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Abstract: Machine learning-based methods are the most prominently employed in methods in the development
of novel protein fold recogmition tools. The most recent fold recogmtion method was developed by combiming
the four descriptors (e-Values) of Position Specific Iteration BLAST (PSI BLAST), reverse PSI-BLAST
(RPS-BLAST), alignment of Secondary Structure Elements (SSE) and PROSITE motifs. In this present study,
we emphasized to improve the fold recognition methods by including gene-ontology terms as additional
descriptors which can aid in the determination of function based predictions. This method of descriptor
combinations have resulted high sensitivity in determining the protein folds when compared to the methods
developed with single descriptors. Also, the inclusion of GO-term descriptor have highly increased the
sensitivity of the methods in fold recognition which significantly envisages the usage of GO-terms as prominent
descriptors that can be employed n the protem fold predictions.
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INTRODUCTION

Globally, the huge deposition of completed genome
brings the drastic gap in the protein sequence, structure
and their functions. Thus, based on the available
empirical protein  sequences the protein structure
prediction is dramatically increasing and has established
as a routine application in determining the new protein
structures by many life sciences (Petrey and Homg,
2005). The protein structure prediction based on
experimental protein sequence (template) classically
needs three steps. template identification with remote
homology for the target sequence. Query and template
sequence similarity. Generation of template based query
protem 3D structure. In this pipeline, the identification of
template (experimentally available protein 3D structure)
protein  sequence that are query
sequence are considered as the most significant step.

similar to the

In line with this, the most commonly used alignment
tools such as Basic local alignment search tool
(Altschul ez al, 1990), Fast algorithm (Pearson, 1990),
Smith-waterman algorithm (Smith and Waterman, 1981) or
Needleman-wunsch algorithm tools (Needleman and
Wunsch, 1970) are employed to understand the
percentage of similarity shared by query-template

sequences. In general, these protein modeling that are
based on similarity are known as theoretical modeling
or comparative modeling. While employing these
comparative modeling it 1s believed that the template and
query alignment should share more that 40% similarity to
generate the reliable protein structure. On the other hand,
the query-template alignments with lesser sumilarity
(<40%) are known as remote homologous. In certain
cases, it 18 entrusted that the query template with lesser
similarity (often referred as remote homology) can share
the similar folds in the protein 3D structure. In this
scenario, the most frequently used sequence alignment
tools fails to identify the remote homologous proteins.
However, the development of profiles based alignment
methods such as PSI BLAST (Altschul et al, 1997),
RPS-BLAST (reverse PSI-BLAST) (Altschul er ai., 1997),
IMPAT A (Integrating matrix profiles and local alignments)
(Schaffer et al., 1999) and HMM (Hidden Markov Models)
profiles (Sonnhammer ef al., 1997) has significantly,
identified the remote homologous proteins. Yet, these
methods also exhibited poor performance when the
template and query sequence alignment shares 20-35% or
lesser similarity (Twilight zone) (Rost, 1999). Thus, the
development of sensitive tools that can detect the remote
homologous proteins has drastically increased in number
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during last decade. Now these remote homologous
tools  including FFAS-3D (Fold and Function
Assignment System) (Taroszewski ef al., 2015), 3D-PSSM
(Position-Specific Scormg Matrix) (Kelley et al., 2000),
Fugue (Shi et al., 2001), mGenThreader (McGuffin and
Tones, 2003), ORFeus (Ginalski et al., 2003), MUSTER
(MUti-Sources ThreadER) (Wu and Zhang, 2008) and SP5
(Sparks 5) (Zhang et al., 2008) are considered as powerful
fold recognition tools in the identification of template for
comparative modeling.

In general, these fold recognition tools takes the
strategy of screemng all the structures of fold library with
the given query sequence and can identify the best
template based on the sequence structure compatibility.
At present the fold recognition methods are based on
structure seeded profiles (3D-PSSM  and Fugue),
profile-profile alignment (PST and RPS) and machine
learning (mGenThreader). In general, the structure seeded
profile methods (3D PSSM) uses sequence and
structure profiles along with the predicted secondary
structure. Whereas the profile-profile alignment methods
(PSI BLAST) mvolves dynamic programming for
alignment and structural information. While, the machine
learning methods combine various parameters related to
sequence and structure. In recent years, Support Vector
Machines (SVMs) are widely used as machine learning
method which can build binary classifiers to predict the
sequence that belongs to structural fold.

Thus, in this study, we emphasized the development
of old server methods through a machine learning methoed.
For this, the features (descriptors) of two proteins are
analyzed. For instance, the ammo acid composition of a
sequence considered a descriptor, the BLAST search
value of query protein against template proteins
considered as a descriptor. Likewise, thirteen descriptors
including gene-ontology terms were also evaluated in this
study for its capabilities in identification of folds.

