Tournal of Engineering and Applied Sciences 12 (3): 481-487, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

UMIL. Point for Mobile Game A Measurement Method for
Sizing Mobile Game Design

Nur Ida Aniza Rusli and Nur Atigah Sia Abdullah
Centre of Computer Science Studies,
Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara (TJiTM),
Shah Alam, Selangor, Malaysia

Abstract: This study proposes a method for estimating the size of mobile game application. UML Point presents
rules to be mapped to UML model from the mobile game requirements. Methods/statistical analysis: This study
provides specification of UML model to be adapted in the mobile game design. In addition to model the
requirements, this study also introduces UML stereotypes for grouping certain elements m mobile game. We
present mapping rules for measure the functional size of mobile game using IFPUG Function point analysis and
provide a case study to show the possibility the proposed method to be applied in mobile games. From the case
study, the use of UMI, model and the proposed stereotype were found useful in presenting the requirements.
The results from the case study also support the claim that the proposed rules can be use m early estimation
of mobile game application. Application/improvements: the mmprovements mn this research mvolve the
development of automated tool by directly exporting the TUML game model to the tool for estimation process

and conduct experiment for validation.

Key words: Software setrics, application effort estimation, functional size measurement, UML, mobile game

INTRODUCTION

These days, the mobile game 1s tremendously well
known 1n the gaming mdustry. Evolution from gaming
machine, PC and console games to portable application,
mobile game comprised of entertaining contents which are
composed of a large number of functionalities can be
fulfilling to gamers. Gaming mdustry therefore, facing
mevitable imovations that resulting from the wide range
of operating systems such as apple i0s, google android,
and windows phone os. Fast growth, strong competition,
and upgraded technology compel, developers offer
interactive 2 or 3D games and social interactions among
players to generate more profit for the company.

The mentioned characteristics along with limited
duration of development life cycle which mostly take
from 2-6 months become a challenge for developer to
specify properly the requirements as it will impact the
project schedule, cost and the whole life project value
(Alves et al., 2007). Thus, the development costing of a
mobile game is difficult to be estimated. Furthermore, there
is no standardized method in estimating the mobile game
application and the costing factor may be varied or

changed by different person and perspective.

Therefore, mobile game companies tend to approximate
the application based on previous similar projects
(Kim, 2012).

In larger context of software (including mobile games
application), accurate estimation is important as the
report indicates that 45% of IT projects were over
budgets, 7% were late deliveries and 18% were
discontinued altogether (Abdullah and Rusli, 2015;
Wyayasiriwardhane and Lai, 2010).

Functional size measurement 1s one of the formal
methods to estimate the cost of project by measuring the
size of the software from the delivered functionality and
called as Function Point (FP). This method was originally
proposed by Alan Albrecht and maintained later by
International Function Pomt User Group (IFPUG). Aside
from IFPUG, there are several other methods in FSM, for
example, Markll, NESMA, FiSMA and COSMIC FSM;
however, this paper only utilizes TFPUG base components
to improve the mobile game measurement.

The extension of UML modelling m FSM 1s not a new
concept in cost estimation. The UML model’s flexibility,
which is independent of any types of programming
language and its ability to capture project’s functionality
at early development, motivates researchers to apply

Corresponding Author: Nur Ida Aniza Rusli, Centre of Computer Science Studies,
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM), Shah Alam,

Selangor, Malaysia

J. Eng. Applied Sci., 12 (3): 481-487, 2017

UMIL model in function point measurement process
(Saxena and Shrivastava, 2009). In addition, most of the
current mobile games were developed through UML
approach (Zhang et al., 2007). This has become
motivation to use this object oriented technologies in
sizing the functional size of mobile games.

MATERIALS AND METHODS

Uml modelling: This study describes the UML model to
express the mobile game application design. The input to
the UML modelling consists of use case diagram,
component diagram, class diagram and sequence diagram
together with stereotypes to be adapted in the mobile
game design.

