Tournal of Engineering and Applied Sciences 12 (23): 7389-7362, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Frequency-Based Fast Algorithm for Anomaly Detection in Big Data

Adeel 3. Hashmi and Tanvir Ahmad
Department of Computer Engineering, Faculty of Engineering,
Jamia Millia Islamia, New Delhi, India

Abstract: Anomaly/outlier detection is an important area of machine learning which finds its application in
mtrusion-detection, fraud-detection, etc. In recent times, the focus of data analytics has shifted to big data
analytics, 1.e., analytics on large-scale data and fast-moving data streams. The traditional data processing tools
and algorithms are not able to handle big data, so, there is a need of algorithms to be implemented in a parallel
model like MapReduce to solve this problem. In this study, the researchers implement frequency-based
algonthm on Spark MapReduce as a scalable and accurate solution for anomaly detection on large-scale as well

as streaming datasets.

Key words: Data mining, distributed computing, parallel processing, predictive models, machine learning, tools

INTRODUCTION

Anomaly detection or outlier detection is the process
of identifying abnormal data m the given dataset. A
sinple example of anomaly detection 1s intrusion detection
where some unusual activity is identified to detect the
intruder. There are various unsupervised and supervised
learning techniques for anomaly detection (Agrawal and
Agrawal, 2015) like cluster analysis based outlier
detection, local outlier factor, KNN, replicator neural
networks, support vector machines, ensemble learning,
sub-space and correlation based outlier detection, etc.
ELKI (Achtert et al., 2008) 1s an open-source java-based
data mining toolkit which provides several anomaly
detection algorithms like EM-outlier, LOF, OPTICS-OF,
DB-outlier (distance-based), LDOF (Local Distance-based
Outlier Factor), LOCI (Local Correlation Integral).

With the rise of Big data and ToT (Internet of Things),
there is a need for analytics on large-scale data as well as
real-time analytics and one of the most important areas 1s
outlier detection which could help us detect anomalous
data points and take necessary action. In this study, the
researchers aim to develop a big data solution to
perform outlier detection on large datasets as well as on
fast-moving data streams. The aim of the solution is
scalability along with accuracy as the available algorithms
are not able to scale-up to the growing datasets. The
algorithm that has been selected to develop the solution
15 frequency-based which has been parallelized in
MapReduce, so that, it can be implemented in a
distributed environment to reduce the processing time.

Big data: The term, “big data™ 1s used for those datasets
which can’t be handled by traditional data management
and processing tools due to its large volume, the rate at
which it is generated or the variety of data in it. These are
called as 3V’s of big data: volume, velocity and variety.
However, some authors have mtroduced more dimensions
like veracity, value, etc. The traditional DBMS (Oracle,
MySQL, DB2, etc.) and data processing/mining tools (like
MS-Excel, Weka, SPS3S, etc.) have a certain limit on the
volume and dimensions of data which they can handle
and are neither able to scale-up to growing data, nor they
are able to process fast moving data streams. So, these
tools are clearly not able to satisfy the needs of a big data
tool, 1.e., ability to scale-up to data, perform fast analysis
(preferably parallel/distributed), ability to handle data
streams and ability to handle different vamety of data.
Moreover, traditional algorithms (data mining) are also
not able to fulfill the needs of big data as they are
unable to provide fast results and perform real-time
analytics.

To handle such datasets (large, streaming, growing,
multi-source, multi-variety), we need different tools and
algorithms (Hashmi and Ahmad, 2016a). One of the most
popular tools for handling big data is Hadoop/YARN
which provides a distributed storage (HDFS3-Hadoop
Distributed File System) and a parallel programming
model MapReduce which helps a programmer to write
parallel/distributed applications that can run on a Hadoop
cluster to handle large files. The major limitation of
Hadoop 1s that 1t can’t handle data streams but 1t supports
other data stream processing engines like Apache Storm.
Apache Sparlk is tool which can be used as an alternative

Corresponding Author: Adecl S. Hashmi, Department of Computer Engineering, Faculty of Engincering, Jamia Millia Islamia,

New Delhi, India

7389

J. Eng. Applied Sci., 12 (23): 7389-7392, 2017

to Hadoop or also can be used with Hadoop. The major
advantage of Spark is that, it can handle data streams and
writing MapReduce programs is siumpler as well.