MATERIALS AND METHODS

Datasets: The most reliable protein 3D structures are
screened from the protein data bank and their
information’s regarding secondary structure are predicted
a database namely PSSRDB was constructed. These
secondary structure datas from PSSRDB are used in the
prediction of fold recognition.

Descriptors: The results of PSI-BLAST, RPS-BLAST,
SSEA-based descriptor and motif-based descriptor are
used to evaluate the performance of the fold recognition
proposed in this study. These descriptors are evaluated
as composite prior to the mdividual evaluation of each
descriptor.

Go-term descriptors: Every protein sequence can be
linked with one or more gene-ontology terms
categorized under Molecular Functions (MF), Biological
Processes (BP) and Cellular Component (CC). General,
these GO-terms can also be used to determine the
homology of protein sequences. The functional homology
score (often Fh score) is used to establish the
similarity between query and template sequences based
on their functions. Also, these Fh scores can be
used to guess and annotated the functions of the
proteins. Tn this study, the GO terms of most hit templates
are used to predict the GO-term of the query protens
(Fh cutoff: 0.8).

RESULTS AND DISCUSSION

The server for fold recognition proposed in this
research can generate the potential 3 dimensional
structure of query protein. This method is based on
homologous shared between query and template proteins
sequences. The steps involved in this methods are the
remote homology determination by PSI-BLAST
searched) secondary structure predictions and consensus
alignment Hidden Markov Model (HMM) of query
sequence and screening against the PSSRDB (Protein
Secondary Structire Representative Database) holding
experimentally solved protein structures with secondary
structure consensus data. Generation of query sequence
3D structure based on HMM alighment between
query and templates structure refinement based on loop
library amino acid side chain modeling using a rotamer
library. The GO termand MeSH terms based
homologous is used to optimize the choice of rotamer.
The detailed work flow of the proposed system is outlined
mFig 1.

The present proposed method i1s efficient 1n
producing about 70% accurate models based on the
template domains. This rate of accuracy 1s achieved
due to the identification of remote homologous
proteins by mmplementing the profile-profile and HMM
alignment strategies. However, this proposed method
has its own drawbacks while the query and
template sequence homology falls in twilight zone
(<15%).

Secondary structure prediction: The secondary structure
of protein is predicted as 3-state: w-helix, B-strand or coil.
The prediction of SSE were given as Hh, Ee, Cc while the
unknown (disordered) regions in query protein are
indicated by question marks (?). However, these regions
might be functionally very important. Yet, there is not
much attention paid to predict the structure at these
regions. It has been observed that on average 78-80%
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Fig. 1: The fold recognition flow chart proposed in this

study
accuracy is achieved in secondary structure
prediction. The percentage of secondary structure
elements predicted by using test and tramning dataset are
shown in Fig. 2.

On the other hand, this level of exactness might
be due to the large amount of wvaried sequence
homologues m the PSSRDB. If query sequence shares
less similarity, then precision rate falls to roughly 65-70%.
In the secondary structure predictions the elements such
as T-helices, or 3,-helices, turns, bends are merged
together and treated as a-helices and coils. Tn addition,
the composition of aminoe acids and their properties also
plays a vital role in secondary structure prediction. For
mstance, polar amino acids (A, G, P, 3, T), hydrophobic
(I, L, M, V), charged (D, E, H, K, N, Q, R) and aromatic
(C,F, W, Y) (Fig. 2).

Template information: The homology shared between the
template and query sequences 1s given in terms of
alignment score. This is purely based on the number of
matched and mismatched and gapped residues. Also, the
secondary structure prediction and its similarity are
considered for the choice of template. The template
selected for the construction of models will be displayed.
the generate models co-ordinate files in PDB format will be
provided to download and can ve viewed in any of the
support visualizations tools such as rasmol, jmol etc. The

()
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Fig. 2: The correctness in secondary structure prediction
for the dataset from PSSRDB; a) trainung set and
b) test set