Stereotype is an extension concept in the UMIL model
where 1t allow a software system to add new elements
from the existing components 1 a particular domamn or
enviromment. Stereotypes also could be used as a simple
indication of the elements, represents
behaviour of the object. This study stereotypes certain
elements and made it accessible n accordance with mobile
game requirements using guillemets («») symbol.

the nature

Use case diagram: Use case diagram is used to design the
high-level requirement of a mobile game. Composed of
actors and use cases, UML use case diagram describes
the subjects of the application and general activities
without illustrating the internal structure or detail
elements in a system.

UML use cases conveyed a series of activities in the
application. This phase defines a specific stereotype in
the use cases by using «start», «nplay» and «end»
notation. The implementation of the stereotypes indicates
the basis activities in the mobile game that can be
performed by the use case actors such as game player or
server. The descriptions of UMIL use case diagram
sterectypes are shown in (Table 1).

Component diagram and object interfaces: A component
diagram 1s used to design the group of data or organize
mformation such as software codes, scripting and
command files. Component diagram is suitable for
showing the structural architecture and managing the
complex functionalities of mobile game. At this step, all
actors that appear mn the UML use case diagram are
transformed into component diagram and further
classified into the proposed stereotypes. In proposed
UMIL component diagram are standardized in order to
generate the primary elements that can be executed by the
application. (Table 2) shows the descriptions of proposed
sterectypes for component diagram.

482

Table 1: UMI. use case diagram stereotypes

Stereotypes Definition

“Start” Activities for player enter a new game; all particular
components are rendered in the application. Player may get
a set of instrictions o tutorial before start playing the game

“Inplay™ List of actions that can be taken during the gameplay such as
pause, resume or change setting, Player may get rewards such
as experience points or items during the gamne

“End” Activities to end the current level or terminate the

application. All displayed characters are destroved

Table 2: UMI. component diagram sterectypes

Sterectypes Definition

“User” Player of the game. Tt can be single player or
multiplayer

“UT” A medium to display the game objects, game
scene and control the interaction process

“Library™ Muobile game assets such as animations, physics

or network

Describes the static and dynamic game objects.
Tt describes set of characteristics, behaviours or
actions to be performed

Handling the data of the game such as properties,
game items or score points. It can be local
database or external storage

Targeted platform or devices

“Execution object”

“Storage”

“Extecution enviromment”

When executing component, it is always necessary to
implement interfaces to link the mteraction process.
Therefore, object mterface i1s used for linking the
compoenents by implementing a class diagram stereotyped
as “interface™ The mplementation of object interface,
however 1s different from class diagram as it only includes
operations that can be used by other components.

Class diagram: The implemented components may
to presents the detail
requirements such as game characters, input control or
game mechanics. The class diagram allows developer to
enhance the idea during the design process and capture
potential features as much as possible to support the core
gameplay. Class diagram may share same elements or
functionality. Therefore, the generalisation/inheritance,
association, aggregation and composition relationships
are included as part of the process to form the application
structure.

consist of several classes

Sequence diagram: The sequence diagram is designed
purposely to summarize the internal interaction between
objects. Several sequence diagrams should be modelled
to depict all possible behaviour of a system. To visualize
the complete interactions, sequence diagrams usually
developed from the context of use case scenarios.
Therefore, from the mentioned use cases, at least the
mobile game consists of three sequence diagrams;
sequence diagram for “start” activity, sequence diagram
for “mplay” activity and sequence diagram for “end”
activity.

J. Eng. Applied Sci., 12 (3): 481-487, 2017

RESULTS AND DISCUSSION

Measurement rules: ITn TFPUG FPA, the main concept of
measurement consists of two parts; data functions and
transactional functions. Data functions consist of Internal
Logical Files (ILF) and External Interface Files (EIF);
meanwhile, transactional functions consist with External
Inputs (EI), External Outputs (EO) and External Inquiries
(EQ). These five components are needed to be assigned
the weighting complexity m low, average or high
complexity in order to obtain the Function Point (FP)
(Lang et al., 2013). To apply the IFPUG FPA base
components, this paper introduced three major steps for
mapping the concept of IFPUG FPA to the proposed
UML. Named as UMI, Point each of the steps will be
composed of formal rules to mmprove the measurement
process. The measurement steps are described as follow:

¢+ Count data function for component diagram

* Count data function for object mterface

¢ Count transaction function for sequence diagram
Data function for component diagram: The
imnplementation of component diagram 1s suitable for
determining the candidate of data functions. The
“user-identifiable group” defimition in IFPUG 1s rather
vague; therefore to assist the mapping process, this study
proposed a set of rules to differentiate each of component
stereotypes into ILF and EIF:

¢ Rule 1. Every component diagram become a
candidate of data function

¢ Rule 2: Accept each of “user” data function as ETF

¢ Rule 3: Accept each of “UT” data function as ILF

* Rule 4: Accept each of “library™ data function as ELF

* Rule 5 Accept each of “execution object” data
function as ILF

* Rule 6 Accept each of “storage” data function as
ILF or EIF. Internal storage is accepted as ILF and
external storage 1s accepted as EIF

¢+ Rule 7: Accept each of “execution environment” data
function as EIF

The relative complexity to each ILF and EIF are
captured by counting the number of DET and RET for
both data functions. As an mternal part of the component,
a structured class diagram is used to identify the
complexity for both ILF and EIF data functions. Therefore,
the number of DET and RET can be classified by using
the following rules:

*+ Rule 8 Count RET and DET as one for component
that does not contains any class (es)

¢ Rule 9 If component contains class (es) and there are
no relations (generalization, association, aggregation
or composition) between classes, the RET 1s counted
as 1 to each class (es)

« Rule 100 If two
generalization relation, the RET 15 counted as
subclass only

¢+ Rule 11: If two classes are connected by association
relation, the RET is counted as both superclass and

classes are connected by

subclass

» Rule 12: If two classes are connected by aggregation
relation, the RET is counted as both superclass and
subclass

¢ Rule 13: If two classes are connected by composition
relation, the RET 1s counted as superclass only

¢ Rule 14: Count DET to each non-repeated afttribute in
class diagram

Data function for object interface: As part of component
diagram, object interface has also become a candidate to
the data functions. The ILF and EIF rules of object
interface are immediate:

¢+ Rule 1: Every object interface is mapped each of
object mterface into logical file

» Rule 2: Accept each of object interface (s) belongs to
“user” and counted as EIF

+ Rule 3: Accept each of object interface (s) belongs to
“UI"” and counted as ILF

* Rule 4 Accept each of object interface (s) belongs to
“library™ and counted as EIF

+ Rule 5: Accept each of object interface (s) belongs to
“execution object™ and counted as [LF

» Rule 6 Accept each of object mterface (s) belongs to
“storage” and counted as ILF or EIF

¢+ Rule 7: Accept each of object interface (s) belongs to
“executionEnvironment” and counted as EIF

Both of ILF and EIF object interface then need to be
rated as low, average or lugh complexity by identifying
the number of RET and DET that captured in object
interface. The RET and DET of object interface are based
on the following rules:

+ Rule& CountRET as 1 to each object interface
¢+ Rule & Count DET to each non-repeated attributes in
object interface

Transaction function for sequence diagram: In counting
the transaction functions, the measurement process is
captured from the sequence diagram; considering the
proposed UML use case diagram does not provide

J. Eng. Applied Sci., 12 (3): 481-487, 2017

Intrinsic Game

Art and video

X

Sound

X

ios

"Start"

X

Unity 3D

“Input"
Battle

“Input”

Game DB

"End"
Stop game

\

"End"

Fig. 1: Use case diagram for the intrinsic game

sufficient information to complete the sizing process
using [FPUG base components. Each of “start”™, “inplay”
and “end” use cases are transformed into sequence
diagram and become a candidate for transaction
function.

