and
Korrapati also proposed local region feature extraction
but with neural network supervised classification to

classify different types of hemorrhages.
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The main objective of this research is to design
and propose an automated retrieval system so that
radiologists and medical students can use it to retrieve the
hemorrhage images for further study and analysis. Tn this
study, annotations were performed to classify intra-axial,
subdural and extradural slices. The main contributions of
this study are two annotation processes are mntroduced to
classify and detect different types of hemorrhagic
slices.

Besides, for intra-axial slices annotation, a novel
midline approach is proposed. In addition, new shape
features for annotation of subdural and extradural are also
proposed.

MATERIALS AND METHODS

This study elaborates on two-level 1mage
enhancement, parenchyma extraction, clustering and

annotation processes for the proposed methodology.

Original image enhancement: The original image lacks of
dynamic range whereby only certain objects are visible as
shown in Fig. 1a. Therefore, the first process is to expand
the dynamic range to the desired range to unprove the
visibility of the ROIs. The automated contrast stretching
system is proposed to achieve this. This is significant to
fit the contrast of all the original images into the desired

range.

The proposed automated contrast stretching
operates as below: firstly the histogram for the original
mmage 1s constructed as shown m Fig. 1b. The

constructed histogram consisted of several peaks
whereby the leftmost and rightmost major peaks are
contributed by the background and ROIs, respectively.
Then, the smoothing process is performed where
convolution operation with a vector (value of 10-3) 1s
applied. The smoothing process is to facilitate the
acquisition process of appropriate upper and lower limits.
The smoothened curve 1s transformed into absolute first
difference (ABS) as shown in Fig. 1¢. The closest peak on
the left and night 15 auto-determimed as the lower limit, IL
and upper limit, TU, respectively. The acquired TL and TU
are utilized for the linear contrast stretching as shown in
Eq 1:

(16, i) - 1,)

(I,-1,)

Fi, h=1,., 1)

where, [, 1(1, 1) and F(1, J) denote the maximum mtensity
of the image, pixel value of the original image and pixel
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value of the contrast improved image, respectively. After
contrast stretching, the enhanced image is shown in
Fig. 1d.
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Fig. 1: a) Original image, b) Absolute first difference;
¢) Constructed histogram and d) Enhanced image
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Parenchyma extraction: The second process is to extract
the parenchyma from the enhanced image. In order to
obtain the parenchyma, thresholding techmque 1s utilized
to alienate the background, skull and scalp from it.
Generally, the skull always appears to be the largest
connected component compared with the objects in the
background. Therefore, the largest connected component
15 pinned down 1n order to obtain the skull. After that,
parenchyma mask is generated by filling up the hole
mside the skull. Lastly, mtensity of the skull is set to zero
and the parenchyma is acquired.

Hemorrhagic regions contrasts stretching: This process
is important to make the hemorrhagic regions more visible
to clearly reveal the dissimilarity between the hemorrhagic
hemisphere and non hemorrhagic hemisphere. Most of the
previous works focus on the images without hemorrhagic
regions contrast stretching. However, from our discovery
the contrast enhanced hemorrhagic slices reflected better
dissimilarity n terms of the mtensity for the left and right
hemispheres. This directly alleviates the classification
process. The range of the contrast 15 stretched based on
a priori knowledge that intensity of the hemorrhage is
beyond the peak intensity of the images. As such
contrast stretching is emphasized on the higher intensity
to enhance visibility of the hemorrhagic regions. Prior to
the contraststretching, the appropriate lower and upper
limits needed to be obtained. The acquisition of the lower
and upper hmits 18 automatically obtained by the
following steps:

Construct the histogram for the acquired parenchyma
Identify the lower limit, IL which 18 peak position of
the constructed histogram. From the obtained lower
limit, the upper limit can be derived by Eq. 2:

2

i, =1, +1,

where, 1, 1s predefined at 500 found from experimental
observatiorn:

Subsequently, input the auto-determined values of
IU and IL mto Eq. 1 for the contrast stretching
Lastly, apply the median filter to reduce the “salt and
pepper” noise that appear in the acquired image. The
image after the contrast stretching and “salt and
pepper” noise reduction 1s shown in Fig. 2