As far as mming of big data 13 concerned, to perform
data analytics on such datasets we can perform
sampling, incremental learning or distributed processing
(Hashmi and Ahmad, 2016b). The most popular approach
being distributed processing obviously as it gives more
accurate results while consuming less time, however, if
we are processing a data stream then sampling or
mcremental learmng may be used. The machine learming
algorithms also need to be modified (parallelized) for
distributed leamning and tools like Apache Mahout, I1,O
and Spark MILib provide libraries of such algorithms
which can be used to handle large datasets. However,
writing our own distributed machine learmng algorithm in
MapReduce is quite challenging.

Qutlier detection: An outlier detection algorithm for big
data must be able to cope with volume (dimensions/scale),
velocity and complexity of data. Big data is often high
dimensional which causes data points to become sparse
which makes concepts like Euclidean-distance and
nearest-neighbor less applicable (Ertoz et af., 2003). So,
the algorithm must be able to handle high dimensional and
sparse data. These algorithms must also be able to
minimize false negatives/positives considering the cost of
analyzing each anomaly.

Koufakou et al. (2008) proposed Attribute Value
Frequency (AVF) algorithm for fast outlier detection ina
categorical datasets. The AVF method 1s based on a
simple concept that the outliers are those pomts which
have low frequencies. So, in AVF method an AVF score
1s assigned to each data point which 1s the sum of the
frequencies of attribute values.

L ef al (2013) proposed a fast statistics based
model for outlier detection in big data. The researchers
proposed an Entropy-based Fast Detection (EFD)
algorithm which utilizes the concept of entropy for outlier
detection. The k" data points which increase the entropy
of the system the maximum are considered to be the ‘K
outliers. The purpose of the algorithm is to find this
subset of ‘k’ points from the given dataset.

For detecting outliers in large and very large datasets,
a statistical method was proposed by Das and Mandal
(2004). They made use of Tukey’s bi-weight function
to obtain location and scale estimates of the data.
Mahalanobis distances were calculated using these
estimates for all data points. Next the probability density
curve of the Mahalanobis distances by Parzen window
was utilized. Those points whose Mahalanobis distances
have very low probability density are the outhers.

RAD (Rapid Anomaly Detection) algorithm is used
by NetFlix for outlier detection. RAD 1s able to handle
high cardinality dimensions, non-normalized datasets,
seasonality and minimizes false positives. RAD is based
on Robust principal component analysis (Candes et al.,
2011). RPCA repeatedly calculates SVD (Singular Value
Decomposition) and applies thresholds to singular values
in each iteration.

Yan et al. (2015) proposed a distributed outlier
detection algorithm which employs compressive sensing
for sampling high-dimensional data. A vector x = [x, ...,
x,]"eR" is called majority-dominated if there exists ceR
such that the set O = {i: x; # ¢} has [O[>N/2 . The koutlier
problem 1s defined as finding a set Ok ¢ O withmin (k, |Of)
elements that are furthest away from. Formally, for any
1€0, and j#0,, we have |x;- ¢| = x;-¢|.

A popular approach of outlier detection in big data is
through clustering as all big data mming libranes like
Apache Mahout, Spark MILib, H,O, etc. provide a parallel
implementation of popular k-means algorithm. For example
by Souza and Amazonas (2015), the researchers utilized
canopy k-means clustering algorithm available n Apache
Mahout library.

Bay’s parallel algorithms for distance-based and
density-based outliers (Lozano and Acufia, 2005) are
suitable candidates for outlier detection mn big data. The
main 1dea 1s to keep track of closest neighbors for each
instance in the dataset and assign a score (sum of
distances of k neighbors) to the instance. If the score is
lower than a cut-off value then the mstance is removed
indicating that it can’t be an outlier.

MATERIALS AND METHODS

AVF (Attribute Value Frequency) is one of the
simplest and fastest algorithms for outlier detection. The
algorithm is intuitive in the sense that the outliers are
those data points which are less frequent in the dataset.
For a multi-featured data pomts, the frequency 1s the sum
of the frequency of its attribute. An outlier can be a point
which has extremely high or extremely low frequency sum
compared to other points in the dataset.

