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Abstract: At present, the need to analyze the maimntenance of tasks by computing clusters 1s urgent. In the
study the question of transition from a log of operation of a computing cluster (the list of all comers of jobs)
to its approximation is considered. Stochastic parameters are approximated: runtime of jobs intervals between
their arrivals. The result 13 checked by simulation modeling.
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INTRODUCTION

The problem of optimal execution of parallel and
high-performance computing is now quite
(Sinisterra e al., 2012). In particular, there is the issue of
optimal load balancing and selection of optimal
performance (Gaevoy et al., 2014a) of Computing Clusters
(CC). One of the possible ways to solve this problem is to
sinulate the work of the CC meluding the simulation of it
(GridMe: Grid Modeling. https://code.google.com/p/
gridme). The latter requires the construction of a
mathematical model of CC and the mcommg workload
(Jam ez al., 1997). In this study, we construct a stochastic
model of the workload.

The real CC 1s built from computers that serve
incoming tasks (Den optimalen Rechnerverbund gibt
es nicht einmal auf dem Papier (in German). In:
Computerwoche.  http://www.computerwoche. de/a/den-
optimalen-rechnerverbund-gibt-es-nicht-einmal -auf-dem-
papier,108714%). In this study, an already elaborated
model (Gaevoy et al, 2014b, Gaevoy and Al-Hadsha,
2013) of such a CC 13 used as a serving unit with not
priontized, unlmited queue. That ensures that all
mncoming jobs are served.

Clusters are usually constructed from computers
of equal performance (Gaevoy ef al, 2004, 2014ab;
Gaevoy and Al-Hadsha, 2013). Tasks for execution
are coming into the cluster system. Each task can be
executed in parallel on several machines (service
channels).

actual

We  introduce the followmmg  defimitions
(Avetisyan ef al., 2004). The number of computers on
which a task is executed is called its width. The length of
the task will be called the time of its execution. The square
of the job 1s the product of the length and the width.
Obviously, the square is the complexity of the task. It also
represents the total used machine time. Note that different
researchers of existing publications on the topic of this
study use different terminology. We will assume that the
width of the job 13 determined at the tume of its creation
which 1s a farly frequent assumption (Jamn et af., 1997,
Anonymous, 1996)

By Lublin and Feitelson (2003} logs of real computer
system’s workloads are provided. A parallel workload
contains arrival times jobs, their widths and lengths. This
15 the loading of a computer system. The goal 15 to
approximate stochastic values: the mtervals between job
arrivals, lengths (or squares) and job widths for the
subsequent sumulation.

It 18 necessary to build a model that makes it possible
to switch from the logs to random variable distributions,
to find methods for generating stochastic task parameters.
This transition will reduce the amount of mformation
needed to store the workload, show patterns in it, predict
possible load options, obtain material for service
modeling, ete.

The quality of the result is estimated by simulating
generated workloads. The model from (Gaevoy et af.,
2014a, b, Gaevoy and Al-Hadsha, 2013) 1s used as the
model and the deterministic load from (Lublin and
Feitelson, 2003) 1s modeled as the standard.
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MATERIALS AND METHODS

‘Workload approximation; Used approximation methods:
Approximation methods are Moment Method (MM) and
Maximum Likelihood Method (MLM). MM assumes the
calculation of distribution parameters by the moments.
Thus, the number of moment estimations should be equal
to the number of parameters of a distribution.

We denote moments as: B(X) the expectation of the
variable X, VAR(X) its variance, stDev(X) standard
deviation, cov(X) = stDev(Z{/E(X) the coefficient of
variation. If we are dealing with a moment estimate, we will
malke a horizontal line.

The necessary estimates can be obtained from
the formulae (Reducing the approximation time of
cluster workload by using method of moments on
hyperexponential distribution (in Russian):

E(X)=—Y X (1)

1

1=

1
N 1

VAR(X) =

X (E) = )R]

13 N-1

Where:
N = The number of observations
¥, = Specific observation No. i

Also, we will denote pdf (x) and cdf (x) the probability
density function and the cumulative distribution function.
Use MM only for distributions that have no more than
four parameters as in practice the obtaining of the
moments above fourth order is difficult because of
accidents.

Maximum Likelihood Method (MIM) does not have
this drawback but requires large computational resources.
The likelihood function has the form:

L =T [pdf(x,) 3)

Where:
N = The number of observations
X, = Specific observation No. ]

In accordance with the methed, it is necessary to
produce the maximmization of this function. Analytical
solution in the general case can be difficult. The function
can take values very close to zero and this can lead to
serious problems due cto rounding v in the computer,
30, the maximization of the function should be replaced by
the maximization of its logarithm Inl. (or minimization

of Inl.). As an optimization method we will use the
method of Hooke-Teeves or (where possible) an analitic
solution.