percentage of similarity between query and template
alignment 1s also displayed as Structural homology (Sh)
score (this is not the modeled structure accuracy). Based
on which the users can also use the selected template of
their choice to model the protein. In general, the proposed
system will use the template with highest Sh score which
can significantly produce the high accuracy models. For
instance, the Sh core of (»>90%) can produce the model
with 2-3 A" of RMSD (Roct Mean Square Deviation). This
might be due to the possibility of exact fold recogmtions.
However, the fold recognition plays a crucial role in
protein modeling while the template with low Sh core
exists. In line with this, the proposed systems can
generate the high accurate models with Sh score between
30-40% or above. Also, some times, the models with
moderate accuracy can also be generated for query
sequences that shares lower Sh score (<15%) with the
templates. However, the proposed system is not enough
significant i generating even the low accurate models
when the Sh score of query-template falls below 14% or
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lower. Also, the template secondary structure and its
consensus taken form PSSRDB will also be presented for
the users references. Further, predicted GO-terms of the
query sequence and template sequences are also given as
Fh (Function homology) score. These terms are used as
major descriptors in predicting the functional domains of
the query sequences and alse used to identify the
functional domains by providing the matched regions on
template. Based on the hypothesis that the GO-terms are
highly relevant to classify those protems molecular
functions, biological process and functions, the
annotation of query protein function can be determined
without any error. However, at certain cases the chances
of error are high when the Fh score is very low. In this
study, it is observed that 50% of the native GO terms are
properly recognized from template with 0.8 Fh-score. Also,
the MeSH (Medical Subject Heading) terms used as
descriptors for identify subset of protein specificity.

Alignment: The models generated in this proposed
systems 15 based on the query template alignment
(Sh score), HMM alignment, secondary structure, GO term
(Fh score) and MeSH term similarities. The alignment
between query and template along with the predicted
secondary structure and its consensus are used in
combination to reveal the Sh scores. The alignments
with most disordered secondary structure are also
displayed separately. Thus, the user can make use of the
both the template for modeling. In the predicted
secondary structure of the templates, the DSSP
(Dictionary of Secondary Structure of Proteins) notations
secondary structure notations such as S (bend), T
(hydrogen bonded tum), G (3,; helix), I{x helix) and B
(P-bridge) characters are also included The secondary
structures predictions were given as eight state
assignments (Hh, Gg, Ti, Bb, Ee, Tt, Ss, Cc) and then
reduced to three states H (Helices), E (sheets), C (Coils),
s0 as to improve the accuracy and the generation of
secondary structure information representation in the
form of summary (e.g., predicted secondary structure for
a sequence 13 CCCHHcChHHHcCechHhHHhCCC, the
generated summary will be CheChHeCchHhHAC).
Thus, the template and query conserved with these SSE
(3 states) are considered for the modeling.

Performance of proposed fold recognition serve: The
performance of the proposed fold recognition serveris
assessed by secondary structure elements alignment,
PSI-BLAST, reverse PST BLAST (RPS-BLAST), motif,
GO-terms and MeSH terms based methods individually
(Table 1). In which the performance of the each methods
on the PSSRDB dataset is very discouraging. However,

Table 1: The performance of individual descriptors used in the fold
recognition servers

Descriptors Sensitivity (%0)
SSE 28.55
PSI-BLAST 36.83
RPS-BLAST 37.48
MOTIF 19.61
GO-term 30.04
MeSH term 23.34

Table 2: Sensitivity based on the different descriptors combination

Descriptors Sensitivity (%4)
SSE and PSI-BLAST (Set A) 48.02
Set A and RPS BLAST (Set B) 51.06
Set B and motif (Set C) 55.86
Ret Cand GO term (Set D) 68.01
Set D and MeSH term T2.04

the combination of these methods on this PSSRDB data
set has shown remarkable increase in gthe performance in
term of sensitivity. Thus, the comparison of all the
methods was determined to explore the descriptors that
can be used to explore the remote homology proteins. The
combination of six methods has shown an raise in the
sensitivity of the homologies predicted based on the
query sequence (Table 2).

For future development, the templates in the PSSRDB
are concerned to regularly update and are provided
withwide-ranging of protens with experimentally
determined structures will be included as fold library.
Further, the inclusions of new descriptors such as
physio-chemical properties
consideration to enhance the prediction accuracy of this
proposed fold recognition server. However, the mclusion
of new descriptors will certainly complicate the prediction
results of server and interferes with the performance of
individual descriptors. Thus, it is always important to
carefully assess the new descriptors performance before
including in the fold recognition server. While this sort of
more descriptors inclusions into a fold recognition system
are favored by machine learning techniques such as SVM,
BPN and KNN methods which may ultimately lead to the
better performance of the system. Thus, the development
of fold recognition systems based on machine learning
methods will result m high accuracy models and can
establish the relationship between sequence, function and
structure.

of amino acids are in

CONCLUSION

In the present research, we focused to suggest a
protein fold recognition server that predicts based on the
proteins affiliated GO term and MeSH term and by a
composite model with these factors as descriptors. The
propsed method explored a better performance based as
it captures the functional and evolutionary information of
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proteins. The combination of GO term with the other
descriptors has resulted in the performance accuracy of
68.01% and the inclusion of MeSH terms (72.04%) to this
combination has shown in 4.06% raise in the performance.
This significantly, envisages that the inclusion of new
descriptors might result in the better performance of fold
recogmition servers. Also that the development of
machine learning based fold recognition methods can
result in high accuracy models which can significantly
establish the relationship among sequence, function and
structure.
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