Let’s assume there are n instances/pomts m the
dataset D and each instance has m afttributes. Each
instance 1s labeled as D, and D, = {x,. %5, ... X, ..., Xt
where, x; is the value of the j* attribute of D;. The AVF
score of each data point can be calculated as:

AVF(D,) = Jf £(Dy) (1)

7390

J. Eng. Applied Sci., 12 (23): 7389-7392, 2017

where, D; is the number of times the corresponding value
appears in the j* column. The AVF algorithm is a simple
algorithm and can be easily parallelized as shown by
Koufakou et al. (2008) where, it was implemented in
Hadoop MapReduce showing quite promising results.
However, the researchers of this study chose to parallelize
it using Apache Spark (PySpark) as the code 1s much
compact in Spark as compared to Hadoop and Spark 1s
also known to give faster results compared to Hadoop

(Algorithm 1).

AVF; Algorithm:
Input: Dataset D (n peoints, m attributes)
Output: k points (outliers)
Calculate frequency of each attribute
value, f(Dy);
foreach point D; (i=1, ..., m)
foreach attribute j (j=1, ..., m)
AVF(D) +=1(Dy)
end
end
Return top k outliers with minimum/maximum AVF score

The steps in Spark implementation of AVF are: select
an attribute, count values column-wise and produce
“columnar” frequencies, broadcast the attribute
frequencies (1.e., keep a read-only cached copy on each
machine), assign the appropriate frequency to each
record’s attribute from the broadcast and finally add the
frequencies in each row to get the sum of the frequencies
in the corresponding row. This sum of frequencies in a
row is the AVF score of the row (Algorithm 2).

Algorithem; PySpark Implementation of AVF:
for i in range(0,record _length):
attribute = records.mapValues(lambda
x[i])
attribute_frequencies =
attribute. values().countByValue()
bi=
sc.broadcast(attribute frequencies)
attribute_freq =
attribute. mapVahies(lambda x:
bivalue[x])
if I:
tsum =
t.join(attribute_freq).mapValues(sum)
else:
tsum = attribute_freq
t = tsum. sortBy(lambda x:x[1])

This algorithm can be easily extended to identify
anomalies 1 the data streams. To do so, we need to divide
the process into training and testing phases. In the
training phase, we generate the frequency tables and
generate frequency sum of each row. For the testing
phase, we mark the frequency sum thresholds. In testing
phase, we calculate the frequency sum of each instance
using the frequency table of traiming phase and the
instance which breaches the threshold is marked as an
outlier.

RESULTS AND DISCUSSION

The performance of AVF (on Spark) was compared
with k-means based outlier detection (on Spark), local
outlier factor algorithm (on GraphLab) and replicator
neural network (on H,O) The datasets used for the
experiments are the covertype/forest cover, kddeup99 and
HIGGS. The covertype dataset has 581012 mstances with
54 attributes. The kddeup99 dataset has 4000000
instances with 42 attributes. The HIGGS dataset has
11000000 mstances with 2R attributes. The experunents
were conducted on a cluster of 15 processors (dual-core)
with 4GB of RAM each and the cluster consisted of 6
nodes.

Table 1 shows the execution time taken (in minutes)
by each of the selected algorithms for finding anomalies
in the chosen “big” datasets.

As far as accuracy of the algorithm is concerned,
experiments were conducted on the small datasets like
Wisconsin Breast cancer, lymphography, post-operative
patient data and page-blocks. Table 2 shows the
performance analysis of the AVF algorithm evaluated
using metrics like sensitivity, specificity and accuracy.

Sensitivity = P (2)
TP+N
Specificity = N (3)
TN-+FP
+
Acouracy = — TP (4)
TN+TP+FN+FP

The accuracy of the AVF algorithm was found to be
at par with the rest of the algorithms. From the results, it
can be nferred that AVF 1s the fastest algorithm for
anomaly detection in big data while being nearly as
accurate as the state-of-art algorithms for anomaly
detection.