Potential hemorrhagic region clustering: The aim for
this reseach is to cluster potential hemorrhagic regions

595

Fig. 2: Hemorrhagic enhanced unage

into a single cluster. In order to achieve this, firstly, the
image is partitioned into two clusters. From these two
clusters, the low intensity cluster without potential
hemorrhagic regions 1s ignored. Only the high mtensity
cluster which consists of potential hemorrhagic regions is
considered. In other words, the high intensity cluster can
consists of lgh intensity normal regions and hemorrhagic
regions. Prior to the classification of mtra-axial, subdural
and extradural, the regions will be further divided into
boundary regions and intra regions.

Four clustermg techmques which are Otsu
thresholding, Fuzzy C-Means (FCM), k-means and
Expectation-Maximization (EM) are attempted in order to
select the most appropriate techmque for subdural,
extradural and intra-axial hemorrhages annotation. The
comparison results are shown n Fig. 3. From the results
obtained, Otsu thresholding, FCM and EM encountered
over-segmentation as hemorrhagic region is merged
together with surrounding pixels and more noises are
present. This directly causes the hemorrhagic region to
be distorted from their original shape. On the other hand,
k-means conserves the original shape most of the time
and produces less noise. This contributes for more
accurate regilon properties acquisition at the later
reglon-based feature extraction. Thus, k-means clustering
is adopted in order to obtain better annotation results.

Annotation process of intra-axial hemorrhage slice: In
this study, the boundary regions which have contact with
the skull will be removed from the higher intensity cluster.
As a result, the images with purely intra regions will be
acquired for the annotation of mtra-axial hemorrhage slice.
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Fig. 3: a) Clustering results by Otsu thresholding; b) FCM clustering; ¢) K-means clustering and d) EM clustering

Parenchyma midline acquisition approach: So, far we
have attempted two approaches in order to acquire the
parenchyma midline based on the parenchyma’s contour.
First approach basically is to form the midline from the
midpoints by using least squares linear regression.
Firstly, midpoints are obtained from the constructed
horizontal lines for the parenchyma contour. Then vertical
midline is acquired by using least squares linear
regression as given by Eq. 3:

y=b,+b, (3
Where:
b, = B[y I[(x-x)]
by = y-b*x

The second approach of the parenchyma midline
acquisition consists of two stages. Firstly, line scanming
1s proposed to locate the two points of interest which are
frontal crest and mternal occipital protuberance. From
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these two pomts, midline can be established in order to
segregate parenchyma mto left and right hemispheres. In
the cases that points of interest are not found, a second
stage process will be executed. For the second stage,
Radon transform cum moving average 1s proposed to
locate the two points of interest. The overall process for
the second approach midline acquisition is listed as
following:

Firstly, acquire the contowr of the parenchyma as
shown n Fig. 4a

Then, use two bounding boxes to obtain the bottom
and top sub-contours from the acquired contour from
(i) as shown in Fig. 4b-c

Execute the line scanning process: The scanning begins
from the endpoints of the top and bottom sub-contours to
locate the local minima and local maxima (x1, y1) for
bottom sub-contour 15 as shown in Fig. 4b.
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Fig. 4: a) Contour of intracranial area; b) Bottom sub-contour with the with the detected local maxima and ¢) Top
sub-contour with the located highest average value of mtensity point

Fig. 5: a) Detected midline by first approach and b)
Detected midline by second approach
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In the case where the local minima or maxima point is
not found, radon transform 1s utilized to shorten the
searching line. Radon transformg is defined as:

R(p,0) = [Jf(x,y)3(p— xcos0 — ysin0) dxdy (4)

where, p, 0 and f (x, y) denote distance from origin to the
line, angle from the X-axis to the normal direction of the
line and pixel mtensity at coordinate (x, y). Dirac delta
function is represented by & (-). From our experimental
observation 0 is fixed at 170°. As a result, the cbtained
shortened line 1s thickened as depicted in Fig. 4c. Apply
the moving average to locate the pomts of mterest (x,, v;)
from the shortened contour line. Basically moving average
is used for the computation of the average intensity for all
the points along the contour line. The location of the
points is based on the highest average value of intensity
as shown in Fig. 4c. Eventually, midline is established by
using the linear interpolation as defined in Eq. 5:

(x - X1)(YZ — Y1)
(Xz - X1)

y=y,+ )

From the experimental results as observed in Fig. 5,
the second approach has more accurately located midline
and 13 more robust for the different parenchyma’s shape.
Therefore, the second approach is adopted to divide the
parenchyma to the left and right hemispheres.