To count the transaction function, this study
provides mapping rules for UML sequence diagram to be
applied m the IFPUG transaction functions componennts.
The rules are described as follow:

Rule 1: Every “start”, “inplay” and “end” use cases
become a candidate of transaction function

Rule 2: Accept each of “start” transaction as EL

Rule 3: Accept each of “mplay” transaction as EI, EO
or EQ

Rule 4: Accept each of “end” transaction as EQ

Counting the EI, EO and EQ complexity 1s very
simple; the adjustment is based on the number of file type
referenced (FTR) and DET that appear 1 the sequence
diagram. The proposed rules of FTR and DET are
described as follow:

Rule 5: FTR 1s counted from ILF and EIF of object
interface that appear in the sequence

Rule 6: Count DET to each message between
FTR

Add score

Exit app

"Start"
Start app

Render asset

"Input"
Didply —galy

"Extends"

"Includes"

484

Player

From the proposed rules the UML Point can be
summarized based on following formula:

UML POth = FPComponent + FPInterEa:e + FPSequence (1)
FPCumpment = EcomponentILF(RET,DET) + (2)
2 Componente e ger per
Fplnterface = ZlntelfaceILF(RET,DET) + (3)
E Interfacey ;e pery
FPSequen:e = ZsequenceEI(FTR,DET) + (4)

2Sequencelﬂ:o(FTR’DETj + ESequenceEQmR_Dm

Case study: A case study is conducted in order to
evaluate the proposed UML Point. The requirement
documentation of the intrinsic game is used to support
the measurement process. The intrinsic game 15 a 2D
battle game style which was designed to be played on
1Pad. This study provides an overview of UML model of
the game and discusses how the measurements are
conducted. However, not all parts of UML model are
presented here due to the limitation of space.

Figure 1 shows the UML use case diagram for the
intrinsic game. The Intrinsic Game 1s consists of 6 actors;

J. Eng. Applied Sci., 12 (3): 481-487, 2017

Intrinsic game

2 —-0

“ypr

IntrinsicInterface

2]

—

Game object_int

e
—

Player object_int

“Execution object”
Game object

Fig. 2: Component diagram for the intrinsic game

“Library” @
art and video i
¥ E Unity 3D_int
“Library” O\.
L unitvap 4
/
iy B
Sound and music /f Game DB _int
/ N\
L “Storage” - E Qj
E GameDB
“Execution
environment” i0OS
Player_int O\'
“User” Player J

3]

“Execution object”
Player object

—¢

"Execution object" {l
Game object
GameAl GUI objects Game physics
“+enemy character “rcharacter image Tpc move et
+position Boss +health bar +pe move right
+speed [<E——+addition attack +special bar “+pe jump up
+strength +additional power| +left arrows 0% T.%| +pejum down
+power i;ltilllct karrows +pc cross path
? Tdefense +minion pushback
+enemy health bar +f:haraclers obstac
Regular enemies Mid level boss +idle motion
+left enemies | [radditional attack +gravity
+right enemies | [radditional power
Game state State Game play Zz::;e;ﬁ;iim
+health bar Y +experience points +health recovery item n b =
+power bar +level +power recovery item +S€: OoJ?tciton
+dialog scene +attack attributes +destructable obstacle +325505‘
+health attributes +platform obstacle Y
+power attributes

Fig. 3: Detail structure of component gameobject

Player, Unity 3D, art and video, sound, i0S and game DB.
The mentioned actors interact with seven use cases,
including start application in-battle game and exit
application activity.

Figure 2 shows the component diagram of the
mtrinsic game. Each of actors defined in UML use case
diagram are converted into a unit of component and
categorized the components mto the proposed
stereotypes. In realizing the requirements, it is possible to
add subcomponents to the mam model. The component
diagram may deliver “provide” or “request” object
mterfaces, depending upon the behaviour that the
component should perform. Figure 3 shows the detailed

structure of component game object, in which the
generalization and composition relationships are
presented; class regular enemies, mid level boss and boss
are generalized mto superclass gameAl and class game
state and class state interact through composition
relationships. In this Fig. 3, set object, set Position and
destroy are defined in the game object-Int for interaction
process.

The specified use cases in Fig. 1 are then visualized
in the set of sequence diagrams. Fig. 4 show the sequence
diagram for battle activity. Player sets the level through
user interface and all particular objects are positioned
according to the requested level. Then the battle activities

485

J. Eng. Applied Sci., 12 (3): 481-487, 2017

Player_int Intrinsic_int

Game object_int

Player object_int

Set level

N4

Set object

A

. Set position
Display

I LA

Play

V] |

N\

]

Set object —

VN

Activate player

Start trigger

Attack

Vv

Spawn tigger

N4

Attack

V.