Used distributions: After verifying the conclusions ,) we
are using now (Reducing the approximation time of
cluster workload by usmng Method of moments on
hyperexponential distribution (in Russian) (Anonymous,
1998).

M; exponential distribution:

pdf(x)=he™ )
edf (x)=1-e™ (5)
E(X) = stDev{X) :% (6)

For this distribution, the evaluation of MLM and MM
coincide and give. The solution for MLM is possible
analytically:

1
A=— 7
=) (7)

I'; Gamma distribution:

}\,X)v-l
ar(x) =L = ()
pdf(x) ) ¢
A
cdf { %) :M:P(v, Ax) 9
(v)
E(X) =~ (10)
A
VAR (X) = — (1)
)\42
Where:
I(x) = The gamma function Euler’s
v(x,v) = The lower incomplete gamma function
P(x,y) = The lower gamma function

Using MM (T'w) gives:

,__BX) (12)
VAR(X)
v AB(X) 13)
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Using MLM (I'y) is more difficult. The partial
derivatives of the logarithmic likelihood function are equal
to zero, thus, we have:

A= (14)
E(X)
w(v) = E(InX -n{ E(X)) +n? (15)
Where
Y(v) = The digamma-function
E(InX) ~ The average value of the logarithm of the

random variable

It should be noted that both estimates give the same
mathematical expectation which coincides with the
estimate (E (X) = E (X)) but the remaining moments will
differ in general case.

All distributions before will be assumed simple in
contrast to the hyper-distributions.

H(n); Hyperexponential distribution:

pdf(x) = iotlkle'x‘x (16)
i=1
cdf (x) =1-iale?‘X (17)
i1
120,20 (18)
Y'a, =1 (19)
=1
cov(X) =1 (20)

Where n number of branches, distribution branches
(given before the approximation as part of the distribution
type).

From the condition $15-1 it follows that one «, is
determined by the other, therefore, the number of
parameters of this distribution is 2n-1. If a distribution
with two and three branches 1s used, then you need to
define up to five parameters. Because of the versatility of
MLM, denote its approximation as the distribution
itself Hin).

In (Logs of real parallel workloads from
production systems, The Rachel and Selim Benin
School of Computer Science and Engineering.
http: /fwww.cs.huji.ac.il/labs/parallel Aworkload/logs html)
it is shown that, it is possible to use MM on hypererlang
distribution but one had to reduce the number of

parameters. For hyperexponential distribution with two
branches MM still applies, since, the number of
parameters is three. After the preparation and the solution
of a system of three equations (Downey, 1997) we get:

_ VAR(X)

¢ 21
B ) (21)
B v2-1 (22)
- E(X') 1sap 23)

}1 4)
A, = (E(X)[H 11 BNI (25)

o,=max | —| 1+ v it Bzz (26)
v s | TP
o, =1-0 (27)
For the moments:
E(X)=E(X) (28)
VAR (X)= VAR (X) (%)

() = max[E(3 o’ (x)(187) g0

E{(X’) = 6B’ (X)if p=0

The third moment may differ from the estimate but the
expectation and the variance are always equal to their
estimates. We denote this simplified hyperexponential
distribution approximation using MM as Hy.

HTI'(n); Hypergamma distribution:

v -1
g Bt (31)
pdf(x) galkl o) e
odf (x) = ialP(vi, AX) (32)
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Fig. 1: Changes of the hazard of the job income during the week

Ya, -1 (33)
12a >0 (34)
cov (X)e (Dyee ) (35)

Where n number distribution branches (given before
the approximation as part of the distribution type). The
number of parameters of this distribution is given by the
formula 3n-1. In thus research, we will use the distribution
with two branches n = 2 which has 3n-1 = 3x2-1 = 5
parameters.

Therefore, even for a distribution with two branches,
MM is not applicable. To consider a hyper-distribution
with one branch does not make sense as it will typically
be exponential or gamma-distribution. We will use MLM.
Because of the wversatility of MLM, denote its
approximation as the distribution itself HI'(n).

Workload models: Tn this study, we present a
significant modification and refinement of the five basic
models of loads (7, 9). For model description our proposed
modification of Kendall’s notation of will be used.

Each workload model consists of two parts: a model
of arrival times of jobs and a service model. Let’s start
with the simplest option: A, B, B™ where A approximation
by some distribution of time interval between armmivals of
jobs, B approximation of the square (when you specify
<~ _length).

