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Abstract: The objective of this research 1s to collect and analyze road surface conditions in Malaysia and
develop a classification model that can identify road surface conditions from the collected data. Data 1s
collected through a mobile application that collects positional dynamics of vehicles on the road. Features
considered include statistical measures such as minimum, maximum, standard deviation, median, average,
skewness and kurtosis. Selection of the extracted features 1s performed using Ranker, Tabu search and Particle
Swarm Optimization (PSO) followed by classification using k-Nearest Neighborhood (k-NN) Random Forest (RF)
and Support Vector Machine (SVM) with linear, Radial Basis Function (RBF) and polynomial kernels. The
classification model that gave the highest accuracy is SVM (RBF) with a Correct Classification Rate (CCR) of
91.71%. Trauling closely was RF at 91.17%. Although not as accurate as SVM, the difference was negligible and
1ts computational time was much lower than the former. In the feature selection process, features which provide
positive contribution to the classification process were chosen and the best performances were produced by
PSO with an average CCR of 89.88%. Tabu selected 11 features while PSO selected 13 features where the extra
two features made a difference in the results. Ranker selected every single feature but has the lowest average
CCR. Thus 1s attributed to a subset of features that were selected were ineffectively impeding the classification.
The features and classification model employed were able to effectively classify road surface conditions from
vehicle positional dynamics. Using only 3D positional readings of the vehicle and standard statistical measures,
road surface conditions can be effectively identified for the prioritisation and facilitation of road maintenance.
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INTRODUCTION deploying static sensors on the roads (Eriksson ef af.,
2008). Thus, thus research seeks to develop a platform that
1s able to collect data of the surface conditions of roads

while vehicles traverse them and automatically classify

Many cities spend large amounts of money to repair
their roads (Anonymous, 2013). In 2014, the state

government of Selangor in Malaysia spent more than half
a billion ringgit m mmproving roads (Anonymous, 2013).
Although, the amount spent on improving and
maintaining the roads is substantial, deterioration of roads
are inevitable due to prolonged use and weather. Bad
roads damage vehicles and are hazardous to motorists
especially motorbikes and they are one of the causes of
traffic accidents. Potholes in specific can cause serious
damage to velicles (CNBC, 2015).

However, mamtaining roads m good and safe
condition is challenging due to heavy traffic as well as
unpredictable weather, especially in Malaysia. Due to
resource constraints, determining which roads need fixing
or maintenance becomes important. Road
condition monitoring cannot be easily solved by

surface

them for the purpose of mforming the authorities and
assist in decision making and resource allocation. This 1s
accomplished by the development of a mobile application
which collects vehicle positional dynamics from the
built-in accelerometer and a classification model that
1dentifies road surface conditions from the collected data.

The data collected are recordings of 3D positional
readings of the vehicle (x, y and z axes) while the features
considered are standard statistical measures. The
simplicity of the approaches underlines the ease for
implementation and deployment.

Literature review: Chen et @l (2013) mplemented a
crowdsourcing-based road surface monitoring system by
mounting hardware modules on distributed vehicles to
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perform detection of road potholes and evaluation of
levels of road roughness. Vibration pattern, location and
vehicle velocity was collected with the use of cost
effective accelerometers and GPS devices. During the
study, a set of hardware devices which included a
three-axis accelerometer, a Global Positioning System
(GPS) Module, a Microcontroller (MCU) and a Global
System for Mobile communications (GSM) module were
placed on a vehicle (Chen et al., 2013). While the vehicle
was travelling, the accelerometer recorded positional data,
while the GPS module recorded the time, location and the
velocity. The MCU extracted the collected data using the
improved Gaussian Mixture Model algorithm (i-GMM)
developed by Chen et al (2013) and the results to were
sent to the central server through the GSM meodule.
1-GMM 15 able to learn background signal online without
the need to train parameters for different road conditions
beforehand (Chen et al., 2013).