Feature extraction: The located midline from previous
section is employed to segregate the parenchyma into left
and right hemispheres. Then 22 features are extracted from
both hemispheres for the first stage classification. The
dissimilarity of each feature for the left and night
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Fig. 6: a) SDH region; b) Immer contour with located endpoints; ¢) Outer contour with located endpoints; d) Inner closed
contour; e) Quter closed contour; f) Filled up inner contour; g) Filled up outer contour and h) Overlapping area

hemispheres 1s computed by using euclidean distance. In
general, the higher the dissimilarity, the higher the
possibility a slice appears to be intra-axial hemorrhagic
slice. Thus, the adopted features are based on their
significant contribution in terms of dissimilarity for
distinguishing the normal slices with the intra-axial
hemorrhage slices. The first feature considered is entropy
which 1s a statistical measure of randomness that uses to
characterize the texture of the slices. Entropy 1s defined
as:

Entrop = — ZR log, P, (6)

where, P; is the probability that the difference between
two adjacent pixels is equal to I. The second measure
adopted is the edge histogram. Four-bin edge histogram
which furnishes four features 1s employed to represent the
strength of edges in 0, -45, 45 and 90° directions for the
left and right hemispheres. The 4-bin edge histogram 1s
constructed based on the following steps:

Compute the image gradients which are vertical
gradient, G, and horizontal gradient, G, by using the
following Sobel operators:

Sobel operator for G, = [121,000;-1-2-1];
Sobel operator for G, =[-101,-202;-101]

For each edge pixel for both hemispheres, compute
the edge direction based on Eq. 7:

b

&)

X

0= arctan( (7
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The edge direction 1s then quantized into four bins
for respective direction

Lastly, the edge histogram is normalized with respect
to the image size in which each bin value reflects the
percentage of a certain edge mn the image

Another lustogram we considered 1s intensity
histogram which is based on the hemorrhage contrast
enhanced image. Likewise, histograms of intensities are
constructed for the left and right hemispheres. From priori
knowledge, intensity of the hemorrhage 1s located after
the peak intensity of the first level image enhancement
image. Therefore bins of interest are high indexed bins. To
obtain the high indexed bins, the histograms are
thresholded based on the lower limit, 1T, obtained during
hemorrhagic regions contrast stretching.

Prior to the extraction of the last batch textural
features, the co-occcurrence matrix 1s calculated on both
hemispheres. Haralick (1997) proposed the use of the Gray
Level Co-occurrence Matrices(GLCM) for the description
of the texture features. For our case, co-occurrence
matrices for 0, 45, 90 and 135° are computed to achieve a
degree of rotational invariance. Four textural measures
which are energy, entropy, autocorrelation and maximum
probability are considered which contribute sixteen
features for four directions.

Annotation process of subdural and extradural slices: In
this research, only boundary regions are considered for
the anmotation of the subdural and extradural slices. Prior
to the slice annotation, properties of each boundary
region will be extracted for the classification of normal,
subdural or extradural region. As long as subdural or
extradural region is detected in the slice that particular
slice will be annotated as subdural or extradural slice.
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Radiologists usually determine the subdural and
extradural regions based on their mtensity, size, shape
and position. In this stage, the features are considered
based on two criteria which are to distingush normal
regions from subdural and extradural regions and
subdural from extradural. The 11 shape features adopted
are region area, border contact area, orlentation, linearity,
concavity, ellipticity, circularity, triangularity, solidity,
extent and sum of CCDCFD. In our study, Ranker
(Hall et al, 2009) is used to rank features by their
mdividual evaluations which helps to identify those
extracted features that contribute positively in the
classification process. Based on the scores obtamed, all
eleven features have exhibited positive contribution.
Thus, all of them are adopted in our system.