The width 1s a discrete random variable and
represented by a finite number of values. Therefore, it can
be approximated simply as an array of probabilities.
Different widths can have very different distribution

characteristics of the arrival/length/square. So, it makes
sense to allocate separate parameters for intervals of
width (Logs of real parallel
production systems, the Rachel and Selim Benin
School of Computer Science and Engineering.
http://www.cs.hujiac.il/labs/parallel/workload/logs htm).
In the simplest case, we allocate one prameter’s set for
each width. We will denote this by an icon “$” before the
designation of the distribution: $B. Due to the fact that
there 1s only one width in each set the length will be
proportional to the squre and no separate approximation
for the lenght is needed.

The second division is to select separate groups of
each width that are powers of two. This makes sense,
since, according to Fomenkov ef al. (2014) in the logs
jobs whose width is a power of two are dominating, even
when there are no technical prerequisites. Works such as
(Downey, 1997) consider thera are also other dominant
(but weaker than power of two) widths, for example,
multiples of ten. In other research (HPC (@ Uni.lu.
https://hpe.uni. lu/systems/gaia/)  the
trying to get away from this trend.

The widths between the powers of two are also
separate groups: one group for each interval. So, we
get the groups: 1-64, etc. let’s denote this separation of
groups with “&™ &B and &B". A similar division can be
done for the mput of time tasks: we can select multiple
input streams. Using the same principles of partitioning
and labeling we get $A, &A.

By Fomenkov et al (2014) is proposed to analyze
the input stream as non-stationary. In this study, we will
consider the change of the hazard of incoming jobs during
the week. In Fig. 1 there are apparent fluctuations in the
hazard during the 7 days. In the begimnning of the week we
took midnight from Sunday to Monday. We assume that

workloads  from

researchers are
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the arrival hazard remains constant for half of an hour (as
by Fomenkov et al. (2014). We are using the normalized
hazard:

A(t)=A(t)/h (36)
Where:
#(t) = The normalized hazard of the arrival
~(t) = The hazard
% = The average hazard of the arrival

To generate the interval between arrivals of the
nonstationary stream we try to scale the timeline. We
assume the time interval between the real points t; and t,
to be the value of the integral:

t
Lit,t,) = J'W)dt (37)

Let’s call it “normalized time” between the arrivals
of tasks. This stream will be stationary and can be
approximated by a usual methed and then we can retum
to the original imeline. We denote this model the sign “~”
before the designation of the input stream for example,
~A. The designations ~$A and $~A are not the same. In
the first case, we introduce a single hazard for all input
streams and in the second each stream gets its own
hazard.

Thus, we obtain the following : A, ~A, $A, &A, ~3A,
~&A, $~A, &—A input streams and service options: B, $B
&B, B, &B". The combmation of these two models gives
the parallel workload model. We will denote it by a
combination with a slash, e.g., ~A/&B. So, we have 40
combinations. Seven possible approximation (M, T',
I, Hy, H2), H(3), HI'(2)) give us 1960 models. We
can’t show all these model simulation but we’ll show te
most important cases.

RESULTS AND DISCUSSION

Approximation of the log of cluster UniL.u-Gaia: The
13 provides the logs of the real computer systems,
giving the arrival times of tasks, the length and the width.
We will use the log Unilu-Gaia-2014-2.swf which
belongs to the cluster Unil.u Gaia (The University of
Luxemburg Gaia Cluster log (18)) with 2004 service
chammels (Varrette, 2017).

An example of the approximation of the Empirical
Distribution Function (EDF) of the time between
armivals of jobs 13 depicted m Fig. 2-4. The
hyperdistributions when using MLM do more accurately
describe the random variable but MM does reduce the

quality.

(IJ l(I]U 2(')0 360 460 56(] 660 7(')0 860 960 l(ll()O
Time between arrivals of the jobs (sec)

Fig. 2: Approximation of the time between arrivals of the
jobs by the simple distributions
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Fig. 3: Approximation of the time between arrivals of the
jobs by the hyperdistributions with MLM
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Fig. 4: Approximation of the time between arnivals of jobs
by hyperexponential distribution

Table 1: Execution speed of various types of approximation
Execution time

Analysis H, H(2) H(3) HI'(2)
Yes 5 sec 2min 16 sec 10 min 31 sec 17 min 12 sec
No 2min34dsec 4min45Ssec  12min59sec 20 min 29 sec

We should compare the time and quality of the
results. Each approximation in our program (6, 8) usually
accompanied by an analysis. So, it takes more time to
calculate (Table 1). It 13 obvious that the analysis takes
about 2 min 30 sec.
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Table 2: Best approximations