Mohan et al. (2008) presented Nericell which utilized
the sensors on a mobile device to detect braking, bumps
and honking in the surrounding area. Nericell made use of
a microphone and an accelerometer to detect honks,
braking and bumps. During the study, a canomcal frame
of reference was outlined with the x-axis facing the front
of the vehicle, the y-axis facing the side and the z-axis
vertically facing upwards. To detect the rate of braking,
the mean of acceleration along the X-axis (aX) over the
sliding window was observed together with indications of
a braking event when the mean of aX of 0.12 g was over
4 sec long (Mohan et al., 2008). Tt was found out that
when the vehicle was traveling at low speeds, the value of
acceleration along the z-axis (aZ) increased sharply when
the wheel entered a pothole. However, the continuous dip
in the values of a7z was also marked. Therefore, a new
heuristic called z-sus was proposed which looked for a
continuous dip in aZ to differentiate potholes from bumps
(Mohan et al., 2008).

Tokela et al. (2009) developed a system called TcOR
that could detect slippery road conditions and warn the
driver when the car is close to a slippery road. The TcOR
system utilised a Monochrome stereo camera pair that
produced a maximum resolution of 640x480 pixel, to
identify light polarization changes and perform graminess
analysis for ice detection on the surface of the road with
a classification accuracy of >90%.

Eriksson et al. (2008) developed a pothole detection
system that can differentiate pothole from other road
anomalies using accelerometer data that were recorded by
a group of taxi drivers. The taxi drivers were using a GPS
device and an accelerometer to collect raw sensor data.
The data was uploaded to the central server automatically
whenever there was an available network connection. The
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central server classified detections based on location. The
data was labelled manually through constant driving on
several streets in Bostor, USA (Eriksson et al., 2008). One
of the concems in this study was that the placement of
the accelerometers in the vehicle might affect signal
quality. They had placed accelerometers in three places
nside a car such as the dashboard, windshield and an
embedded PC not firmly attached to the vehicle. Signal
accuracy was important because for the potholes to be
properly traced, multiple signals have to be combined
(Eriksson et al., 2008). Processing filters were applied to
detect the presence of pothole impact where every filter
was designed as a control to eliminate every single non-
pothole event such as filtering slow speed for door
slams events and low-frequency components from the
acceleration signal for braking, turming and veering
(Eriksson ef al., 2008).

Perttunen et al (2011) developed a pattern
recognition system for identifying road surface anomalies,
using data collected from a mobile device placed on a
holder on the windshield of a vehicle. The holder had to
be positioned carefully so that the accelerometer
coordinates could be maintained approximately the same
across data collection drives. The irregularities were
classified into two classes according to severity where
Type 1 represented small potholes and railroads and Type
2 represented speed bumps and irregularities that could
cause accidents or damage the vehicle. The anomaly
recognition system was based on accelerometer and GPS
data, where the GPS data was used to estimate speed
(Perttunen et al., 2011). Fast Fourier Transform (FFT)
features were used in the classification process. Filtering
was also applied to remove signal artifacts from
non-anomalies such as door slams and braking
(Perttunen et al., 2011).

Luo et al. (2012) proposed a multi-sensor integrated
mobile surveying system which consisted of laser sensors
(LADAR), GPS, Inertial Navigation System (INS)
odometer and camera. INS was used as the reference
navigation sensor because it could provide constant
location data, velocity data and attitude data. Odometer
was used to acquire the speed and mileage of the vehicle
while GPS was used to obtain assured position and
velocity measurement in open space as well as correct the
errors of the TNS and odometer. Navigation data was
extracted from INS and odometer in order to derive the
location and altitude for each swveyed road resource
when the system was in areas without location signal or
low location signal such as in a tunnel. This system could
monitor white lines and road surface markers through
remission, the capability of a material to redirect light



J. Eng. Applied Sci., 12 (3): 501-507, 2017

back. The system was able to perform road surface
profiling, detecting surface inhomogeneity as well
develop 3D models of roads (Luo et al., 2012).

The techmques discussed i this Section utilized
elaborate setups and multitudes of equipment. In view of
this, this research intends to make data collection and
classification simple. This 15 accomplished with the use of
a single smart device such as a smartphone and 1t can be
placed in an arbitrary position in the vehicle (but the
position is fixed for the whole duration of the data
collection). A smartphone 13 common and easily
accessible; this can reduce cost 1n data collection as well
as placing the task on everyday drivers without the need
for training and complex instructions. Although a single
smart device setup may not be sufficient to isolate
non-ancmalies such as door slam, the collection of the
data as a time series may mitigate this effect through the
use of conventional statistical features.