Region area, border contact area and orientation are
employed to differentiate the normal regions from the
subdural and extradural regions. Region area 1s to
differentiate high mtensity noise which relatively small
compared with the hemorrhagic regions. Border contact
area 1s a measure of number of pixels contact with the
skull. Border contact area is adopted based on the
priori-knowledge that normal high intensity region such
as falx, tentorium and noise having less contact with the
skull. Orientation is used to measure the angle of the
regions. The absolute value of orientation 1s considered
only to differentiate the normal regions from subdural and
extradural regions. Normally subdural and extradural
possess higher degree of angle compared with the higher
mntensity normal brain tissue.

The subsequent eight features are primarily adopted
to differentiate extradural from subdural. Extradural and
subdural always appear to be bi-convex and elongated
crescent in shape, respectively. Generally, extradural is
more solid, extent, elliptic, circular and triangular as
compared to subdural. However, subdural is more
concave and linear than extradural. Based on these
priorni-facts, extent, solidity, ellipticity, circularity,
triangularity, linearity, concavity and sum of CCDCFD are
proposed to quantify the shape of extradural and
subdural. Firstly, circularity (Zunic et al., 2010) is
computed based on moments as given in Eq. 8:

(u,,(ROT)) ®

Circularity 9(ROI) =
BT O T E o)

where, the (i, j) is moment as defined in Eq. 9

u, (ROD= .I..I.ROI x'y'dxdy &)

For triangularity and ellipticity, the affine moment
invariant used to characterise the triangle and ellipse is
given in Eq. 10:

I= MZ,U(ROI)MU,Z(ROI) - E“‘1,1(ROI)) (1 0)
(M (RO}

From the affine moment invariant, tnangularity 12 and
ellipticity 12 of a ROT are derived as shown in Eq. 11-12,
respectively:

1081 . 1
Triangularity, ZAROD: 1~ 108 (1)

1081 otherwise

16l 1
~16mt (12)
167%] otherwise

Ellipticity, 2(ROT)

Linearity 13 that is used to represent the elongated
shape of subdural is defined as in Eq. 13:

Linearity, L{ROI) =1 - —or &% (13)
major axis

where, the major and minor axes are the longest and
shortest diameter of the ROI, respectively. Extent
measures the ratio of the pixels within the region to the
pixels in the bounding box. Solidity 1s used to measure
proportion of the pixels in the convex hull that also in the
region of interest. Besides we propose a new concavity
measure to measure the degree of concaveness for
subdural. This new concavity takes into consideration the
contours and overlapping area in order to acquire the
concave area. The derivation of the concavity is based on
the following steps:

s Locate inner contour(without contact with skull) and
outer contour(with contact with skull) as shown in
Fig. 6b and ¢, respectively

¢ Locate the two endpoints of the inner contour and
outer contour by using the 3x3 neighbourhood
G, v ™ ™, ™), L ) (T )

» Interpolate the linear line to connect the endpoints,
("™, y™) with (x,"™, y,"™") and (x,"*, y,"") with

(x,™, v,"") in order to generate the closed inner and
outer contour based on Eq. 14 as shown n
Fig. 6d and e:

y= 1+(X7X1)(YZ7Y1) (14

(%, —%;)
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Fill up the closed inner and outer contours by using
morphological operation as shown m Fig. 6f and g.
Acquire the concave area by overlapping the filled mner
contour with filled outer contour as shown in Fig. 6h:
Concave area = Ag. ol Wfited ime D1vide the concave
area by area of filled mmer contour to normalize the
concave area to the interval [0, 1]. With this, concavity of
a ROI is defined as:

™A

filled _outer

A
Concavity, A(ROI) = —imnr (15)

filled _inner

Last feature proposed to describe the extradural is the
sum of CCDCFD. The sum of the CCDCFD specifies the
symmetric property of the extradural
symmetrical the shape is the lower the sum of the
CCDCFD will be.