Variables &-H(2TA ~&HI(2)H2Y" $HERYE&HD(2)" &-HI(2/HE2Y ~&H@YV&IA™  Original
The mean execution time (sec) 14257 14274 14313 14274 14325 14329

The average number of running jobs 96.114 96.71 96.556 95.641 96.813 93.067

The average number of busy channels 959.93 963.36 926.74 958.65 217.9 872.26

The average waiting time (sec) 75.776 68.331 66.145 65.643 81.703 7241

The average waiting time (sec) 2193.1 22350.5 2293.6 2264 22242 22359.7

The percentage of the queued jobs 0.031249 0.02806 0.026674 0.025697 0.034756 0.032044

The average length of the queue 0.511356 0.46544 0.44823 0.43867 0.57612 0.4703

The average width of the queue 14.185 14.686 14.941 15.439 14.8 15.31

The average sojourn time in the system (sec) 14332 14343 14379 14340 14410 14402

The average length of the system 96.625 97.176 97.004 96.08 97.39 93.537

The average width of the system 974.12 978.05 941.68 974.09 932.7 887.57

Deviation 0.070089 0.072419 0.063817 0.082707 0.083977 0

Table 3: Best approximations with H,

Variables &~HW/SHp ~&HWHp™ &~HwHp™ &~HW/&Hp &~HWE&HpP Original

The mean execution time (sec) 14352 14196 14196 14375 14324 14329
The average number of minning jobs 6.511 96.2 96.105 97.161 96.816 93.067
The average number of busy channels 905.98 966.42 959.97 920.9 910.3 872.26
The average waiting time (sec) 38.28 35.247 33.043 28.605 25.24 72.41

The average waiting time’ (sec) 1873.8 1391.7 1323.5 2327.7 17894 2259.7
The percentage of the queued jobs 0.016405 0.019913 0.020755 0.007809 0.009683 0.032044
The average length of the queue 0.26044 0.2413 0.2262 0.19438 0.17137 0.4703

The average width of the queue 9.395 12.048 11.916 8.023 7.073 15.31

The average sojourn time in the system (sec) 14390 14231 14229 14404 14349 14402
The average length of the system 96.771 a6.441 96.331 97.355 96.987 93.537
The average width of the system 915.37 978.46 971.88 928.92 917.37 887.57
Deviation 0.27683 0.27981 0.29096 0.37155 0.38778 0

Modeling approximations: To assess the quality of the
approximation carried out we use a stochastic simulation
of using the proposed models. For the simulation we
have improved a tool developed in (6-8) allowing to
reduce the simulation time and thus, to examine a much
larger number of models. In our case 1961 including
the standard.

To estimate the simulation results we take the
result of a deterministic simulation of the original
workload. To choose best option the criterion of
deviation is used:

(38)

Where:
m = The number of parameters
P, = The reference value of the parameter

cannot be less than the previous one but m practice
is often much greater. In other words jobs rarely go
into the queue, but those which do wait for a very long
time.

The error of sunulation was set to 5%. By central
limit theorem (15) this requires more than 40 simulation
experiments for each case. This is already more than 80000
tests. The models with the smallest value of the deviation
parameter are presented in Table 2. The differences
between the good models are within the error of the
simulation, so, it makes no sense to talk about which one
1s better. About 20 other models give us very results very
close to that.

If we compare the results of MM and MLM for
hyperexponential distribution (Table 3), we can see that
the quality of MLMs is high enough compared to the
time consuming (Table 1). In Table 3, we did not
consider mixed versions, i.e., one method was used for the

e = The value obtained from the stochastic model intervals between incomes and the another for
length/square.
Note that we have received two average waiting times
in the queue due to the fact that not every job does pass CONCLUSION

through the queue. Thus the average waiting tume can be
estimated two ways. We can do this for all jobs,
considering the zero waiting time for not queued job
(without an apostrophe). We can determine this parameter
only for queued (with an apostrophe). This value

Thus, an mmproved method of approximating a
stream of jobs i computer systems [ proposed. The
list of the distribution to use was made up. Due to an
optimization of the calculations the number of models was
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increased. This time we got about 25 good models,
although, in the previous researchs this number was only
a few models.

RECOMMENDATIONS

Obtained models allow us to recreate a random
workload of a computing system and to use it instead of
a log in the further studies in order to determine the
quality of service, optimize a computing system’s
parameters, find ways to balance the workload.

Also we have received a little rough but very fast
approximation which gives the satisfactory results. Its
deviation 1s only four times greater than the best resulta
but we have sigmficantly reduced the calculation time.
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