Table 1: Execution Time (in minutes)

Algorithm
Data-set k-means 1L.OF RNN AVF
Forest cover 1.58 1.37 8.34 1.12
kdd-cupeo 2.56 2.09 14.68 1.56
HIGGS 6.24 6.18 47.21 5.4

Table 2: Performance of the solution

Dataset Sensitivity Specificity Accuracy
Breast cancer 9842 82.05 97.10
Lympho-Graphy 98.59 66.66 97.29
Post-Operative 73.43 34.61 62.22
Page-blocks 98.37 42.85 96.83

7391

J. Eng. Applied Sci., 12 (23): 7389-7392, 2017

CONCLUSION

Anomaly detection 1s a challenging task and it
becomes even more challenging if it is to be done on large
or streaming datasets. This study gives an easy yet
powerful solution to anomaly detection in big data. The
research done mn this study has
implications as it can be used for anomaly detection on

wide research

large volumes of data in areas like fraud-detection,
ntrusion-detection, 1identification of cancerous cells, etc.
The search 1s sigmficant m the sense there are no
limitations on the data size which can be processed and
The algorithm

imnplemented m Spark 1s scalable as one just needs to

the results are fast and accurate.

mcrease the cluster size to handle larger dataset and to
decrease the turn-around time.

REFERENCES

Achtert, E., HP. Kriegel and A. Zimek, 2008. ELKI: A
Software System for FEvaluation of Subspace
Clustering Algorithms. In: Scientific and Statistical

and N.

Germany,

Database Management, B. Ludascher
Mamoulis (Eds.). Springer, Berlin,
ISBN:978-3-540-69476-2, pp: 580-585.

Agrawal, 3. and J. Agrawal, 2015. Survey on anomaly
detection using data mining techniques. Procedia
Comput. Sci., 60: 708-713.

Candes, E.J, X. Li, Y. Ma and J. Wright, 2011. Robust
principal component analysis? J. ACM, Vol 58.
10.1145/1970392.1970395

Das, P. and D. Mandal, 2004. Statistical outlier
detection n large multivariate datasets. Master
Thesis, Netaji Subhash Engmeening College, Kolkata,
India.

Ertoz, L., M. Steinbach and V. Kumar, 2003. Finding
clusters of different sizes, shapes and densities in
noisy, high dimensional data. Proceedings of the 3rd
SIAM International Conference on Data Miming,
May 1-3, 2003, San Francisco, pp: 47-58.

Hashmi, A.S. and T. Ahmad, 2016b. Big data mming
techniques. TIndian J. Sci. Technol, Vol 9,
10.17485A4)st/201 6/v9137/85826

Hashmi, A.S. and T. Ahmad, 2016a. Big data mining:
Tools and algorithms. Intl. J. Recent Contrib. Eng.
Sci. IT., 4: 36-40.

Koufakou, A, I. Secretan, J. Reeder, K. Cardona and M.
Georgiopoulos, 2008. Fast parallel outlier detection
for categorical datasets using MapReduce.
Proceedings of the TEEE International Toint
Conference on Neural Networks (ITCNN"08) and IEEE
World Congress on Computational Intelligence, June
1-8, 2008 IEEE, Hong Kong, China,
ISBN:978-1-4244-1820-6, pp: 3298-3304.

Liu, B., W. Fan and T. Xiao, 2013. A Fast Outlier
Detection Method for Big Data. In: Communications
in Computer and Information Science, Tan, G., G.K.
Yeo, S.J. Tumerand Y .M. Teo (Eds.). Springer, Berlin,
Germany, ISBN:978-3-642-45036-5, pp: 379-384.

Lozano, E. and E. Acufia, 2005. Parallel algorithms for
distance-based and density-based outliers.
Proceedings of the 5th TEEE International Conference
on Data Mimng, November 27-30, 2005, IEEE,
Houston, Texas, ISBN:0-7695-2278-5, pp: 1-4.

Souza, AM. and I R. Amazonas, 2015. An outlier detect
algorithm using big data processing and internet of
things architecture. Procedia Comput. Sci., 52:
1010-1015.

Yan, Y., J. Zhang, B. Huang, X. Sunand J. Mu et af., 2015.
Distributed outlier detection using compressive
sensing. Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
May 31-Tune 04, 2015, ACM, Melbourne, Victoria,
ISBN:978-1-4503-2758-9, pp: 3-16.

7392

	7389-7392_Page_1
	7389-7392_Page_2
	7389-7392_Page_3
	7389-7392_Page_4