MATERIALS AND METHODS

Data collection: A samsung galaxy W. Android
smartphone was used to collect data. A data collection
application was developed to collect accelerometer and
GPS readings. Accelerometer readings (x, v and z axes)
readings relative to the phone were collected every 1 ms
for the duration of the collection. GPS readings including
latitude and longitude were also recorded for reference
but not used n the classification.

Only one car was used to collect the data, a Proton
Waja. The phone was attached to a mount that 1s attached
to the windshield of the car as shown in Fig. 1. The
accelerometer positional axes were aligned to the car’s
axes. When a surface condition was identified, the data
collection was started before traversing and only stopped
when the vehicle had gone passed. Road surface
conditions considered include:

Smooth surfaces
Uneven surfaces
Potholes

Speed bumps
Hazard lines

Turns and hard stops are used as control for the
classification process. Data were collected on the roads in
the vicinity of the townships of Cyberjaya and Rawang,
at a constant speed of 20 kmh™. Examples of the surface
conditions are shown in Fig. 2. For each condition, 50 sets
of reading s were recorded. In total, 1050 sets of data (time
series of the x, y and z axes readings) were collected.
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Fig. 1: Position of phone in the vehicle

Table 1: List of statistical parameters

Statistical parameters  Description
Minimum Smallest number in a data set
Mazimuim Largest number in a data set

Measuremnent of the variation of a set of data from
its mean

Standard deviation

Median The number in the middle of the set of the data

Average The arithmetic mean of the arguments in a data set

Skewness Characterization of the degree of asymmetry of the
data set around its mean

Kurtosis The peak value of the data according to the normal

distribution of the data set
Absolute value of the skewness
Absolute value of the kurtosis

Absolute Skewness
Absolute Kurtosis

Feature extraction: For each condition, mne new features
were formed from major statistical parameters of its
corresponding set of data. Table 1 lists the nine statistical
features. The features were normalized between 0 and 1 so
that the features were regulated and no bias is present.
Without normalization more weight would have been
allocated implicitly to features with larger values than
those with smaller ones for distance measures such as
Euclidean distances.

Feature selection: Feature selection was carried so that
the dimensions of the extracted features can be reduced.
Ranker, Tabu Search and PSO were applied to determine
extracted features which could provide constructive
contribution in the classification progression.

Ranker utilizes a correlation attribute evaluator to rank
extracted features (Hall and Holmes, 2003). The worth of
an attribute is measured by evaluating the correlation
between the attribute and the subject where each nominal
extracted feature is treated as the individual significance
indicator on a merit basis and a weighted average
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Fig. 2: Road surface conditions from left, smooth surface, uneven surface, pothole, speed bump and hazard lines

establishes the overall correlation for a nominal extracted
gait feature (Hall and Holmes, 2003). Ranker utilizes
correlation for selecting the most relevant attributes in a
dataset. The correlation is calculated between each
attribute and the output variable and selects only those
attributes that have a moderate-to-high positive or
negative correlation and drop those attributes with a low
correlation.

Tabu search is used for mathematical optimization
with a meta-heuristic search method that employs local
search method (Glover, 1986). Local search is able to
obtain good solutions by continually considering a better
solution from the cwrent solution’s neighborhood.
However, there 1s a tendency of being stuck mn suboptimal
regions where more than one solution 1s fitting similarly.
By relaxing the basic rules of the local search, Tabu
Search enhanced the performance of local search by using
memory structures that describe visited solutions. If a
potential solution violated a rule or 1s visited more than
once within a short time 1t will be marked as “Tabu” which
means forbidden in order to prevent the algorithm from
considering the same possibility again (Glover, 1986).

PSO is a global search algorithm that optimizes the
problem by improving a potential solution iteratively
according to a given measure of the quality (Moraglio
et al., 2007). From a number of potential solutions which
are called ‘particles’, these particles are moved around
and inside the search-space using a mathematical formula
to determine the particle’s positions and velocities. Every
particle movement is affected by its own local best
position. The particles will eventually be guided to the
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best position in the search-space (Moraglio et al., 2007).
The movements of the particles are guided by their own
best known position in the search-space as well as the
entire swarm's best known position. When improved
positions are being discovered these will then come to
guide the movements of the swarm. The process 1s
repeated however with no guarantee, so that a
satisfactory solution will eventually be discovered. These
methods are used to identify unneeded, irrelevant and
redundant features that do not contribute to the accuracy
of the classification model.