Win tigger

N4

Attack

N4

Fig. 4: Sequence diagram for battle

are realized. Player-int. Start trigger, player-int. spawn
tnigger and player-in win trigger functions are called in the
sequence as part of attack process.

The process of counting the UMIL model in
Fig. 2-4 are based on the proposed rules in the previous
section. In summary, component game object consists of
7RET, 43DET,; object mterface game object-Int consists
of 1RET, 3DET and sequence diagram for battle consists
of 4FTR, 13DET. After all the [FPUG elements (DETs,
RETs and FTRs) are identified; the IFPUG weighting
complexity (not reported here) are referred to classify each
data function and transaction function 13 having low,
average or high complexity. The low, average and high
complexity for both data function and transaction
function are then weighted to obtain the final functional
size of the software application. The case study of the
intrinsic game is estimated to have 153 FP (84 FP for
component diagram, 36 FP for object interface and 33 FP
for sequence diagram). The estimated function points are
then can be used as parameters in predicting the effort
and cost estimation of mobile games for The Intrinsic
Game.

CONCLUSION

To make mobile games more applicable in the
measurement process, this study extends the
characteristics or requirements of mobile game by

implementing it in the UMIL, model. Use case diagram,
component diagram, class diagram and sequence diagram
are applied to the IFPUG FPA base components. The
measurement rules aim to make the measurement process
easier and to ensure all functionalities in the UML mobile
game design are catered in the sizing process. This study
has presented a case study in UML Point as a proof of the
proposed measurement concept, however, a proper
evaluation of method is needed to ensure the
measurement can be applied in various mobile game
requirements.

So, the next stage of research will involve the
validation of the method and determine if the proposed
measurement rules are applicable to the mobile games
industry. The future work also involves the context of
automation tool for UM, Point. The tool will automatically
count the functional size of the mobile game and estimates
the effort and cost to develop the application based on
the given input.

REFERENCES

Abdullah, NAS. and N.IA. Rusli, 2015. Reviews on
functional size measureapplication and UML model.
Proceedings of the 5th International Conference on
Computing and Informatics, August, 11-13, 2015,
Universiti Utara Malaysia, Changlun, Malaysia, pp:
353-358.

486

J. Eng. Applied Sci., 12 (3): 481-487, 2017

Alves, C., G. Ramalho and A. Damasceno, 2007.
Challenges in requirements engineering for mobile
games development: The meantime case study.
Proceedings of the 15th IEEE Intemational
Conference on Requirements Engineering, October
15-19, 2007, IEEE, Recife, Brazil, [ISBN:0-7695-2935-6,
pp: 275-280.

Kim, H., 2012, Frameworks for validation of mobile
software project performance. Proceedings of the
World Congress on Engineering and Computer
Science, Cctober 24-26, 2012, Catholic University of
Deagu, Gyeongsan, South Korea, pp: 24-26.

Lang, M., K. Conboy and S. Keaveney, 2013. Cost
Estimation in Agile Software Development Projects.
Tn: Information Systems Development, Pooley, R., J.
Coady, C. Schneider, H. Linger and C. Barwry ef al.
(Eds.). Springer, New York, USA., pp: 689-706.

487

Saxena, V. and M. Shrivastava, 2009. Performance of

point through UML
modeling. ACM. Sigsoft Software Eng. Notes,
34:1-4.

Wijayasiriwardhane, T. and R. Lai, 2010. Component
Point: A
component-based software
Software, 83: 2456-2470.

Zhang, W., D. Han, T. Kunz and K. M. Hansen, 2007.
Mobile game development: Object-orientation or
not. Proceedings of the 3lst
International

function analysis

measure for
Syst.

system-level size
systems. .

Annual
Conference on Computer
Software and Applications, July 24-27, 2007,
TEEE, Shanghai, China, ISBN:0-7695-2870-8, pp:

601-608.

	481-487 - Copy_Page_1
	481-487 - Copy_Page_2
	481-487 - Copy_Page_3
	481-487 - Copy_Page_4
	481-487 - Copy_Page_5
	481-487 - Copy_Page_6
	481-487 - Copy_Page_7

