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Abstract: Region based covariance localization ensemble Kalman filter 1s a method that incorporating the
mformation of region to ensure that the updated parameters honor the region models such as facies, flow umit,
rock type model, etc. Since, the model updated under specified regions, the adjacent parameters would not
maintain its spatial correlation if it is under different regions. Therefore, the algorithm could freely update the
parameters within the region without considering the values i another region. This approach would fit best
in listory matching that target reservoir-wide area. On the contrary, the significance of the fluid dynamics rarely
follows such regions. The affected areas that influenced the production data is governed by the physics of fluid
flow which incorporate the fluid types, relation of rock-fluid properties and so on. Since, lustory matching use
production data as a measurement data, the parameters should only occur in the areas that affected by fluid flow
in reservoir. These areas usually smaller than the area provided by regions model. Thus, it could be used to
improve localization effect. In this study, we explore the formulation of localization based on the behavior of
pressure and fluid flow combined with region based covariance localization ensemble kalman filter. The results
show that, the combination of both methods could improve the localization effect while maintaimng the defined
regions. This method could be useful to improve the area within the wells that affects directly to the production
forecast.
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INTRODUCTION

The most umportant step in dynamic modeling
workflow 1s history matching. In this step, the model 1s
validated by using production data acquired from
measurements. The main purpose of history matching 1s
to minimize the differences between predicted and
measurement data (Tavassoli et al, 2004). This is
generally known as mverse problem. Usually, the target of
history matching is single valued parameter such as ratio
of vertical permeability and horizontal permeability, skin
factor, etc. But, sometimes tuning these targets is not
enough to reduce the error between predicted and
measwrement data. If these happens, one should look at
the distribution of parameters in static model. Since, the
distribution of parameters are generated randomly, 1t 1s
possible that the selected realization is not perfectly
accurate.

Ensemble Kalman Filter (EnKF) 1s designed to update
a distribution of parameters to reduce the error in history
matching. The algorithm 15 developed by combimng the
monte-carlo method and extended kalman filter to mimmize
error in a nonlinear model (Evensen, 2004). Since, its
inception, the EnKF algorithm is already used m many
fields of study (Tia and Brownb, 2009; Evensen, 1997;
Evensen, 1994; Evensen, 2003). In static parameter history
matching, the algorithm 1s successfully implemented to
update porosity model by assimilating production data
(Haugen et al., 2008).

The EnKF algorithm consist of prediction step and
assimilation step. The prediction step 1s a modeling
process which 1s done by reservoir simulation while the
assimilation step is the correction phase that update the
parameters based on the differences between predicted
and measured data. The EnKF algorithm is summarize as
follows. Prediction step:
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X, = (X, N0, W) (1)

P = (XXX X @
Where:
X = The parameter ensemble
W, = The covariance matrix that characterizes model error
N = The function that generates gaussian random which
follows designated covariance matrix
P = The matrix denotes the covariance matrix for
parameter X

Assimilation step:

7, = Z,+N(0, V) (3

K = P H(HP H+V,)" “4)
X, =X +HK(Z, -HX) (3
P = (X, X)X, X, ©)

Where:

Z = The measurement ensemble

V = The covariance matrix that characterizes

measurement error
K = The Kalman gain
H = The transition matrix which maps the prediction in

parameter ensemble into measurement ensemble

The assumption in ensemble kalman filter is the
distribution of static parameters is spatially correlated
(Naevdal et al, 2005). One of the equation used in
defining spatial correlation is gaussian correlation model:

2 2 2
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Where:
C = The gaussian correlation matrix
8 = The point at specified axis

I, = The correlation length

From the gaussian correlation matrix, the initial
covariance matrix P, could be generated by multiplying
variance to the covariance matrix P, (Naevdal et al., 20035).
Under RCL-EnKF method, initial covariance matrix 1s
modified using region modifier matrix F (Ambia ef al.,
2017). The symbol represents hadamard product which 1s
an element by element multiplication.:

LE =f Vi, jEfL2, . m}
F=f, i 7]

= (8)
" 0f #f,

P' = FOP 9

MATERIALS AND METHODS

In this method, we explore the possibility of using
dynamic parameters that directly affect the production
data such as pressure and flux magnitude. Most of the
reservoir simulation is done by using finite difference
simulator that utilize IMPES algorithm to solve the fluid
flow in porous media. Thus, the pressure and flow
information 1s already calculated when the simulator solve
the equation. This information is used to control which
grid gets updated by modifying the kalman gain For
pressure formulation, it is important to maintain
consistency for every possible pressure data. Therefore,
the pressure needs to be converted into normalized

pressure!
vte {0, .., T-1}, vie {0, .., N-1}

R emax (o, p, (10)
emax (P, )Py
Where:
p = The variable is a reservoir pressure

Pws = The bottom hole pressure

Another method 1s using flux magmtude as a basis of
localization. The flux magmtude is normalized using the
following Eq. 11:

vite {0,..,T-13, Vie {0,..., N-1}

ug , min (ug ) (11)
p = FD - iefl,.. H-1} :
max {(ug, lmin {ug,)
{0, M1} ie{0, -1}

where, u 1s flux magmtude. The normalized model gives
the consistency for every possible flow results. From the
kalman gain modifier, p the new kalman gain is calculated
The modified kalman gain then is used in EnKF algorithm:

K'=pk (12)

RESULTS AND DISCUSSION

The algorithm is tested in reservoir simulation.
Suppose there 13 a channelized reservoir model that have
the properties shown mn Table 1. The reservoir consists of
two distinctive facies that 1s a channel and a levee as
shown in Fig. 1. For each facies, the permeability is
distributed evenly. The permeability on channel is
substantially higher than the permeability in levee area.
The channel area has permeability of 800 md while the
levee has 300 md. The permeability n non-reservorr area
15 50 md. The objective of history matching 1s to find the
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Fig. 1: The distribution of permeability in true model and the model that used as initial condition
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Fig. 2: The update of permeability distribution over time using pressure as an additional localization method. The facies

model is preserved within the updated area

distribution of permeability that follows true model using
homogenous model as an initial condition. The initial
permeability is 100 md. The reservoir is produced from
three production wells. There 13 no water and gas
produced from the reservorr. We use standard RCL-EnKF
from previous research as a baseline results (Ambia et al.,
2017). The Root Mean Squared Ermror (RMSE) for
permeability distribution 15 42 md. The updated results
using Eq. 10 1s shown in Fig. 2. The updated area follows

the pressure change distribution in reservoir. Notice that
in the lower permeability area the pressure change reach
farther ranges than in high permeability area. The effect is
caused by m the high permeability area, the pressure
change 1s higher, makes it depleted more rapidly. The
RMSE for pressure based RCL-EnKF is 143 md. The
histogram of permeability is shown in Fig. 3.

Another method that, we explore 1s flux o1l magnitude
based RCL-EnKF. In thus method, we use Eq. 11 to
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Fig. 3: Histogram of permeability distribution over time

Table 1: Properties in reservoir model

Parameters

Parameters

Table 2: Comparison of root means squared error for each method

Parameters Values Root mean squared error Grid (md) Oil rate (BOPD)
Grid size 50x50, 100 ft RCL EnKF 42 P-1: 73
Top depth 5000 ft P-2:27
Thickness 100t P-3: 44
Initial pressure 2048 psi Pressure based RCL-EnKF 143 P-1: 77
Temperature 212F P-2:30
Porosity 1% ] ] P-3: 69
0il density 20 API Flux oil magnitude based RCL-EnKF 190 P-1: 750
Gas density 0.8 P-2: 226
P-3:319

generate Kalman gain modifier matrix. The result is shown
i Fig. 4. The updated area encloses a smaller area than
pressure based kalman gain modifier. This phenomenon
is caused by the area that have enough pressure
difference to move the oil is smaller than the actual area
that affected by pressure changes. From the histogram
shown in Fig. 5 there are three separate facies in the
model. Other than that, a lot of area is still unchanged
because it is located outside of updated perimeter. This
effect 1s expected since it means that, the localization
method works as mtended. The RMSE for flux ail
magnitude based RCL-EnKF is 190 md. The comparison of
RMSE for every method is shown in Table 2.

From comparison of RMSE, both methods give higher
RMSE error than standard RCL-EnKF. The explanation is
by mcreasing the localization method, the updated area 1s
smaller compared to normal RCL-EnKF. Therefore, a lot of
area 15 under mitial condition. A comparison between
both methods are fairer if, we select the permeability of the
area within 200 ft from wells. The RMSE for pressure
based RCL-EnKF is 247 md while the RMSE for flux oil
magnitude 18 82 md which 13 considerably lower than
RMSE of normal RCL-EnKF at 168 md. The comparison of
RMSE for every method 1s shown in Table 3.

From the comparison, the lowest error is obtained
by flux o1l magmitude based RCL-EnKF. This 1s also
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Fig. 4: Permeability distribution over time using flux o1l magmtude as an additional localization method. The updated area
1s smaller than other methods
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Fig. 5: Histogram of permeability distribution over time
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Fig. 6: Plot of permeability of true model vs. average
permeability within 200 ft radius of wells

Table 3: Comparison of root means squared error within 200 ft radius of

nearest well
Methods P-1 (md) P-2 (md) P-3 (md) RMSE (md)
True model 800 300 50
RCL-EnKF 635 (-21%) 272(-9%) 64 (28%) 168 (-11%)
Pressure based 554 (-31%) 283 (-5%) TO 400 247 (34%)
RCL-EnKF
Flux oil magnitude 855 (7%0) 239(-200)  56(12%) 82 (-56%)

based RCL-EnKF

confirmed from the plot of permeability from true
model vs. predicted model within 200 ft of well
radius Fig. 6.

CONCLUSION

The flux oil magnitude based RCL-EnKF gives the
lowest error. This 1s caused by the algorithm only updates
in much smaller area. Thus, the ratio between unknown
variables and known equation is smaller than normal
RCL-EnKF which makes it easier to solve the optimum
solution. Even though, flux oil magnitude is the best
method, the pressure based RCL-EnKF could be used to
update the permeability in wider area. The decision
depends on the available initial model, whether is good
enough or far from true model.
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