In computing the sum of CCDCFD we only consider

The more

the first 32 Fourier coefficients from low frequency. This
15 because the information is concentrated at the low
frequency. Besides, the remaming coefficients at high
frequency are considered as a noise and are omitted in
order to attain scale invariance, magnitudes of other
coefficients are divided by magnitude of second Fourier
coefficient. The scale invariant feature vector for the
descriptor is given by Eq. 16. Besides, dividing by the
magnitude of second Fourier coefficient will also
normalize the range for sum of CCDCFD to [0, 1]. From the
feature vector, the sum of CCDCFD is computed as
inEq. 17:

Vo { fi(2)| ft(3)|, _____ |frav-2) ,|ft(N -1 } 16)
ft(n) || ft(1) £(1) ft(1)
Sum of CCDCFD = 3 o) (17)
i (D

where, Ft (k) 1s the function of the discrete Fourier
transform (DFT)

RESULTS AND DISCUSSION

On overall, there are 519 CT brain images which
consist of 156 normal slices, 217 intra-axial slices, 60
extradural slices and 86 subdural slices. This dataset is
retrospectively extracted from over >70 patients from the
CT archive of the two collaborating hospitals. On the
average, around seven to eight slices have been utilized
per patient. Basically this dataset 13 a mixture of normal
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Table 1: Recall and precision for non-intra-axial and intra-axial slices

Variables MNon-intra-axial slice Intra-axial slice Overall
Recall 0.954 0.793 0.886
Precision 0.865 0.925 0.890

Table 2: Recall and precision for sub dural, extradural and normal regions

Variables  Normal region Extradural region Subdural region Overall
Recall 0.925 0.850 0.892 0.906
Precision 0.922 0.927 0.858 0.907

slices and three kinds of different hemorrhage slices
which are intra-axial, subdural and extradural
hemorrhages.

For the classification, Support Vector Machine (SVM)
with radial-basis function kernel is adopted as it yielded
better results. During the classification, ten-fold cross
validation method is performed on the 519 CT slices. The
images are segregated into ten disjointed subsets
randomly. Subsequently mine subsets are used for
traiming and the remaming one subset 13 used for testing.
Each disjeointed subset plays the role as a new data set
and is channeled into the SVM classifier during the
classification. Finally, the results obtained from the ten
fold validation are then combined to acquire the sole
estimation.

For the classification of intra-axial slices, the 22
features wliuch are extracted from the left and right
hemispheres will be chamneled mto SVM classifier and
results of the classification are depicted in Table 1. The
classification for this stage is to distinguish the intra-axial
hemorrhage slices from the other slices. As observed from
Table 2, the adopted features generated acceptable results
as the overall Correct Classification Rate (CCR) or recall is
0.886. As a matter of fact, recall rate is more useful to the
medical doctors compared to the precision. This is
because recall rate only mdicates the correctly classified
hemorrhage slices. In other words, recall rate never take
the misclassified hemorrhage slices into consideration.
However, precision is also needed here to reflect the false
positive cases due to misclassification.

The CCR of intra-axial slice is approximately 0.8 which
is relatively lower compared with CCR of non-intra-axial
hemorrhage slices. This 1s due to the similarity of the
features for some non-mntra-axial and mtra-axial slices
which caused the misclassification. Some higher intensity
normal regions presented in non-intra-axial slices caused
some 1ntra-axial slices to be grouped with them.

For the classification of subdural and extradural, the
11 features extracted from all the 417 boundary regions
will be used to differentiate the normal, extradural and
subdural regions. From Table 2, satisfactory results are
obtained as on the overall CCR 1s over 0.9. The recall for
normal regions is highest as it is easier to distinguish
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normal regions as compared to extradural and subdural
regions. Once a particular abnormal region is detected in
a slice, the slice will be annotated accordingly. On overall,
the CCR obtained for subdural and extradural slices 1s
higher than mtra-axial slices. This i1s due to the more
specific local shape features adopted for subdural and
extradural which results in better recognition. Global
features are considered to annotate the intra-axial slices
due to their arbitrary shapes.

CONCLUSION

In this study, we have presented an annotation
system to classify the hemorthage slices. Experimental
evaluations have also been conducted over a dataset
consisting of 519 CT slices to demonstrate the
effectiveness and feasibility of our proposed system. The
proposed method yields promising results where the
correct classification rate for intra-axial, extradural and
subdural is 0.793, 0.85 and 0.892, respectively.
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