Classification: Three classification techniques, k-NN with
Euclidean distance metrics, RF and SVM were employed
to assess the implementation of tlus approach. k-NN, a
non-parametric classifier is used in the differentiation
established different subjects in the training data through
the exploitation of the overall collected data in the feature
space by substantiating its memory (Fix and Hodges,
1989). The information of its k-nearest neighbors n that
memory controls the classification of unknown
classes-the majority vote of the nearest neighbors in the
training data determines which class the subjects belong
to. A class is assigned based on the number of neighbor,
k (Fix and Hodges , 1989). The k-NN algorithm models a
decision problem with instances or examples of traming
data that are deemed important or required to the model.
Such methods typically build up a database of example
data and compare new data to the database using a
similarity measure in order to find the best match and
make a prediction. RF 15 a concept of the general
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technicue of random decision forests that are an ensemble
learning method where multiple algorithms are used to
obtain better predictive results for classification and
regression (Breiman, 2001). RF describes a margin
function that is used to measure the amount of the
average number of votes for the exact class go above the
average vote for any other class that exist in the
dependent variable. This measure provides a useful way
of making predictions and also a way that associates a
confidence measure with those predictions (Breimar,
2001). The parameters utilized include the number of
attributes (K) number of execution Slots (S), depth (d) and
mumber of Tterations (I). RF models are composed of
multiple weaker models that are independently trained and
whose predictions are combined in some way to make the
overall prediction.

SVM iz a learning machine for two-group
classification problems (Cortes and Vapnik, 1995). In
SVM, the input vectors are mapped to a very high
dimension feature space in a non-linear manner. A linear
decision surface 13 structured collectively based on the
feature space. Three kemels were used, namely, linear,
RBF and polynomial kernels. The parameters that were
trained for these three kernels:

Linear kernel: Cost (C)

RBF kemel: Cost (C) and Gamma (G)

Polynomial kernel: Cost (C) Gamma (3), Degree (D)
and coefficient (R)

Ten folds cross validation was employed in the
classification process. The collected road surface
condition data were divided mto ten disjomt subsections
in a random manner, so that nine could be utilized for
traimng and one for validation. The cross-validation
process was repeated for ten turns. The feature vectors of
each disjointed subsection were channeled into classifiers
as the validation test. Then, the single mean correct
classification rate was obtained by averaging the cross
validation results.

Performance evaluation: Three quality measures were
used in this experiment: Correct Classification Rate (CCR),
True Positive Rate (TPR) and False Positive Rate (FPR).

CCR 1s represented as the percentage of the correctly
classified number of subjects divided by the total number
of subjects in the dataset, given as:

T,

CCR=?P><100% (1
Where:
T, = The number of road swface conditions
recognized
T = The total number of road surface condition data
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Table 2: Parameter values for each classifier

Classifiers Parameters

k-Nearest neighbourhood k=1

Random forest K=2 8=2,d=unlimited, I = 900
Support vector machine C=48

with linear kernel
Support vector machine
with polynomial kernel
Support vector machine
with RBF kernel

C =409, G=05 D=3 R=138

C=2048, G=0.5

TPR 1s denoted as the percentage of the number of
correctly classified subjects divided by the total number
of the subjects in a class. It is given as:

TPR = %x 100% (2)
Where:
Qp = The number of road conditions correctly recognized
of a class

P = The total number of data in a class

FPR is denoted as the percentage of the subjects
wrongly labeled belonging to a class but belonging to a
different class among all the subjects which are not of that
class. Tt is represented as:

FPR = .100% (3)

T-P

where, Q, represents the number of road surface
conditions wrongly assigned to a different class.

Designs of experiments: The expenments were performed
in two phases: tramning and testing. All data collected
were used during the traiming and testing phases. For
training, the classification models were obtained through
the optimization of the parameters for each classifier. The
parameters for testing were set according to heuristic
results obtamed from traiming and the values are shown
in Table 2. During testing, classification is performed
through the utilization of the models obtained from
traimng.

RESULTS AND DISCUSSION

Performance of classifiers and feature selectors: Three
classifiers, k-NN, RF and SVM were applied to find the
CCR, TPR and FPR and to vernify the consistency of the
results. Table 3 shows the average CCR, TPR and FPR
obtained for each feature selector. For clarity, the chart of
the CCR of the classifiers for each feature selector 1s
shown n Fig. 3.

Based on the results i1 Table 3 the classifier that gave
the lghest accuracy 18 SVM (RBF) with CCR of 91.71%.
In particular, SVM (Polynomial) and SVM (RBF)
outperformed SVM (Linear). This 1s due to the non-linear
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Table 3: CCR, TPR and FPR of the classification results

Ranker Tabu PSO

Parameter CCR TPR FPR CCR TPR PR CCR TPR FPR
k-NN 85.17 85.10 2.50 8691 87.40 2.10 87.66 87.40 2.00
RF 91.17 91.40 1.40 89.89 90.90 1.30 90.06 91.70 2.20
SVM (Ln) 90.29 90.30 1.60 89.14 89.10 1.80 90.00 90.00 1.70
SVM (RBF) 91.71 91.70 1.40 91.14 91.10 1.50 91.40 91.40 1.40
SVM (Poly) 89.71 89.70 1.70 90.00 90.00 1.70 90.29 90.30 1.60
Average 89.601 89.01 1.72 89.42 89.70 1.72 89.88 90.16 1.78
9~ Tabu selected 11 features while PSO selected
8 Ranker 13 features, the two extra features being maximum of x-axis

90 = Tabu . :
B PSO measurements and the median of z-axis measurement. PSO
. 88+ gave the highest average CCR with the extra two features
% 86 making a difference in the results. PSO was also found to
E perform better than a well-designed Tabu search on
841 certain applications, due to the nature of the PSO’s
82 algorithm i obtaiming the global optimal solution
30 (Ho et al., 2007, Allahverdi and Al-Anzi, 2006). On the
& S ) & D other hand, Ranker selected every single feature but has
& & $\& S5 90& the lowest average CCR, attributed to the features were

%4@ & Qo\* selected but ineffectively impeding the classification.

Classification

Fig. 3: Correct classification rate of classifiers

nature of the generated features which allows for the
kernel trick in the nonlinear SVM (Polynomial and RBF)
algonthms to adapt to the maximum-margin hyper-plane in
the transformed feature space. SVM 1n nature computes
optimal hyper-plane with respect to margin maximization,
thus is able to perform well in high dimension feature
space (Suykens er al,, 2002, Suykens and Vandewalle,
1999). Trailing behind was RF at 91.17%. Although not as
accurate as SVM, the difference was negligible and its
computational time was much lower than the former.

For the feature selectors, it 15 also observed that the
best performances were produced by PSO with an average
CCR of 89.88% where 13 of the 27 extracted features were
selected for classification, compared to 11 (Tabu) and 27
(Ranker). Features in common selected by Ranker, Tabu
and PSO are listed.

Common features for Ranker, Tabu and PSO
Features:

Mimmum of x-axis measurements

Standard deviation of x-axis measurements

L]
L ]
¢+ Median of x-axis measurements
*  Average of x-axis measurements

Kurtosis of x-axis measurements
Minimum of y-axis measurements
Standard deviation of y-axis measurements
Skewness of y-axis measurements
Minimum of z-axis measurements

Maximum of z-axis measurements
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From data along the x-axis are more evident. As the
phone was vertically held by a mount when data was
collected, data along the x-axis are more impactful as the
data movement in the vertical plane is more apparent
when the vehicle goes over speed bumps, potholes and
uneven surfaces. However, this may also lead to
misclassification of these three surface conditions (any
one condition 1s classified as the other two) as they share
certain similar characteristics in terms of elevation of the
vehicle from its normal position. To overcome this,
additional features such as velicle lmear acceleration and
angular velocity calculated from the accelerometer
readings using the Euclidean norm and frequency domain
versions of the features can be included to mitigate the
variations 1 the readings. These features will be
considered n future research.

CONCLUSION

A classification model using statistical parameters 1s
presented to classify road swface conditions. Three
feature selectors and classifiers were emploved to assess
the performance of the proposed model. The model 1s
found to able to distinguish road surface conditions. Tt
can potentially predict road damage, facilitate
maintenance and resource managerment.

However, additional features such as vehicle linear
acceleration and angular velocity as well as frequency
domain features may improve classification as these
features could be robust to variations in the readings. The
model could also be improved by incorporating features
from other forms of mput for example video. A fusion
classification model incorporating these features with
statistical parameters and video will be considered in
future with more road surface conditions introduced.
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